/* * Copyright (c) 1997, 1998 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ */ /* * VIA Rhine fast ethernet PCI NIC driver * * Supports various network adapters based on the VIA Rhine * and Rhine II PCI controllers, including the D-Link DFE530TX. * Datasheets are available at http://www.via.com.tw. * * Written by Bill Paul * Electrical Engineering Department * Columbia University, New York City */ /* * The VIA Rhine controllers are similar in some respects to the * the DEC tulip chips, except less complicated. The controller * uses an MII bus and an external physical layer interface. The * receiver has a one entry perfect filter and a 64-bit hash table * multicast filter. Transmit and receive descriptors are similar * to the tulip. * * The Rhine has a serious flaw in its transmit DMA mechanism: * transmit buffers must be longword aligned. Unfortunately, * FreeBSD doesn't guarantee that mbufs will be filled in starting * at longword boundaries, so we have to do a buffer copy before * transmission. */ #include "bpf.h" #include #include #include #include #include #include #include #include #include #include #include #include #if NBPF > 0 #include #endif #include "opt_bdg.h" #ifdef BRIDGE #include #endif /* BRIDGE */ #include /* for vtophys */ #include /* for vtophys */ #include /* for DELAY */ #include #include #include #include #include #include #include #include #include #include #define VR_USEIOSPACE #include /* "controller miibus0" required. See GENERIC if you get errors here. */ #include "miibus_if.h" #ifndef lint static const char rcsid[] = "$FreeBSD$"; #endif /* * Various supported device vendors/types and their names. */ static struct vr_type vr_devs[] = { { VIA_VENDORID, VIA_DEVICEID_RHINE, "VIA VT3043 Rhine I 10/100BaseTX" }, { VIA_VENDORID, VIA_DEVICEID_RHINE_II, "VIA VT86C100A Rhine II 10/100BaseTX" }, { DELTA_VENDORID, DELTA_DEVICEID_RHINE_II, "Delta Electronics Rhine II 10/100BaseTX" }, { ADDTRON_VENDORID, ADDTRON_DEVICEID_RHINE_II, "Addtron Technology Rhine II 10/100BaseTX" }, { 0, 0, NULL } }; static int vr_probe __P((device_t)); static int vr_attach __P((device_t)); static int vr_detach __P((device_t)); static int vr_newbuf __P((struct vr_softc *, struct vr_chain_onefrag *, struct mbuf *)); static int vr_encap __P((struct vr_softc *, struct vr_chain *, struct mbuf * )); static void vr_rxeof __P((struct vr_softc *)); static void vr_rxeoc __P((struct vr_softc *)); static void vr_txeof __P((struct vr_softc *)); static void vr_txeoc __P((struct vr_softc *)); static void vr_tick __P((void *)); static void vr_intr __P((void *)); static void vr_start __P((struct ifnet *)); static int vr_ioctl __P((struct ifnet *, u_long, caddr_t)); static void vr_init __P((void *)); static void vr_stop __P((struct vr_softc *)); static void vr_watchdog __P((struct ifnet *)); static void vr_shutdown __P((device_t)); static int vr_ifmedia_upd __P((struct ifnet *)); static void vr_ifmedia_sts __P((struct ifnet *, struct ifmediareq *)); static void vr_mii_sync __P((struct vr_softc *)); static void vr_mii_send __P((struct vr_softc *, u_int32_t, int)); static int vr_mii_readreg __P((struct vr_softc *, struct vr_mii_frame *)); static int vr_mii_writereg __P((struct vr_softc *, struct vr_mii_frame *)); static int vr_miibus_readreg __P((device_t, int, int)); static int vr_miibus_writereg __P((device_t, int, int, int)); static void vr_miibus_statchg __P((device_t)); static