.\" -*- Nroff -*- .\" Copyright 1996, 1997 Massachusetts Institute of Technology .\" .\" Permission to use, copy, modify, and distribute this software and .\" its documentation for any purpose and without fee is hereby .\" granted, provided that both the above copyright notice and this .\" permission notice appear in all copies, that both the above .\" copyright notice and this permission notice appear in all .\" supporting documentation, and that the name of M.I.T. not be used .\" in advertising or publicity pertaining to distribution of the .\" software without specific, written prior permission. M.I.T. makes .\" no representations about the suitability of this software for any .\" purpose. It is provided "as is" without express or implied .\" warranty. .\" .\" THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS .\" ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE, .\" INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF .\" MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT .\" SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, .\" SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT .\" LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF .\" USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND .\" ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, .\" OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT .\" OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF .\" SUCH DAMAGE. .\" .\" $FreeBSD$ .\" .Dd March 2, 2012 .Dt IFNET 9 .Os .Sh NAME .Nm ifnet , .Nm ifaddr , .Nm ifqueue , .Nm if_data .Nd kernel interfaces for manipulating network interfaces .Sh SYNOPSIS .In sys/param.h .In sys/time.h .In sys/socket.h .In net/if.h .In net/if_var.h .In net/if_types.h .\" .Ss "Interface Manipulation Functions" .Ft "struct ifnet *" .Fn if_alloc "u_char type" .Ft void .Fn if_attach "struct ifnet *ifp" .Ft void .Fn if_detach "struct ifnet *ifp" .Ft void .Fn if_free "struct ifnet *ifp" .Ft void .Fn if_free_type "struct ifnet *ifp" "u_char type" .Ft void .Fn if_down "struct ifnet *ifp" .Ft int .Fn ifioctl "struct socket *so" "u_long cmd" "caddr_t data" "struct thread *td" .Ft int .Fn ifpromisc "struct ifnet *ifp" "int pswitch" .Ft int .Fn if_allmulti "struct ifnet *ifp" "int amswitch" .Ft "struct ifnet *" .Fn ifunit "const char *name" .Ft "struct ifnet *" .Fn ifunit_ref "const char *name" .Ft void .Fn if_up "struct ifnet *ifp" .\" .Ss "Interface Address Functions" .Ft "struct ifaddr *" .Fn ifaddr_byindex "u_short idx" .Ft "struct ifaddr *" .Fn ifa_ifwithaddr "struct sockaddr *addr" .Ft "struct ifaddr *" .Fn ifa_ifwithdstaddr "struct sockaddr *addr" .Ft "struct ifaddr *" .Fn ifa_ifwithnet "struct sockaddr *addr" "int ignore_ptp" .Ft "struct ifaddr *" .Fn ifaof_ifpforaddr "struct sockaddr *addr" "struct ifnet *ifp" .Ft void .Fn ifa_ref "struct ifaddr *ifa" .Ft void .Fn ifa_free "struct ifaddr *ifa" .\" .Ss "Interface Multicast Address Functions" .Ft int .Fn if_addmulti "struct ifnet *ifp" "struct sockaddr *sa" "struct ifmultiaddr **ifmap" .Ft int .Fn if_delmulti "struct ifnet *ifp" "struct sockaddr *sa" .Ft "struct ifmultiaddr *" .Fn if_findmulti "struct ifnet *ifp" "struct sockaddr *sa" .Ss "Output queue macros" .Fn IF_DEQUEUE "struct ifqueue *ifq" "struct mbuf *m" .\" .Ss "struct ifnet Member Functions" .Ft void .Fn \*(lp*if_input\*(rp "struct ifnet *ifp" "struct mbuf *m" .Ft int .Fo \*(lp*if_output\*(rp .Fa "struct ifnet *ifp" "struct mbuf *m" .Fa "struct sockaddr *dst" "struct rtentry *rt" .Fc .Ft void .Fn \*(lp*if_start\*(rp "struct ifnet *ifp" .Ft int .Fn \*(lp*if_transmit\*(rp "struct ifnet *ifp" "struct mbuf *m" .Ft void .Fn \*(lp*if_qflush\*(rp "struct ifnet *ifp" .Ft int .Fn \*(lp*if_ioctl\*(rp "struct ifnet *ifp" "u_long cmd" "caddr_t data" .Ft void .Fn \*(lp*if_watchdog\*(rp "struct ifnet *ifp" .Ft void .Fn \*(lp*if_init\*(rp "void *if_softc" .Ft int .Fo \*(lp*if_resolvemulti\*(rp .Fa "struct ifnet *ifp" "struct sockaddr **retsa" "struct sockaddr *addr" .Fc .Ss "struct ifaddr member function" .Ft void .Fo \*(lp*ifa_rtrequest\*(rp .Fa "int cmd" "struct rtentry *rt" "struct sockaddr *dst" .Fc .\" .Ss "Global Variables" .Vt extern struct ifnethead ifnet ; .\" extern struct ifindex_entry *ifindex_table ; .Vt extern int if_index ; .Vt extern int ifqmaxlen ; .Sh DATA STRUCTURES The kernel mechanisms for handling network interfaces reside primarily in the .Vt ifnet , if_data , ifaddr , and .Vt ifmultiaddr structures in .In net/if.h and .In net/if_var.h and the functions named above and defined in .Pa /sys/net/if.c . Those interfaces which are intended to be used by user programs are defined in .In net/if.h ; these include the interface flags, the .Vt if_data structure, and the structures defining the appearance of interface-related messages on the .Xr route 4 routing socket and in .Xr sysctl 3 . The header file .In net/if_var.h defines the kernel-internal interfaces, including the .Vt ifnet , ifaddr , and .Vt ifmultiaddr structures and the functions