/*- * Copyright (c) 2004, 2005, * Bosko Milekic . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_param.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * In FreeBSD, Mbufs and Mbuf Clusters are allocated from UMA * Zones. * * Mbuf Clusters (2K, contiguous) are allocated from the Cluster * Zone. The Zone can be capped at kern.ipc.nmbclusters, if the * administrator so desires. * * Mbufs are allocated from a UMA Master Zone called the Mbuf * Zone. * * Additionally, FreeBSD provides a Packet Zone, which it * configures as a Secondary Zone to the Mbuf Master Zone, * thus sharing backend Slab kegs with the Mbuf Master Zone. * * Thus common-case allocations and locking are simplified: * * m_clget() m_getcl() * | | * | .------------>[(Packet Cache)] m_get(), m_gethdr() * | | [ Packet ] | * [(Cluster Cache)] [ Secondary ] [ (Mbuf Cache) ] * [ Cluster Zone ] [ Zone ] [ Mbuf Master Zone ] * | \________ | * [ Cluster Keg ] \ / * | [ Mbuf Keg ] * [ Cluster Slabs ] | * | [ Mbuf Slabs ] * \____________(VM)_________________/ * * * Whenever an object is allocated with uma_zalloc() out of * one of the Zones its _ctor_ function is executed. The same * for any deallocation through uma_zfree() the _dtor_ function * is executed. * * Caches are per-CPU and are filled from the Master Zone. * * Whenever an object is allocated from the underlying global * memory pool it gets pre-initialized with the _zinit_ functions. * When the Keg's are overfull objects get decomissioned with * _zfini_ functions and free'd back to the global memory pool. * */ int nmbufs; /* limits number of mbufs */ int nmbclusters; /* limits number of mbuf clusters */ int nmbjumbop; /* limits number of page size jumbo clusters */ int nmbjumbo9; /* limits number of 9k jumbo clusters */ int nmbjumbo16; /* limits number of 16k jumbo clusters */ static quad_t maxmbufmem; /* overall real memory limit for all mbufs */ SYSCTL_QUAD(_kern_ipc, OID_AUTO, maxmbufmem, CTLFLAG_RDTUN, &maxmbufmem, 0, "Maximum real memory allocateable to various mbuf types"); /* * tunable_mbinit() has to be run before any mbuf allocations are done. */ static void tunable_mbinit(void *dummy) { quad_t realmem; /* * The default limit for all mbuf related memory is 1/2 of all * available kernel memory (physical or kmem). * At most it can be 3/4 of available kernel memory. */ realmem = qmin((quad_t)physmem * PAGE_SIZE, vm_kmem_size); maxmbufmem = realmem / 2; TUNABLE_QUAD_FETCH("kern.ipc.maxmbufmem", &maxmbufmem); if (maxmbufmem > realmem / 4 * 3) maxmbufmem = realmem / 4 * 3; TUNABLE_INT_FETCH("kern.ipc.nmbclusters", &nmbclusters); if (nmbclusters == 0) nmbclusters = maxmbufmem / MCLBYTES / 4; TUNABLE_INT_FETCH("kern.ipc.nmbjumbop", &nmbjumbop); if (nmbjumbop == 0) nmbjumbop = maxmbufmem / MJUMPAGESIZE / 4; TUNABLE_INT_FETCH("kern.ipc.nmbjumbo9", &nmbjumbo9); if (nmbjumbo9 == 0) nmbjumbo9 = maxmbufmem / MJUM9BYTES / 6; TUNABLE_INT_FETCH("kern.ipc.nmbjumbo16", &nmbjumbo16); if (nmbjumbo16 == 0) nmbjumbo16 = maxmbufmem / MJUM16BYTES / 6; /* * We need at least as many mbufs as we have clusters of * the various types added together. */ TUNABLE_INT_FETCH("kern.ipc.nmbufs", &nmbufs); if (nmbufs < nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16) nmbufs = lmax(maxmbufmem / MSIZE / 5, nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16); } SYSINIT(tunable_mbinit, SI_SUB_KMEM, SI_ORDER_MIDDLE, tunable_mbinit, NULL); static int sysctl_nmbclusters(SYSCTL_HANDLER_ARGS) { int error, newnmbclusters; newnmbclusters = nmbclusters; error = sysctl_handle_int(oidp, &newnmbclusters, 0, req); if (error == 0 && req->newptr) { if (newnmbclusters > nmbclusters && nmbufs >= nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16) { nmbclusters = newnmbclusters; nmbclusters = uma_zone_set_max(zone_clust, nmbclusters); EVENTHANDLER_INVOKE(nmbclusters_change); } else error = EINVAL; } return (error); } SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbclusters, CTLTYPE_INT|CTLFLAG_RW, &nmbclusters, 0, sysctl_nmbclusters, "IU", "Maximum number of mbuf clusters allowed"); static int sysctl_nmbjumbop(SYSCTL_HANDLER_ARGS) { int error, newnmbjumbop; newnmbjumbop = nmbjumbop; error = sysctl_handle_int(oidp, &newnmbjumbop, 0, req); if (error == 0 && req->newptr) { if (newnmbjumbop > nmbjumbop && nmbufs >= nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16) { nmbjumbop = newnmbjumbop; nmbjumbop = uma_zone_set_max(zone_jumbop, nmbjumbop); } else error = EINVAL; } return (error); } SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbjumbop, CTLTYPE_INT|CTLFLAG_RW, &nmbjumbop, 0, sysctl_nmbjumbop, "IU", "Maximum number of mbuf page size jumbo clusters allowed"); static int sysctl_nmbjumbo9(SYSCTL_HANDLER_ARGS) { int error, newnmbjumbo9; newnmbjumbo9 = nmbjumbo9; error = sysctl_handle_int(oidp, &newnmbjumbo9, 0, req); if (error == 0 && req->newptr) { if (newnmbjumbo9 > nmbjumbo9 && nmbufs >= nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16) { nmbjumbo9 = newnmbjumbo9; nmbjumbo9 = uma_zone_set_max(zone_jumbo9, nmbjumbo9); } else error = EINVAL; } return (error); } SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbjumbo9, CTLTYPE_INT|CTLFLAG_RW, &nmbjumbo9, 0, sysctl_nmbjumbo9, "IU", "Maximum number of mbuf 9k jumbo clusters allowed"); static int sysctl_nmbjumbo16(SYSCTL_HANDLER_ARGS) { int error, newnmbjumbo16; newnmbjumbo16 = nmbjumbo16; error = sysctl_handle_int(oidp, &newnmbjumbo16, 0, req); if (error == 0 && req->newptr) { if (newnmbjumbo16 > nmbjumbo16 && nmbufs >= nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16) { nmbjumbo16 = newnmbjumbo16; nmbjumbo16 = uma_zone_set_max(zone_jumbo16, nmbjumbo16); } else error = EINVAL; } return (error); } SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbjumbo16, CTLTYPE_INT|CTLFLAG_RW, &nmbjumbo16, 0, sysctl_nmbjumbo16, "IU", "Maximum number of mbuf 16k jumbo clusters allowed"); static int sysctl_nmbufs(SYSCTL_HANDLER_ARGS) { int error, newnmbufs; newnmbufs = nmbufs; error = sysctl_handle_int(oidp, &newnmbufs, 0, req); if (error == 0 && req->newptr) { if (newnmbufs > nmbufs) { nmbufs = newnmbufs; nmbufs = uma_zone_set_max(zone_mbuf, nmbufs); EVENTHANDLER_INVOKE(nmbufs_change); } else error = EINVAL; } return (error); } SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbufs, CTLTYPE_INT|CTLFLAG_RW, &nmbufs, 0, sysctl_nmbufs, "IU", "Maximum number of mbufs allowed"); /* * Zones from which we allocate. */ uma_zone_t zone_mbuf; uma_zone_t zone_clust; uma_zone_t zone_pack; uma_zone_t zone_jumbop; uma_zone_t zone_jumbo9; uma_zone_t zone_jumbo16; uma_zone_t zone_ext_refcnt; /* * Local prototypes. */ static int mb_ctor_mbuf(void *, int, void *, int); static