void vr_setcfg __P((struct vr_softc *, int)); static u_int8_t vr_calchash __P((u_int8_t *)); static void vr_setmulti __P((struct vr_softc *)); static void vr_reset __P((struct vr_softc *)); static int vr_list_rx_init __P((struct vr_softc *)); static int vr_list_tx_init __P((struct vr_softc *)); #ifdef VR_USEIOSPACE #define VR_RES SYS_RES_IOPORT #define VR_RID VR_PCI_LOIO #else #define VR_RES SYS_RES_MEMORY #define VR_RID VR_PCI_LOMEM #endif static device_method_t vr_methods[] = { /* Device interface */ DEVMETHOD(device_probe, vr_probe), DEVMETHOD(device_attach, vr_attach), DEVMETHOD(device_detach, vr_detach), DEVMETHOD(device_shutdown, vr_shutdown), /* bus interface */ DEVMETHOD(bus_print_child, bus_generic_print_child), DEVMETHOD(bus_driver_added, bus_generic_driver_added), /* MII interface */ DEVMETHOD(miibus_readreg, vr_miibus_readreg), DEVMETHOD(miibus_writereg, vr_miibus_writereg), DEVMETHOD(miibus_statchg, vr_miibus_statchg), { 0, 0 } }; static driver_t vr_driver = { "vr", vr_methods, sizeof(struct vr_softc) }; static devclass_t vr_devclass; DRIVER_MODULE(vr, pci, vr_driver, vr_devclass, 0, 0); DRIVER_MODULE(miibus, vr, miibus_driver, miibus_devclass, 0, 0); #define VR_SETBIT(sc, reg, x) \ CSR_WRITE_1(sc, reg, \ CSR_READ_1(sc, reg) | x) #define VR_CLRBIT(sc, reg, x) \ CSR_WRITE_1(sc, reg, \ CSR_READ_1(sc, reg) & ~x) #define VR_SETBIT16(sc, reg, x) \ CSR_WRITE_2(sc, reg, \ CSR_READ_2(sc, reg) | x) #define VR_CLRBIT16(sc, reg, x) \ CSR_WRITE_2(sc, reg, \ CSR_READ_2(sc, reg) & ~x) #define VR_SETBIT32(sc, reg, x) \ CSR_WRITE_4(sc, reg, \ CSR_READ_4(sc, reg) | x) #define VR_CLRBIT32(sc, reg, x) \ CSR_WRITE_4(sc, reg, \ CSR_READ_4(sc, reg) & ~x) #define SIO_SET(x) \ CSR_WRITE_1(sc, VR_MIICMD, \ CSR_READ_1(sc, VR_MIICMD) | x) #define SIO_CLR(x) \ CSR_WRITE_1(sc, VR_MIICMD, \ CSR_READ_1(sc, VR_MIICMD) & ~x) /* * Sync the PHYs by setting data bit and strobing the clock 32 times. */ static void vr_mii_sync(sc) struct vr_softc *sc; { register int i; SIO_SET(VR_MIICMD_DIR|VR_MIICMD_DATAIN); for (i = 0; i < 32; i++) { SIO_SET(VR_MIICMD_CLK); DELAY(1); SIO_CLR(VR_MIICMD_CLK); DELAY(1); } return; } /* * Clock a series of bits through the MII. */ static void vr_mii_send(sc, bits, cnt) struct vr_softc *sc; u_int32_t bits; int cnt; { int i; SIO_CLR(VR_MIICMD_CLK); for (i = (0x1 << (cnt - 1)); i; i >>= 1) { if (bits & i) { SIO_SET(VR_MIICMD_DATAIN); } else { SIO_CLR(VR_MIICMD_DATAIN); } DELAY(1); SIO_CLR(VR_MIICMD_CLK); DELAY(1); SIO_SET(VR_MIICMD_CLK); } } /* * Read an PHY register through the MII. */ static int vr_mii_readreg(sc, frame) struct vr_softc *sc; struct vr_mii_frame *frame; { int i, ack, s; s = splimp(); /* * Set up frame for RX. */ frame->mii_stdelim = VR_MII_STARTDELIM; frame->mii_opcode = VR_MII_READOP; frame->mii_turnaround = 0; frame->mii_data = 0; CSR_WRITE_1(sc, VR_MIICMD, 0); VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM); /* * Turn on data xmit. */ SIO_SET(VR_MIICMD_DIR); vr_mii_sync(sc); /* * Send command/address info. */ vr_mii_send(sc, frame->mii_stdelim, 2); vr_mii_send(sc, frame->mii_opcode, 2); vr_mii_send(sc, frame->mii_phyaddr, 5); vr_mii_send(sc, frame->mii_regaddr, 5); /* Idle bit */ SIO_CLR((VR_MIICMD_CLK|VR_MIICMD_DATAIN)); DELAY(1); SIO_SET(VR_MIICMD_CLK); DELAY(1); /* Turn off xmit. */ SIO_CLR(VR_MIICMD_DIR); /* Check for ack */ SIO_CLR(VR_MIICMD_CLK); DELAY(1); SIO_SET(VR_MIICMD_CLK); DELAY(1); ack = CSR_READ_4(sc, VR_MIICMD) & VR_MIICMD_DATAOUT; /* * Now try reading data bits. If the ack failed, we still * need to clock through 16 cycles to keep the PHY(s) in sync. */ if (ack) { for(i = 0; i < 16; i++) { SIO_CLR(VR_MIICMD_CLK); DELAY(1); SIO_SET(VR_MIICMD_CLK); DELAY(1); } goto fail; } for (i = 0x8000; i; i >>= 1) { SIO_CLR(VR_MIICMD_CLK); DELAY(1); if (!ack) { if (CSR_READ_4(sc, VR_MIICMD) & VR_MIICMD_DATAOUT) frame->mii_data |= i; DELAY(1); } SIO_SET(VR_MIICMD_CLK); DELAY(1); } fail: SIO_CLR(VR_MIICMD_CLK); DELAY(1); SIO_SET(VR_MIICMD_CLK); DELAY(1); splx(s); if (ack) return(1); return(0); } /* * Write to a PHY register through the MII. */ static int vr_mii_writereg(sc, frame) struct vr_softc *sc; struct vr_mii_frame *frame; { int s; s = splimp(); CSR_WRITE_1(sc, VR_MIICMD, 0); VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM); /* * Set up frame for TX. */ frame->mii_stdelim = VR_MII_STARTDELIM; frame->mii_opcode = VR_MII_WRITEOP; frame->mii_turnaround = VR_MII_TURNAROUND; /* * Turn on data output. */ SIO_SET(VR_MIICMD_DIR); vr_mii_sync(sc); vr_mii_send(sc, frame->mii_stdelim, 2); vr_mii_send(sc, frame->mii_opcode, 2); vr_mii_send(sc, frame->mii_phyaddr, 5); vr_mii_send(sc, frame->mii_regaddr, 5); vr_mii_send(sc, frame->mii_turnaround, 2); vr_mii_send(sc, frame->mii_data, 16); /* Idle bit. */ SIO_SET(VR_MIICMD_CLK); DELAY(1); SIO_CLR(VR_MIICMD_CLK); DELAY(1); /* * Turn off xmit. */ SIO_CLR(VR_MIICMD_DIR); splx(s); return(0); } static int vr_miibus_readreg(dev, phy, reg) device_t dev; int phy, reg; { struct vr_softc *sc; struct vr_mii_frame frame; sc = device_get_softc(dev); bzero((char *)&frame, sizeof(frame)); frame.mii_phyaddr = phy; frame.mii_regaddr = reg; vr_mii_readreg(sc, &frame); return(frame.mii_data); } static int vr_miibus_writereg(dev, phy, reg, data) device_t dev; u_int16_t phy, reg, data; { struct vr_softc *sc; struct vr_mii_frame frame; sc = device_get_softc(dev); bzero((char *)&frame, sizeof(frame)); frame.mii_phyaddr = phy; frame.mii_regaddr = reg; frame.mii_data = data; vr_mii_writereg(sc, &frame); return(0); } static void vr_miibus_statchg(dev) device_t dev; { struct vr_softc *sc; struct mii_data *mii; sc = device_get_softc(dev); mii = device_get_softc(sc->vr_miibus); vr_setcfg(sc, mii->mii_media_active); return; } /* * Calculate CRC of a multicast group address, return the lower 6 bits. */ static u_int8_t vr_calchash(addr) u_int8_t *addr; { u_int32_t crc, carry; int i, j; u_int8_t c; /* Compute CRC for the address value. */ crc = 0xFFFFFFFF; /* initial value */ for (i = 0; i < 6; i++) { c = *(addr + i); for (j = 0; j < 8; j++) { carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01); crc <<= 1; c >>= 1; if (carry) crc = (crc ^ 0x04c11db6) | carry; } } /* return the filter bit position */ return((crc >> 26) & 0x0000003F); } /* * Program the 64-bit multicast hash filter. */ static void vr_setmulti(sc) struct vr_softc *sc; { struct ifnet *ifp; int h = 0; u_int32_t hashes[2] = { 0, 0 }; struct ifmultiaddr *ifma; u_int8_t rxfilt; int mcnt = 0; ifp = &sc->arpcom.ac_if; rxfilt = CSR_READ_1(sc, VR_RXCFG); if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { rxfilt |= VR_RXCFG_RX_MULTI; CSR_WRITE_1(sc, VR_RXCFG, rxfilt); CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF); CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF); return; } /* first, zot all the existing hash bits */ CSR_WRITE_4(sc, VR_MAR0, 0); CSR_WRITE_4(sc, VR_MAR1, 