which manipulate them. (A few user programs will need .In net/if_var.h because it is the prerequisite of some other header file like .In netinet/if_ether.h . Most references to those two files in particular can be replaced by .In net/ethernet.h . ) .Pp The system keeps a linked list of interfaces using the .Li TAILQ macros defined in .Xr queue 3 ; this list is headed by a .Vt "struct ifnethead" called .Va ifnet . The elements of this list are of type .Vt "struct ifnet" , and most kernel routines which manipulate interface as such accept or return pointers to these structures. Each interface structure contains an .Vt if_data structure, which contains statistics and identifying information used by management programs, and which is exported to user programs by way of the .Xr ifmib 4 branch of the .Xr sysctl 3 MIB. Each interface also has a .Li TAILQ of interface addresses, described by .Vt ifaddr structures. An .Dv AF_LINK address (see .Xr link_addr 3 ) describing the link layer implemented by the interface (if any) is accessed by the .Fn ifaddr_byindex function or .Va if_addr structure. (Some trivial interfaces do not provide any link layer addresses; this structure, while still present, serves only to identify the interface name and index.) .Pp Finally, those interfaces supporting reception of multicast datagrams have a .Li TAILQ of multicast group memberships, described by .Vt ifmultiaddr structures. These memberships are reference-counted. .Pp Interfaces are also associated with an output queue, defined as a .Vt "struct ifqueue" ; this structure is used to hold packets while the interface is in the process of sending another. .Pp .Ss The Vt ifnet Ss structure The fields of .Vt "struct ifnet" are as follows: .Bl -tag -width ".Va if_capabilities" -offset indent .It Va if_softc .Pq Vt "void *" A pointer to the driver's private state block. (Initialized by driver.) .It Va if_l2com .Pq Vt "void *" A pointer to the common data for the interface's layer 2 protocol. (Initialized by .Fn if_alloc . ) .It Va if_link .Pq Fn TAILQ_ENTRY ifnet .Xr queue 3 macro glue. .It Va if_xname .Pq Vt "char *" The name of the interface, (e.g., .Dq Li fxp0 or .Dq Li lo0 ) . (Initialized by driver (usually via .Fn if_initname ) . ) .It Va if_dname .Pq Vt "const char *" The name of the driver. (Initialized by driver (usually via .Fn if_initname ) . ) .It Va if_dunit .Pq Vt int A unique number assigned to each interface managed by a particular driver. Drivers may choose to set this to .Dv IF_DUNIT_NONE if a unit number is not associated with the device. (Initialized by driver (usually via .Fn if_initname ) . ) .It Va if_refcount .Pq Vt u_int The reference count. (Initialized by .Fn if_alloc . ) .It Va if_addrhead .Pq Vt "struct ifaddrhead" The head of the .Xr queue 3 .Li TAILQ containing the list of addresses assigned to this interface. .It Va if_pcount .Pq Vt int A count of promiscuous listeners on this interface, used to reference-count the .Dv IFF_PROMISC flag. .It Va if_bpf .Pq Vt "struct bpf_if *" Opaque per-interface data for the packet filter, .Xr bpf 4 . (Initialized by .Fn bpf_attach . ) .It Va if_index .Pq Vt u_short A unique number assigned to each interface in sequence as it is attached. This number can be used in a .Vt "struct sockaddr_dl" to refer to a particular interface by index (see .Xr link_addr 3 ) . (Initialized by .Fn if_alloc . ) .It Va if_flags .Pq Vt int Flags describing operational parameters of this interface (see below). (Manipulated by generic code.) .It Va if_drv_flags .Pq Vt int Flags describing operational status of this interface (see below). (Manipulated by driver.) .It Va if_capabilities .Pq Vt int Flags describing the capabilities the interface supports (see below). .It Va if_capenable .Pq Vt int Flags describing the enabled capabilities of the interface (see below). .\" .It Va if_ipending .\" Interrupt-pending bits for polled operation: .\" .Dv IFI_XMIT .\" (transmit complete interrupt) .\" and .\" .Dv IFI_RECV .\" (received packet ready interrupt). .\" See the .\" .Sx Polling .\" section, below. .\" (Manipulated by driver.) .It Va if_linkmib .Pq Vt "void *" A pointer to an interface-specific MIB structure exported by .Xr ifmib 4 . (Initialized by driver.) .It Va if_linkmiblen .Pq Vt size_t The size of said structure. (Initialized by driver.) .It Va if_data .Pq Vt "struct if_data" More statistics and information; see .Sx "The if_data structure" , below. (Initialized by driver, manipulated by both driver and generic code.) .It Va if_snd .Pq Vt "struct ifqueue" The output queue. (Manipulated by driver.) .\".It Va if_poll_slowq .\".Pq Vt "struct ifqueue *" .\"A pointer to the input queue for devices which do not support polling .\"well. .\"See the .\".Sx Polling .\"section, below. .