int mb_ctor_clust(void *, int, void *, int); static int mb_ctor_pack(void *, int, void *, int); static void mb_dtor_mbuf(void *, int, void *); static void mb_dtor_clust(void *, int, void *); static void mb_dtor_pack(void *, int, void *); static int mb_zinit_pack(void *, int, int); static void mb_zfini_pack(void *, int); static void mb_reclaim(void *); static void *mbuf_jumbo_alloc(uma_zone_t, int, uint8_t *, int); /* Ensure that MSIZE is a power of 2. */ CTASSERT((((MSIZE - 1) ^ MSIZE) + 1) >> 1 == MSIZE); /* * Initialize FreeBSD Network buffer allocation. */ static void mbuf_init(void *dummy) { /* * Configure UMA zones for Mbufs, Clusters, and Packets. */ zone_mbuf = uma_zcreate(MBUF_MEM_NAME, MSIZE, mb_ctor_mbuf, mb_dtor_mbuf, #ifdef INVARIANTS trash_init, trash_fini, #else NULL, NULL, #endif MSIZE - 1, UMA_ZONE_MAXBUCKET); if (nmbufs > 0) nmbufs = uma_zone_set_max(zone_mbuf, nmbufs); uma_zone_set_warning(zone_mbuf, "kern.ipc.nmbufs limit reached"); zone_clust = uma_zcreate(MBUF_CLUSTER_MEM_NAME, MCLBYTES, mb_ctor_clust, mb_dtor_clust, #ifdef INVARIANTS trash_init, trash_fini, #else NULL, NULL, #endif UMA_ALIGN_PTR, UMA_ZONE_REFCNT); if (nmbclusters > 0) nmbclusters = uma_zone_set_max(zone_clust, nmbclusters); uma_zone_set_warning(zone_clust, "kern.ipc.nmbclusters limit reached"); zone_pack = uma_zsecond_create(MBUF_PACKET_MEM_NAME, mb_ctor_pack, mb_dtor_pack, mb_zinit_pack, mb_zfini_pack, zone_mbuf); /* Make jumbo frame zone too. Page size, 9k and 16k. */ zone_jumbop = uma_zcreate(MBUF_JUMBOP_MEM_NAME, MJUMPAGESIZE, mb_ctor_clust, mb_dtor_clust, #ifdef INVARIANTS trash_init, trash_fini, #else NULL, NULL, #endif UMA_ALIGN_PTR, UMA_ZONE_REFCNT); if (nmbjumbop > 0) nmbjumbop = uma_zone_set_max(zone_jumbop, nmbjumbop); uma_zone_set_warning(zone_jumbop, "kern.ipc.nmbjumbop limit reached"); zone_jumbo9 = uma_zcreate(MBUF_JUMBO9_MEM_NAME, MJUM9BYTES, mb_ctor_clust, mb_dtor_clust, #ifdef INVARIANTS trash_init, trash_fini, #else NULL, NULL, #endif UMA_ALIGN_PTR, UMA_ZONE_REFCNT); uma_zone_set_allocf(zone_jumbo9, mbuf_jumbo_alloc); if (nmbjumbo9 > 0) nmbjumbo9 = uma_zone_set_max(zone_jumbo9, nmbjumbo9); uma_zone_set_warning(zone_jumbo9, "kern.ipc.nmbjumbo9 limit reached"); zone_jumbo16 = uma_zcreate(MBUF_JUMBO16_MEM_NAME, MJUM16BYTES, mb_ctor_clust, mb_dtor_clust, #ifdef INVARIANTS trash_init, trash_fini, #else NULL, NULL, #endif UMA_ALIGN_PTR, UMA_ZONE_REFCNT); uma_zone_set_allocf(zone_jumbo16, mbuf_jumbo_alloc); if (nmbjumbo16 > 0) nmbjumbo16 = uma_zone_set_max(zone_jumbo16, nmbjumbo16); uma_zone_set_warning(zone_jumbo16, "kern.ipc.nmbjumbo16 limit reached"); zone_ext_refcnt = uma_zcreate(MBUF_EXTREFCNT_MEM_NAME, sizeof(u_int), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_ZINIT); /* uma_prealloc() goes here... */ /* * Hook event handler for low-memory situation, used to * drain protocols and push data back to the caches (UMA * later pushes it back to VM). */ EVENTHANDLER_REGISTER(vm_lowmem, mb_reclaim, NULL, EVENTHANDLER_PRI_FIRST); } SYSINIT(mbuf, SI_SUB_MBUF, SI_ORDER_FIRST, mbuf_init, NULL); /* * UMA backend page allocator for the jumbo frame zones. * * Allocates kernel virtual memory that is backed by contiguous physical * pages. */ static void * mbuf_jumbo_alloc(uma_zone_t zone, int bytes, uint8_t *flags, int wait) { /* Inform UMA that this allocator uses