0); /* now program new ones */ for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL; ifma = ifma->ifma_link.le_next) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; h = vr_calchash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); if (h < 32) hashes[0] |= (1 << h); else hashes[1] |= (1 << (h - 32)); mcnt++; } if (mcnt) rxfilt |= VR_RXCFG_RX_MULTI; else rxfilt &= ~VR_RXCFG_RX_MULTI; CSR_WRITE_4(sc, VR_MAR0, hashes[0]); CSR_WRITE_4(sc, VR_MAR1, hashes[1]); CSR_WRITE_1(sc, VR_RXCFG, rxfilt); return; } /* * In order to fiddle with the * 'full-duplex' and '100Mbps' bits in the netconfig register, we * first have to put the transmit and/or receive logic in the idle state. */ static void vr_setcfg(sc, media) struct vr_softc *sc; int media; { int restart = 0; if (CSR_READ_2(sc, VR_COMMAND) & (VR_CMD_TX_ON|VR_CMD_RX_ON)) { restart = 1; VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON)); } if ((media & IFM_GMASK) == IFM_FDX) VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX); else VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX); if (restart) VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON); return; } static void vr_reset(sc) struct vr_softc *sc; { register int i; VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET); for (i = 0; i < VR_TIMEOUT; i++) { DELAY(10); if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET)) break; } if (i == VR_TIMEOUT) printf("vr%d: reset never completed!\n", sc->vr_unit); /* Wait a little while for the chip to get its brains in order. */ DELAY(1000); return; } /* * Probe for a VIA Rhine chip. Check the PCI vendor and device * IDs against our list and return a device name if we find a match. */ static int vr_probe(dev) device_t dev; { struct vr_type *t; t = vr_devs; while(t->vr_name != NULL) { if ((pci_get_vendor(dev) == t->vr_vid) && (pci_get_device(dev) == t->vr_did)) { device_set_desc(dev, t->vr_name); return(0); } t++; } return(ENXIO); } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ static int vr_attach(dev) device_t dev; { int i, s; u_char eaddr[ETHER_ADDR_LEN]; u_int32_t command; struct vr_softc *sc; struct ifnet *ifp; int unit, error = 0, rid; s = splimp(); sc = device_get_softc(dev); unit = device_get_unit(dev); bzero(sc, sizeof(struct vr_softc *)); /* * Handle power management nonsense. */ command = pci_read_config(dev, VR_PCI_CAPID, 4) & 0x000000FF; if (command == 0x01) { command = pci_read_config(dev, VR_PCI_PWRMGMTCTRL, 4); if (command & VR_PSTATE_MASK) { u_int32_t iobase, membase, irq; /* Save important PCI config data. */ iobase = pci_read_config(dev, VR_PCI_LOIO, 4); membase = pci_read_config(dev, VR_PCI_LOMEM, 4); irq = pci_read_config(dev, VR_PCI_INTLINE, 4); /* Reset the power state. */ printf("vr%d: chip is in D%d power mode " "-- setting to D0\n", unit, command & VR_PSTATE_MASK); command &= 0xFFFFFFFC; pci_write_config(dev, VR_PCI_PWRMGMTCTRL, command, 4); /* Restore PCI config data. */ pci_write_config(dev, VR_PCI_LOIO, iobase, 4); pci_write_config(dev, VR_PCI_LOMEM, membase, 4); pci_write_config(dev, VR_PCI_INTLINE, irq, 4); } } /* * Map control/status registers. */ command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4); command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN); pci_write_config(dev, PCI_COMMAND_STATUS_REG, command, 4); command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4); #ifdef VR_USEIOSPACE if (!