\"(Initialized by driver.) .El .Pp References to .Vt ifnet structures are gained by calling the .Fn if_ref function and released by calling the .Fn if_rele function. They are used to allow kernel code walking global interface lists to release the .Vt ifnet lock yet keep the .Vt ifnet structure stable. .Pp There are in addition a number of function pointers which the driver must initialize to complete its interface with the generic interface layer: .Bl -ohang -offset indent .It Fn if_input Pass a packet to an appropriate upper layer as determined from the link-layer header of the packet. This routine is to be called from an interrupt handler or used to emulate reception of a packet on this interface. A single function implementing .Fn if_input can be shared among multiple drivers utilizing the same link-layer framing, e.g., Ethernet. .It Fn if_output Output a packet on interface .Fa ifp , or queue it on the output queue if the interface is already active. .It Fn if_transmit Transmit a packet on an interface or queue it if the interface is in use. This function will return .Dv ENOBUFS if the devices software and hardware queues are both full. This function must be installed after .Fn if_attach to override the default implementation. This function is exposed in order to allow drivers to manage their own queues and to reduce the latency caused by a frequently gratuitous enqueue / dequeue pair to ifq. The suggested internal software queueing mechanism is buf_ring. .It Fn if_qflush Free mbufs in internally managed queues when the interface is marked down. This function must be installed after .Fn if_attach to override the default implementation. This function is exposed in order to allow drivers to manage their own queues and to reduce the latency caused by a frequently gratuitous enqueue / dequeue pair to ifq. The suggested internal software queueing mechanism is buf_ring. .It Fn if_start Start queued output on an interface. This function is exposed in order to provide for some interface classes to share a .Fn if_output among all drivers. .Fn if_start may only be called when the .Dv IFF_DRV_OACTIVE flag is not set. (Thus, .Dv IFF_DRV_OACTIVE does not literally mean that output is active, but rather that the device's internal output queue is full.) Please note that this function will soon be deprecated. .It Fn if_done Not used. We are not even sure what it was ever for. The prototype is faked. .It Fn if_ioctl Process interface-related .Xr ioctl 2 requests (defined in .In sys/sockio.h ) . Preliminary processing is done by the generic routine .Fn ifioctl to check for appropriate privileges, locate the interface being manipulated, and perform certain generic operations like twiddling flags and flushing queues. See the description of .Fn ifioctl below for more information. .\" .It Fn if_poll_recv .\" .It Fn if_poll_xmit .\" .It Fn if_poll_slowinput .\" .It Fn if_poll_intren .\" See the .\" .Sx Polling .\" section, below. .It Fn if_init Initialize and bring up the hardware, e.g., reset the chip and enable the receiver unit. Should mark the interface running, but not active .Dv ( IFF_DRV_RUNNING , ~IIF_DRV_OACTIVE ) . .It Fn if_resolvemulti Check the requested multicast group membership, .Fa addr , for validity, and if necessary compute a link-layer group which corresponds to that address which is returned in .Fa *retsa . Returns zero on success, or an error code on failure. .El .Ss "Interface Flags" Interface flags are used for a number of different purposes. Some flags simply indicate information about the type of interface and its capabilities; others are dynamically manipulated to reflect the current state of the interface. Flags of the former kind are marked .Aq S in this table; the latter are marked .Aq D . Flags which begin with .Dq IFF_DRV_ are stored in .Va if_drv_flags ; all other flags are stored in .Va if_flags . .Pp The macro .Dv IFF_CANTCHANGE defines the bits which cannot be set by a user program using the .Dv SIOCSIFFLAGS command to .Xr ioctl 2 ; these are indicated by an asterisk .Pq Ql * in the following listing. .Pp .Bl -tag -width ".Dv IFF_POINTOPOINT" -offset indent -compact .It Dv IFF_UP .Aq D The interface has been configured up by the user-level code. .It Dv IFF_BROADCAST .Aq S* The interface supports broadcast. .It Dv IFF_DEBUG .Aq D Used to enable/disable driver debugging code. .It Dv IFF_LOOPBACK .Aq S The interface is a loopback device. .It Dv IFF_POINTOPOINT .Aq S* The interface is point-to-point; .Dq broadcast address is actually the address of the other end. .It Dv IFF_DRV_RUNNING .Aq D* The interface has been configured and dynamic resources were successfully allocated. Probably only useful internal to the interface. .It Dv IFF_NOARP .Aq D Disable network address resolution on this interface. .It Dv IFF_PROMISC .Aq D* This interface is in promiscuous mode. .It Dv IFF_PPROMISC .Aq D This interface is in the permanently promiscuous mode (implies .Dv IFF_PROMISC ) . .It Dv IFF_ALLMULTI .Aq D* This interface is in all-multicasts mode (used by multicast routers). .It Dv IFF_DRV_OACTIVE .Aq D* The interface's hardware output queue (if any) is full; output packets