kernel_map/object. */ *flags = UMA_SLAB_KERNEL; return ((void *)kmem_alloc_contig(kernel_arena, bytes, wait, (vm_paddr_t)0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT)); } /* * Constructor for Mbuf master zone. * * The 'arg' pointer points to a mb_args structure which * contains call-specific information required to support the * mbuf allocation API. See mbuf.h. */ static int mb_ctor_mbuf(void *mem, int size, void *arg, int how) { struct mbuf *m; struct mb_args *args; int error; int flags; short type; #ifdef INVARIANTS trash_ctor(mem, size, arg, how); #endif args = (struct mb_args *)arg; type = args->type; /* * The mbuf is initialized later. The caller has the * responsibility to set up any MAC labels too. */ if (type == MT_NOINIT) return (0); m = (struct mbuf *)mem; flags = args->flags; error = m_init(m, NULL, size, how, type, flags); return (error); } /* * The Mbuf master zone destructor. */ static void mb_dtor_mbuf(void *mem, int size, void *arg) { struct mbuf *m; unsigned long flags; m = (struct mbuf *)mem; flags = (unsigned long)arg; if ((m->m_flags & M_PKTHDR) && !SLIST_EMPTY(&m->m_pkthdr.tags)) m_tag_delete_chain(m, NULL); KASSERT((m->m_flags & M_EXT) == 0, ("%s: M_EXT set", __func__)); KASSERT((m->m_flags & M_NOFREE) == 0, ("%s: M_NOFREE set", __func__)); #ifdef INVARIANTS trash_dtor(mem, size, arg); #endif } /* * The Mbuf Packet zone destructor. */ static void mb_dtor_pack(void *mem, int size, void *arg) { struct mbuf *m; m = (struct mbuf *)mem; if ((m->m_flags & M_PKTHDR) != 0) m_tag_delete_chain(m, NULL); /* Make sure we've got a clean cluster back. */ KASSERT((m->m_flags & M_EXT) == M_EXT, ("%s: M_EXT not set", __func__)); KASSERT(m->m_ext.ext_buf != NULL, ("%s: ext_buf == NULL", __func__)); KASSERT(m->m_ext.ext_free == NULL, ("%s: ext_free != NULL", __func__)); KASSERT(m->m_ext.ext_arg1 == NULL, ("%s: ext_arg1 != NULL", __func__)); KASSERT(m->m_ext.ext_arg2 == NULL, ("%s: ext_arg2 != NULL", __func__)); KASSERT(m->m_ext.ext_size == MCLBYTES, ("%s: ext_size != MCLBYTES", __func__)); KASSERT(m->m_ext.ext_type == EXT_PACKET, ("%s: ext_type != EXT_PACKET", __func__)); KASSERT(*m->m_ext.ref_cnt == 1, ("%s: ref_cnt != 1", __func__)); #ifdef INVARIANTS trash_dtor(m->m_ext.ext_buf, MCLBYTES, arg); #endif /* * If there are processes blocked on zone_clust, waiting for pages * to be freed up, * cause them to be woken up by draining the * packet zone. We are exposed to a race here * (in the check for * the UMA_ZFLAG_FULL) where we might miss the flag set, but that * is deliberate. We don't want to acquire the zone lock for every * mbuf free. */ if (uma_zone_exhausted_nolock(zone_clust)) zone_drain(zone_pack); } /* * The Cluster and Jumbo[PAGESIZE|9|16] zone constructor. * * Here the 'arg' pointer points to the Mbuf which we * are configuring cluster storage for. If 'arg' is * empty we allocate just the cluster without setting * the mbuf to it. See mbuf.h. */ static int mb_ctor_clust(void *mem, int size, void *arg, int how) { struct mbuf *m; u_int *refcnt; int type; uma_zone_t zone; #ifdef INVARIANTS trash_ctor(mem, size, arg, how); #endif switch (size) { case MCLBYTES: type = EXT_CLUSTER; zone = zone_clust; break; #if MJUMPAGESIZE != MCLBYTES case MJUMPAGESIZE: type = EXT_JUMBOP; zone = zone_jumbop; break; #endif case MJUM9BYTES: type = EXT_JUMBO9; zone = zone_jumbo9; break; case MJUM16BYTES: type = EXT_JUMBO16; zone = zone_jumbo16; break; default: panic("unknown cluster size"); break; } m = (struct mbuf *)arg; refcnt = uma_find_refcnt(zone, mem); *refcnt = 1; if (m != NULL) { m->m_ext.ext_buf = (caddr_t)mem; m->m_data = m->m_ext.ext_buf; m->m_flags |= M_EXT; m->m_ext.ext_free = NULL; m->m_ext.ext_arg1 = NULL; m->m_ext.ext_arg2 = NULL; m->m_ext.ext_size = size; m->m_ext.ext_type = type; m->m_ext.ext_flags = 0; m->m_ext.ref_cnt = refcnt; } return (0); } /* * The Mbuf Cluster zone destructor. */ static void mb_dtor_clust(void *mem, int size, void *arg) { #ifdef INVARIANTS uma_zone_t zone; zone = m_getzone(size); KASSERT(*(uma_find_refcnt(zone, mem)) <= 1, ("%s: refcnt incorrect %u", __func__, *(uma_find_refcnt(zone, mem))) ); trash_dtor(mem, size, arg); #endif } /* * The Packet secondary zone's init routine, executed on the * object's transition from mbuf keg slab to zone cache. */ static int mb_zinit_pack(void *mem, int size, int how) { struct mbuf *m; m = (struct mbuf *)mem; /* m is virgin. */ if (uma_zalloc_arg(zone_clust, m, how) == NULL || m->m_ext.ext_buf == NULL) return (ENOMEM); m->m_ext.ext_type = EXT_PACKET; /* Override. */ #ifdef INVARIANTS trash_init(m->m_ext.ext_buf, MCLBYTES, how); #endif return (0); } /* * The Packet secondary zone's fini routine, executed on the * object's transition from zone cache to keg slab. */ static void mb_zfini_pack(void *mem, int size) { struct mbuf *m; m = (struct mbuf *)mem; #ifdef INVARIANTS trash_fini(m->m_ext.ext_buf, MCLBYTES); #endif uma_zfree_arg(zone_clust, m->m_ext.ext_buf, NULL); #ifdef INVARIANTS trash_dtor(mem, size, NULL); #endif } /* * The "packet" keg constructor. */ static int mb_ctor_pack(void *mem, int size, void *arg, int how) { struct mbuf *m; struct mb_args *args; #ifdef MAC int error; #endif int flags; short type; m = (struct mbuf *)mem; args = (struct mb_args *)arg; flags = args->flags; type = args->type; #ifdef INVARIANTS trash_ctor(m->m_ext.ext_buf, MCLBYTES, arg, how); #endif error = m_init(m, NULL, size, how, type, flags); /* m_ext is already initialized. */ m->m_data = m->m_ext.ext_buf; m->m_flags = (flags | M_EXT); return (error); } int m_pkthdr_init(struct mbuf *m, int how) { #ifdef MAC int error; #endif m->m_data = m->m_pktdat; m->m_pkthdr.rcvif = NULL; SLIST_INIT(&m->m_pkthdr.tags); m->m_pkthdr.len = 0; m->m_pkthdr.flowid = 0; m->m_pkthdr.csum_flags = 0; m->m_pkthdr.fibnum = 0; m->m_pkthdr.cosqos = 0; m->m_pkthdr.rsstype = 0; m->m_pkthdr.l2hlen = 0; m->m_pkthdr.l3hlen = 0; m->m_pkthdr.l4hlen = 0; m->m_pkthdr.l5hlen = 0; m->m_pkthdr.PH_per.sixtyfour[0] = 0; m->m_pkthdr.PH_loc.sixtyfour[0] = 0; #ifdef MAC /* If the label init fails, fail the alloc */ error = mac_mbuf_init(m, how); if (error) return (error); #endif return (0); } /* * This is the protocol drain routine. * * No locks should be held when this is called. The drain routines have to * presently acquire some locks which raises the possibility of lock order * reversal. */ static void mb_reclaim(void *junk) { struct domain *dp; struct protosw *pr; WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK | WARN_PANIC, NULL, "mb_reclaim()"); for (dp = domains; dp != NULL; dp = dp->dom_next) for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) if (pr->pr_drain != NULL) (*pr->pr_drain)(); }