(command & PCIM_CMD_PORTEN)) { printf("vr%d: failed to enable I/O ports!\n", unit); free(sc, M_DEVBUF); goto fail; } #else if (!(command & PCIM_CMD_MEMEN)) { printf("vr%d: failed to enable memory mapping!\n", unit); goto fail; } #endif rid = VR_RID; sc->vr_res = bus_alloc_resource(dev, VR_RES, &rid, 0, ~0, 1, RF_ACTIVE); if (sc->vr_res == NULL) { printf("vr%d: couldn't map ports/memory\n", unit); error = ENXIO; goto fail; } sc->vr_btag = rman_get_bustag(sc->vr_res); sc->vr_bhandle = rman_get_bushandle(sc->vr_res); /* Allocate interrupt */ rid = 0; sc->vr_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1, RF_SHAREABLE | RF_ACTIVE); if (sc->vr_irq == NULL) { printf("vr%d: couldn't map interrupt\n", unit); bus_release_resource(dev, VR_RES, VR_RID, sc->vr_res); error = ENXIO; goto fail; } error = bus_setup_intr(dev, sc->vr_irq, INTR_TYPE_NET, vr_intr, sc, &sc->vr_intrhand); if (error) { bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vr_irq); bus_release_resource(dev, VR_RES, VR_RID, sc->vr_res); printf("vr%d: couldn't set up irq\n", unit); goto fail; } /* Reset the adapter. */ vr_reset(sc); /* * Get station address. The way the Rhine chips work, * you're not allowed to directly access the EEPROM once * they've been programmed a special way. Consequently, * we need to read the node address from the PAR0 and PAR1 * registers. */ VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD); DELAY(200); for (i = 0; i < ETHER_ADDR_LEN; i++) eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i); /* * A Rhine chip was detected. Inform the world. */ printf("vr%d: Ethernet address: %6D\n", unit, eaddr, ":"); sc->vr_unit = unit; bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN); sc->vr_ldata = contigmalloc(sizeof(struct vr_list_data), M_DEVBUF, M_NOWAIT, 0x100000, 0xffffffff, PAGE_SIZE, 0); if (sc->vr_ldata == NULL) { printf("vr%d: no memory for list buffers!\n", unit); bus_teardown_intr(dev, sc->vr_irq, sc->vr_intrhand); bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vr_irq); bus_release_resource(dev, VR_RES, VR_RID, sc->vr_res); error = ENXIO; goto fail; } bzero(sc->vr_ldata, sizeof(struct vr_list_data)); ifp = &sc->arpcom.ac_if; ifp->if_softc = sc; ifp->if_unit = unit; ifp->if_name = "vr"; ifp->if_mtu = ETHERMTU; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = vr_ioctl; ifp->if_output = ether_output; ifp->if_start = vr_start; ifp->if_watchdog = vr_watchdog; ifp->if_init = vr_init; ifp->if_baudrate = 10000000; ifp->if_snd.ifq_maxlen = VR_TX_LIST_CNT - 1; /* * Do MII setup. */ if (mii_phy_probe(dev, &sc->vr_miibus, vr_ifmedia_upd, vr_ifmedia_sts)) { printf("vr%d: MII without any phy!\n", sc->vr_unit); bus_teardown_intr(dev, sc->vr_irq, sc->vr_intrhand); bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vr_irq); bus_release_resource(dev, VR_RES, VR_RID, sc->vr_res); contigfree(sc->vr_ldata, sizeof(struct vr_list_data), M_DEVBUF); error = ENXIO; goto fail; } callout_handle_init(&sc->vr_stat_ch); /* * Call MI attach routines. */ if_attach(ifp); ether_ifattach(ifp); #if NBPF > 0 bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header)); #endif fail: splx(s); return(error); } static int vr_detach(dev) device_t dev; { struct vr_softc *sc; struct ifnet *ifp; int s; s = splimp(); sc = device_get_softc(dev); ifp = &sc->arpcom.ac_if; vr_stop(sc); if_detach(ifp); bus_generic_detach(dev); device_delete_child(dev, sc->vr_miibus); bus_teardown_intr(dev, sc->vr_irq, sc->vr_intrhand); bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vr_irq); bus_release_resource(dev, VR_RES, VR_RID, sc->vr_res); contigfree(sc->vr_ldata, sizeof(struct vr_list_data), M_DEVBUF); splx(s); return(0); } /* * Initialize the transmit descriptors. */ static int vr_list_tx_init(sc) struct vr_softc *sc; { struct vr_chain_data *cd; struct vr_list_data *ld; int i; cd = &sc->vr_cdata; ld = sc->vr_ldata; for (i = 0; i < VR_TX_LIST_CNT; i++) { cd->vr_tx_chain[i].vr_ptr = &ld->vr_tx_list[i]; if (i == (VR_TX_LIST_CNT - 1)) cd->vr_tx_chain[i].vr_nextdesc = &cd->vr_tx_chain[0]; else cd->vr_tx_chain[i].vr_nextdesc = &cd->vr_tx_chain[i + 1]; } cd->vr_tx_free = &cd->vr_tx_chain[0]; cd->vr_tx_tail = cd->vr_tx_head = NULL; return(0); } /* * Initialize the RX descriptors and allocate mbufs for them. Note that * we arrange the descriptors in a closed ring, so that the last descriptor * points back to the first. */ static int vr_list_rx_init(sc) struct vr_softc *sc; { struct vr_chain_data *cd; struct vr_list_data *ld; int i; cd = &sc->vr_cdata; ld = sc->vr_ldata; for (i = 0; i < VR_RX_LIST_CNT; i++) { cd->vr_rx_chain[i].vr_ptr = (struct vr_desc *)&ld->vr_rx_list[i]; if (vr_newbuf(sc, &cd->vr_rx_chain[i], NULL) == ENOBUFS) return(ENOBUFS); if (i == (VR_RX_LIST_CNT - 1)) { cd->vr_rx_chain[i].vr_nextdesc = &cd->vr_rx_chain[0]; ld->vr_rx_list[i].vr_next = vtophys(&ld->vr_rx_list[0]); } else { cd->vr_rx_chain[i].vr_nextdesc = &cd->vr_rx_chain[i + 1]; ld->vr_rx_list[i].vr_next = vtophys(&ld->vr_rx_list[i + 1]); } } cd->vr_rx_head = &cd->vr_rx_chain[0]; return(0); } /* * Initialize an RX descriptor and attach an MBUF cluster. * Note: the length fields are only 11 bits wide, which means the * largest size we can specify is 2047. This is important because * MCLBYTES is 2048, so we have to subtract one otherwise we'll * overflow the field and make a mess. */ static int vr_newbuf(sc, c, m) struct vr_softc *sc; struct vr_chain_onefrag *c; struct mbuf *m; { struct mbuf *m_new = NULL; if (m == NULL) { MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) { printf("vr%d: no memory for rx list " "-- packet dropped!\n", sc->vr_unit); return(ENOBUFS); } MCLGET(m_new, M_DONTWAIT); if (!(m_new->m_flags & M_EXT)) { printf("vr%d: no memory for rx list " "-- packet dropped!\n", sc->vr_unit); m_freem(m_new); return(ENOBUFS); } m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; } else { m_new = m; m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; m_new->m_data = m_new->m_ext.ext_buf; } m_adj(m_new, sizeof(u_int64_t)); c->vr_mbuf = m_new; c->vr_ptr->vr_status = VR_RXSTAT; c->vr_ptr->vr_data = vtophys(mtod(m_new, caddr_t)); c->vr_ptr->vr_ctl = VR_RXCTL | VR_RXLEN; return(0); } /* * A frame has been uploaded: pass the resulting mbuf chain up to * the higher level protocols. */ static void vr_rxeof(sc) struct vr_softc *sc; { struct ether_header *eh; struct mbuf *m; struct ifnet *ifp; struct vr_chain_onefrag *cur_rx; int total_len = 0; u_int32_t rxstat; ifp = &sc->arpcom.ac_if; while(!