are to be queued. .It Dv IFF_SIMPLEX .Aq S* The interface cannot hear its own transmissions. .It Dv IFF_LINK0 .It Dv IFF_LINK1 .It Dv IFF_LINK2 .Aq D Control flags for the link layer. (Currently abused to select among multiple physical layers on some devices.) .It Dv IFF_MULTICAST .Aq S* This interface supports multicast. .It Dv IFF_POLLING .Aq D* The interface is in .Xr polling 4 mode. See .Sx Interface Capabilities Flags for details. .El .Ss "Interface Capabilities Flags" Interface capabilities are specialized features an interface may or may not support. These capabilities are very hardware-specific and allow, when enabled, to offload specific network processing to the interface or to offer a particular feature for use by other kernel parts. .Pp It should be stressed that a capability can be completely uncontrolled (i.e., stay always enabled with no way to disable it) or allow limited control over itself (e.g., depend on another capability's state.) Such peculiarities are determined solely by the hardware and driver of a particular interface. Only the driver possesses the knowledge on whether and how the interface capabilities can be controlled. Consequently, capabilities flags in .Va if_capenable should never be modified directly by kernel code other than the interface driver. The command .Dv SIOCSIFCAP to .Fn ifioctl is the dedicated means to attempt altering .Va if_capenable on an interface. Userland code shall use .Xr ioctl 2 . .Pp The following capabilities are currently supported by the system: .Bl -tag -width ".Dv IFCAP_VLAN_HWTAGGING" -offset indent .It Dv IFCAP_NETCONS This interface can be a network console. .It Dv IFCAP_POLLING This interface supports .Xr polling 4 . See below for details. .It Dv IFCAP_RXCSUM This interface can do checksum validation on receiving data. Some interfaces do not have sufficient buffer storage to store frames above a certain MTU-size completely. The driver for the interface might disable hardware checksum validation if the MTU is set above the hardcoded limit. .It Dv IFCAP_TXCSUM This interface can do checksum calculation on transmitting data. .It Dv IFCAP_HWCSUM A shorthand for .Pq Dv IFCAP_RXCSUM | IFCAP_TXCSUM . .It Dv IFCAP_VLAN_HWTAGGING This interface can do VLAN tagging on output and demultiplex frames by their VLAN tag on input. .It Dv IFCAP_VLAN_MTU The .Xr vlan 4 driver can operate over this interface in software tagging mode without having to decrease MTU on .Xr vlan 4 interfaces below 1500 bytes. This implies the ability of this interface to cope with frames somewhat longer than permitted by the Ethernet specification. .It Dv IFCAP_JUMBO_MTU This Ethernet interface can transmit and receive frames up to 9000 bytes long. .It Dv IFCAP_TSO4 This Ethernet interface supports TCP Segmentation offloading. .It Dv IFCAP_TSO6 This Ethernet interface supports TCP6 Segmentation offloading. .It Dv IFCAP_TSO A shorthand for .Pq Dv IFCAP_TSO4 | IFCAP_TSO6 . .It Dv IFCAP_TOE4 This Ethernet interface supports TCP offloading. .It Dv IFCAP_TOE6 This Ethernet interface supports TCP6 offloading. .It Dv ICAP_TOE A Shorthand for .Pq Dv IFCAP_TOE4 | IFCAP_TOE6 . .It Dv IFCAP_WOL_UCAST This Ethernet interface supports waking up on any Unicast packet. .It Dv IFCAP_WOL_MCAST This Ethernet interface supports waking up on any Multicast packet. .It Dv IFCAP_WOL_MAGIC This Ethernet interface supports waking up on any Magic packet such as those sent by .Xr wake 8 . .It Dv IFCAP_WOL A shorthand for .Pq Dv IFCAP_WOL_UCAST | IFCAP_WOL_MCAST | IFCAP_WOL_MAGIC . .El .Pp The ability of advanced network interfaces to offload certain computational tasks from the host CPU to the board is limited mostly to TCP/IP. Therefore a separate field associated with an interface (see .Va ifnet.if_data.ifi_hwassist below) keeps a detailed description of its enabled capabilities specific to TCP/IP processing. The TCP/IP module consults the field to see which tasks can be done on an .Em outgoing packet by the interface. The flags defined for that field are a superset of those for .Va mbuf.m_pkthdr.csum_flags , namely: .Bl -tag -width ".Dv CSUM_FRAGMENT" -offset indent .It Dv CSUM_IP The interface will compute IP checksums. .It Dv CSUM_TCP The interface will compute TCP checksums. .It Dv CSUM_UDP The interface will compute UDP checksums. .It Dv CSUM_IP_FRAGS The interface can compute a TCP or UDP checksum for a packet fragmented by the host CPU. Makes sense only along with .Dv CSUM_TCP or .Dv CSUM_UDP . .It Dv CSUM_FRAGMENT The interface will do the fragmentation of IP packets if necessary. The host CPU does not need to care about MTU on this interface as long as a packet to transmit through it is an IP one and it does not exceed the size of the hardware buffer. .El .Pp An interface notifies the TCP/IP module about the tasks the former has performed on an .Em incoming packet by setting the corresponding flags in the field .Va mbuf.m_pkthdr.csum_flags of the .Vt mbuf chain containing the packet. See .Xr mbuf 9 for details. .Pp The capability of a network interface to operate in .Xr polling 4 mode involves several flags in different global variables and per-interface fields. First, there is a system-wide .Xr sysctl 8 master switch named .Va kern.polling.enable , which can toggle .Xr polling 4 globally. If that variable is set to non-zero, .Xr polling 4 will be used on those devices where it is enabled individually. Otherwise, .Xr polling 4 will not be used in the system. Second, the capability flag .Dv IFCAP_POLLING set in interface's .Va if_capabilities indicates support for .Xr polling 4 on the particular interface. If set in .Va if_capabilities , the same flag can be marked or cleared in the interface's .Va if_capenable , thus initiating switch of the interface to .Xr polling 4 mode or interrupt mode, respectively. The actual mode change will occur at an implementation-specific moment in the future, e.g., during the next interrupt or .Xr polling 4 cycle. And finally, if the mode transition has been successful, the flag .Dv IFF_POLLING is marked or cleared in the interface's .Va if_flags to indicate the current mode of the interface. .Ss The Vt if_data Ss Structure In .Bx 4.4 , a subset of the interface information believed to be of interest to management stations was segregated from the .Vt ifnet structure and moved into its own .Vt if_data structure to facilitate its use by user programs. The following elements of the .Vt if_data structure are initialized by the interface and are not expected to change significantly over the course of normal operation: .Bl -tag -width ".Va ifi_lastchange" -offset indent .It Va ifi_type .Pq Vt u_char The type of the interface, as defined in .In net/if_types.h and described below in the .Sx "Interface Types" section. .It Va ifi_physical .Pq Vt u_char Intended to represent a selection of physical layers on devices which support more than one; never implemented. .It Va ifi_addrlen .Pq Vt u_char Length of a link-layer address on this device, or zero if there are none. Used to initialized the address length field in .Vt sockaddr_dl structures referring to this interface. .It Va ifi_hdrlen .Pq Vt u_char Maximum length of any link-layer header which might be prepended by the driver to a packet before transmission. The generic code computes the maximum over all interfaces and uses that value to influence the placement of data in .Vt mbuf Ns s to attempt to ensure that there is always sufficient space to prepend a link-layer header without allocating an additional .Vt mbuf . .\" (See .\" .Xr mbuf 9 . ) .\" .It Va ifi_recvquota .\" .Pq Vt u_char .\" Number of packets the interface is permitted to receive at one time .\" when in polled mode. .\" .It Va ifi_xmitquota .\" .Pq Vt u_char .\" Number of packets the interface is permitted to queue for transmission .\" at one time when in polled mode. .\" There is some controversy over .\" whether such a restriction makes any sense at all. .It Va ifi_datalen .Pq Vt u_char Length of the .Vt if_data structure. Allows some stabilization of the routing socket ABI in the face of increases in the length of .Vt struct ifdata . .It Va ifi_mtu .Pq Vt u_long The maximum transmission unit of the medium, exclusive of any link-layer overhead. .It Va ifi_metric .Pq Vt u_long A dimensionless metric interpreted by a user-mode routing process. .It Va ifi_baudrate .Pq Vt u_long The line rate of the interface, in bits per second. .It Va ifi_hwassist .Pq Vt u_long A detailed interpretation of the capabilities to offload computational tasks for .Em outgoing packets. The interface driver must keep this field in accord with the current value of .Va if_capenable . .It Va ifi_epoch .Pq Vt time_t The system uptime when interface was attached or the statistics below were reset. This is intended to be used to set the SNMP variable .Va ifCounterDiscontinuityTime . It may also be used to determine if two successive queries for an interface of the same index have returned results for the same interface. .El .Pp The structure additionally contains generic statistics applicable to a variety of different interface types (except as noted, all members are of type .Vt u_long ) : .Bl -tag -width ".Va ifi_lastchange" -offset indent .It Va ifi_link_state .Pq Vt u_char The current link state of Ethernet interfaces. See the .Sx Interface Link States section for possible values. .It Va ifi_ipackets Number of packets received. .It Va ifi_ierrors Number of receive errors detected (e.g., FCS errors, DMA overruns, etc.). More detailed breakdowns can often be had by way of a link-specific MIB. .It Va ifi_opackets Number of packets transmitted. .It Va ifi_oerrors Number of output errors detected (e.g., late collisions, DMA overruns, etc.). More detailed breakdowns can often be had by way of a link-specific MIB. .It Va ifi_collisions Total number of collisions detected on output for CSMA interfaces. (This member is sometimes [ab]used by other types of interfaces for other output error counts.) .It Va ifi_ibytes Total traffic received, in bytes. .It Va ifi_obytes Total traffic transmitted, in bytes. .It Va ifi_imcasts Number of packets received which were sent by link-layer multicast. .It Va ifi_omcasts Number of packets sent by link-layer multicast. .It Va ifi_iqdrops Number of packets dropped on input. Rarely implemented. .It Va ifi_noproto Number of packets received for unknown network-layer protocol. .\" .It Va ifi_recvtiming .\" Amount of time, in microseconds, spent to receive an average packet on .\" this interface. .\" See the .\" .Sx Polling .\" section, below. .\" .It Va ifi_xmittiming .\" Amount of time, in microseconds, spent to service a transmit-complete .\" interrupt on this interface. .\" See the .\" .Sx Polling .\" section, below. .It Va ifi_lastchange .Pq Vt "struct timeval" The time of the last administrative change to the interface (as required for .Tn SNMP ) . .El .Ss Interface Types The header file .In net/if_types.h defines symbolic constants for a number of different types of interfaces. The most common are: .Pp .Bl -tag -offset indent -width ".Dv IFT_PROPVIRTUAL" -compact .It Dv IFT_OTHER none of the following .It Dv IFT_ETHER Ethernet .It Dv IFT_ISO88023 ISO 8802-3 CSMA/CD .It Dv IFT_ISO88024 ISO 8802-4 Token Bus .It Dv IFT_ISO88025 ISO 8802-5 Token Ring .It Dv IFT_ISO88026 ISO 8802-6 DQDB MAN .It Dv IFT_FDDI FDDI .It Dv IFT_PPP Internet Point-to-Point Protocol .Pq Xr ppp 8 .It Dv IFT_LOOP The loopback .Pq Xr lo 4 interface .It Dv IFT_SLIP Serial Line IP .It Dv IFT_PARA Parallel-port IP .Pq Dq Tn PLIP .It Dv IFT_ATM Asynchronous Transfer Mode .El .Ss Interface Link States The following link states are currently defined: .Pp .Bl -tag -offset indent -width ".Dv LINK_STATE_UNKNOWN" -compact .It Dv LINK_STATE_UNKNOWN The link is in an invalid or unknown state. .It Dv LINK_STATE_DOWN The link is down. .It Dv LINK_STATE_UP The link is up. .El .Ss The Vt ifaddr Ss Structure Every interface is associated with a list (or, rather, a .Li TAILQ ) of addresses, rooted at the interface structure's .Va if_addrlist member. The first element in this list is always an .Dv AF_LINK address representing the interface itself; multi-access network drivers should complete this structure by filling in their link-layer addresses after calling .Fn if_attach . Other members of the structure represent network-layer addresses which have been configured by means of the .Dv SIOCAIFADDR command to .Xr ioctl 2 , called on a socket of the appropriate protocol family. The elements of this list consist of .Vt ifaddr structures. Most protocols will declare their own protocol-specific interface address structures, but all begin with a .Vt "struct ifaddr" which provides the most-commonly-needed functionality across all protocols. Interface addresses are reference-counted. .Pp The members of .Vt "struct ifaddr" are as follows: .Bl -tag -width ".Va ifa_rtrequest" -offset indent .It Va ifa_addr .Pq Vt "struct sockaddr *" The local address of the interface. .It Va ifa_dstaddr .Pq Vt "struct sockaddr *" The remote address of point-to-point interfaces, and the broadcast address of broadcast interfaces. .Va ( ifa_broadaddr is a macro for .Va ifa_dstaddr . ) .It Va ifa_netmask .Pq Vt "struct sockaddr *" The network mask for multi-access interfaces, and the confusion generator for point-to-point interfaces. .It Va ifa_ifp .Pq Vt "struct ifnet *" A link back to the interface structure. .It Va ifa_link .Pq Fn TAILQ_ENTRY ifaddr .Xr queue 3 glue for list of addresses on each interface. .It Va ifa_rtrequest See below. .It Va ifa_flags .Pq Vt u_short Some of the flags which would be used for a route representing this address in the route table. .It Va ifa_refcnt .Pq Vt short The reference count. .It Va ifa_metric .Pq Vt int A metric associated with this interface address, for the use of some external routing protocol. .El .Pp References to .Vt ifaddr structures are gained by calling the .Fn ifa_ref function and released by calling the .Fn ifa_free function. .Pp .Fn ifa_rtrequest is a pointer to a function which receives callouts from the routing code .Pq Fn rtrequest to perform link-layer-specific actions upon requests to add, resolve, or delete routes. The .Fa cmd argument indicates the request in question: .Dv RTM_ADD , RTM_RESOLVE , or .Dv RTM_DELETE . The .Fa rt argument is the route in question; the .Fa dst argument is the specific destination being manipulated for .Dv RTM_RESOLVE , or a null pointer otherwise. .Sh FUNCTIONS The functions provided by the generic interface code can be divided into two groups: those which manipulate interfaces, and those which manipulate interface addresses. In addition to these functions, there may also be link-layer support routines which are used by a number of drivers implementing a specific link layer over different hardware; see the documentation for that link layer for more details. .Ss The Vt ifmultiaddr Ss Structure Every multicast-capable interface is associated with a list of multicast group memberships, which indicate at a low level which link-layer multicast addresses (if any) should be accepted, and at a high level, in which network-layer multicast groups a user process has expressed interest. .Pp The elements of the structure are as follows: .Bl -tag -width ".Va ifma_refcount" -offset indent .It Va ifma_link .Pq Fn LIST_ENTRY ifmultiaddr .Xr queue 3 macro glue. .It Va ifma_addr .Pq Vt "struct sockaddr *" A pointer to the address which this record represents. The memberships for various address families are stored in arbitrary order. .It Va ifma_lladdr .Pq Vt "struct sockaddr *" A pointer to the link-layer multicast address, if any, to which the network-layer multicast address in .Va ifma_addr is mapped, else a null pointer. If this element is non-nil, this membership also holds an invisible reference to another membership for that link-layer address. .It Va ifma_refcount .Pq Vt u_int A reference count of requests for this particular membership. .El .Ss Interface Manipulation Functions .Bl -ohang -offset indent .It Fn if_alloc Allocate and initialize .Vt "struct ifnet" . Initialization includes the allocation of an interface index and may include the allocation of a .Fa type specific structure in .Va if_l2com . .It Fn if_attach Link the specified interface .Fa ifp into the list of network interfaces. Also initialize the list of addresses on that interface, and create a link-layer .Vt ifaddr structure to be the first element in that list. (A pointer to this address structure is saved in the .Vt ifnet structure and shall be accessed by the .Fn ifaddr_byindex function.) The .Fa ifp must have been allocated by .Fn if_alloc . .It Fn if_detach Shut down and unlink the specified .Fa ifp from the interface list. .It Fn if_free Free the given .Fa ifp back to the system. The interface must have been previously detached if it was ever attached. .It Fn if_free_type Identical to .Fn if_free except that the given .Fa type is used to free .Va if_l2com instead of the type in .Va if_type . This is intended for use with drivers that change their interface type. .It Fn if_down Mark the interface .Fa ifp as down (i.e., .Dv IFF_UP is not set), flush its output queue, notify protocols of the transition, and generate a message from the .Xr route 4 routing socket. .It Fn if_up Mark the interface .Fa ifp as up, notify protocols of the transition, and generate a message from the .Xr route 4 routing socket. .It Fn ifpromisc Add or remove a promiscuous reference to .Fa ifp . If .Fa pswitch is true, add a reference; if it is false, remove a reference. On reference count transitions from zero to one and one to zero, set the .Dv IFF_PROMISC flag appropriately and call .Fn if_ioctl to set up the interface in the desired mode. .It Fn if_allmulti As .Fn ifpromisc , but for the all-multicasts .Pq Dv IFF_ALLMULTI flag instead of the promiscuous flag. .It Fn ifunit Return an .Vt ifnet pointer for the interface named .Fa name . .It Fn ifunit_ref Return a reference-counted (via .Fn ifa_ref ) .Vt ifnet pointer for the interface named .Fa name . This is the preferred function over .Fn ifunit . The caller is responsible for releasing the reference with .Fn if_rele when it is finished with the ifnet. .It Fn ifioctl Process the ioctl request .Fa cmd , issued on socket .Fa so by thread .Fa td , with data parameter .Fa data . This is the main routine for handling all interface configuration requests from user mode. It is ordinarily only called from the socket-layer .Xr ioctl 2 handler, and only for commands with class .Sq Li i . Any unrecognized commands will be passed down to socket .Fa so Ns 's protocol for further interpretation. The following commands are handled by .Fn ifioctl : .Pp .Bl -tag -width ".Dv OSIOCGIFNETMASK" -offset indent -compact .It Dv SIOCGIFCONF .It Dv OSIOCGIFCONF Get interface configuration. (No call-down to driver.) .Pp .It Dv SIOCSIFNAME Set the interface name. .Dv RTM_IFANNOUNCE departure and arrival messages are sent so that routing code that relies on the interface name will update its interface list. Caller must have appropriate privilege. (No call-down to driver.) .It Dv SIOCGIFCAP .It Dv SIOCGIFFIB .It Dv SIOCGIFFLAGS .It Dv SIOCGIFMETRIC .It Dv SIOCGIFMTU .It Dv SIOCGIFPHYS Get interface capabilities, FIB, flags, metric, MTU, medium selection. (No call-down to driver.) .Pp .It Dv SIOCSIFCAP Enable or disable interface capabilities. Caller must have appropriate privilege. Before a call to the driver-specific .Fn if_ioctl routine, the requested mask for enabled capabilities is checked against the mask of capabilities supported by the interface, .Va if_capabilities . Requesting to enable an unsupported capability is invalid. The rest is supposed to be done by the driver, which includes updating .Va if_capenable and .Va if_data.ifi_hwassist appropriately. .Pp .It Dv SIOCSIFFIB Sets interface FIB. Caller must have appropriate privilege. FIB values start at 0 and values greater or equals than .Va net.fibs are considered invalid. .It Dv SIOCSIFFLAGS Change interface flags. Caller must have appropriate privilege. If a change to the .Dv IFF_UP flag is requested, .Fn if_up or .Fn if_down is called as appropriate. Flags listed in .Dv IFF_CANTCHANGE are masked off, and the field .Va if_flags in the interface structure is updated. Finally, the driver .Fn if_ioctl routine is called to perform any setup requested. .Pp .It Dv SIOCSIFMETRIC .It Dv SIOCSIFPHYS Change interface metric or medium. Caller must have appropriate privilege. .Pp .It Dv SIOCSIFMTU Change interface MTU. Caller must have appropriate privilege. MTU values less than 72 or greater than 65535 are considered invalid. The driver .Fn if_ioctl routine is called to implement the change; it is responsible for any additional sanity checking and for actually modifying the MTU in the interface structure. .Pp .It Dv SIOCADDMULTI .It Dv SIOCDELMULTI Add or delete permanent multicast group memberships on the interface. Caller must have appropriate privilege. The .Fn if_addmulti or .Fn if_delmulti function is called to perform the operation; qq.v. .Pp .It Dv SIOCAIFADDR .It Dv SIOCDIFADDR The socket's protocol control routine is called to implement the requested action. .Pp .It Dv OSIOCGIFADDR .It Dv OSIOCGIFDSTADDR .It Dv OSIOCGIFBRDADDR .It Dv OSIOCGIFNETMASK The socket's protocol control routine is called to implement the requested action. On return, .Vt sockaddr structures are converted into old-style (no .Va sa_len member). .El .El .Pp .Fn if_down , .Fn ifioctl , .Fn ifpromisc , and .Fn if_up must be called at .Fn splnet or higher. .Ss "Interface Address Functions" Several functions exist to look up an interface address structure given an address. .Fn ifa_ifwithaddr returns an interface address with either a local address or a broadcast address precisely matching the parameter .Fa addr . .Fn ifa_ifwithdstaddr returns an interface address for a point-to-point interface whose remote .Pq Dq destination address is .Fa addr . .Pp .Fn ifa_ifwithnet returns the most specific interface address which matches the specified address, .Fa addr , subject to its configured netmask, or a point-to-point interface address whose remote address is .Fa addr if one is found. If .Fa ignore_ptp is true, skip point-to-point interface addresses. .Pp .Fn ifaof_ifpforaddr returns the most specific address configured on interface .Fa ifp which matches address .Fa addr , subject to its configured netmask. If the interface is point-to-point, only an interface address whose remote address is precisely .Fa addr will be returned. .Pp All of these functions return a null pointer if no such address can be found. .Ss "Interface Multicast Address Functions" The .Fn if_addmulti , .Fn if_delmulti , and .Fn if_findmulti functions provide support for requesting and relinquishing multicast group memberships, and for querying an interface's membership list, respectively. The .Fn if_addmulti function takes a pointer to an interface, .Fa ifp , and a generic address, .Fa sa . It also takes a pointer to a .Vt "struct ifmultiaddr *" which is filled in on successful return with the address of the group membership control block. The .Fn if_addmulti function performs the following four-step process: .Bl -enum -offset indent .It Call the interface's .Fn if_resolvemulti entry point to determine the link-layer address, if any, corresponding to this membership request, and also to give the link layer an opportunity to veto this membership request should it so desire. .It Check the interface's group membership list for a pre-existing membership for this group. If one is not found, allocate a new one; if one is, increment its reference count. .It If the .Fn if_resolvemulti routine returned a link-layer address corresponding to the group, repeat the previous step for that address as well. .It If the interface's multicast address filter needs to be changed because a new membership was added, call the interface's .Fn if_ioctl routine (with a .Fa cmd argument of .Dv SIOCADDMULTI ) to request that it do so. .El .Pp The .Fn if_delmulti function, given an interface .Fa ifp and an address, .Fa sa , reverses this process. Both functions return zero on success, or a standard error number on failure. .Pp The .Fn if_findmulti function examines the membership list of interface .Fa ifp for an address matching .Fa sa , and returns a pointer to that .Vt "struct ifmultiaddr" if one is found, else it returns a null pointer. .Sh SEE ALSO .Xr ioctl 2 , .Xr link_addr 3 , .Xr queue 3 , .Xr sysctl 3 , .Xr bpf 4 , .Xr ifmib 4 , .Xr lo 4 , .Xr netintro 4 , .Xr polling 4 , .Xr config 8 , .Xr ppp 8 , .Xr mbuf 9 , .Xr rtentry 9 .Rs .%A Gary R. Wright .%A W. Richard Stevens .%B TCP/IP Illustrated .%V Vol. 2 .%O Addison-Wesley, ISBN 0-201-63354-X .Re .Sh AUTHORS This manual page was written by .An Garrett A. Wollman .