((rxstat = sc->vr_cdata.vr_rx_head->vr_ptr->vr_status) & VR_RXSTAT_OWN)) { struct mbuf *m0 = NULL; cur_rx = sc->vr_cdata.vr_rx_head; sc->vr_cdata.vr_rx_head = cur_rx->vr_nextdesc; m = cur_rx->vr_mbuf; /* * If an error occurs, update stats, clear the * status word and leave the mbuf cluster in place: * it should simply get re-used next time this descriptor * comes up in the ring. */ if (rxstat & VR_RXSTAT_RXERR) { ifp->if_ierrors++; printf("vr%d: rx error: ", sc->vr_unit); switch(rxstat & 0x000000FF) { case VR_RXSTAT_CRCERR: printf("crc error\n"); break; case VR_RXSTAT_FRAMEALIGNERR: printf("frame alignment error\n"); break; case VR_RXSTAT_FIFOOFLOW: printf("FIFO overflow\n"); break; case VR_RXSTAT_GIANT: printf("received giant packet\n"); break; case VR_RXSTAT_RUNT: printf("received runt packet\n"); break; case VR_RXSTAT_BUSERR: printf("system bus error\n"); break; case VR_RXSTAT_BUFFERR: printf("rx buffer error\n"); break; default: printf("unknown rx error\n"); break; } vr_newbuf(sc, cur_rx, m); continue; } /* No errors; receive the packet. */ total_len = VR_RXBYTES(cur_rx->vr_ptr->vr_status); /* * XXX The VIA Rhine chip includes the CRC with every * received frame, and there's no way to turn this * behavior off (at least, I can't find anything in * the manual that explains how to do it) so we have * to trim off the CRC manually. */ total_len -= ETHER_CRC_LEN; m0 = m_devget(mtod(m, char *) - ETHER_ALIGN, total_len + ETHER_ALIGN, 0, ifp, NULL); vr_newbuf(sc, cur_rx, m); if (m0 == NULL) { ifp->if_ierrors++; continue; } m_adj(m0, ETHER_ALIGN); m = m0; ifp->if_ipackets++; eh = mtod(m, struct ether_header *); #if NBPF > 0 /* * Handle BPF listeners. Let the BPF user see the packet, but * don't pass it up to the ether_input() layer unless it's * a broadcast packet, multicast packet, matches our ethernet * address or the interface is in promiscuous mode. */ if (ifp->if_bpf) { bpf_mtap(ifp, m); if (ifp->if_flags & IFF_PROMISC && (bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr, ETHER_ADDR_LEN) && (eh->ether_dhost[0] & 1) == 0)) { m_freem(m); continue; } } #endif /* NBPF>0 */ #ifdef BRIDGE if (do_bridge) { struct ifnet *bdg_ifp; bdg_ifp = bridge_in(m); if (bdg_ifp != BDG_LOCAL && bdg_ifp != BDG_DROP) bdg_forward(&m, bdg_ifp); if (((bdg_ifp != BDG_LOCAL) && (bdg_ifp != BDG_BCAST) && (bdg_ifp != BDG_MCAST)) || bdg_ifp == BDG_DROP) { m_freem(m); continue; } } #endif /* BRIDGE */ /* Remove header from mbuf and pass it on. */ m_adj(m, sizeof(struct ether_header)); ether_input(ifp, eh, m); } return; } void vr_rxeoc(sc) struct vr_softc *sc; { vr_rxeof(sc); VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON); CSR_WRITE_4(sc, VR_RXADDR, vtophys(sc->vr_cdata.vr_rx_head->vr_ptr)); VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON); VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO); return; } /* * A frame was downloaded to the chip. It's safe for us to clean up * the list buffers. */ static void vr_txeof(sc) struct vr_softc *sc; { struct vr_chain *cur_tx; struct ifnet *ifp; ifp = &sc->arpcom.ac_if; /* Clear the timeout timer. */ ifp->if_timer = 0; /* Sanity check. */ if (sc->vr_cdata.vr_tx_head == NULL) return; /* * Go through our tx list and free mbufs for those * frames that have been transmitted. */ while(sc->vr_cdata.vr_tx_head->vr_mbuf != NULL) { u_int32_t txstat; cur_tx = sc->vr_cdata.vr_tx_head; txstat = cur_tx->vr_ptr->vr_status; if (txstat & VR_TXSTAT_OWN) break; if (txstat & VR_TXSTAT_ERRSUM) { ifp->if_oerrors++; if (txstat & VR_TXSTAT_DEFER) ifp->if_collisions++; if (txstat & VR_TXSTAT_LATECOLL) ifp->if_collisions++; } ifp->if_collisions +=(txstat & VR_TXSTAT_COLLCNT) >> 3; ifp->if_opackets++; if (cur_tx->vr_mbuf != NULL) { m_freem(cur_tx->vr_mbuf); cur_tx->vr_mbuf = NULL; } if (sc->vr_cdata.vr_tx_head == sc->vr_cdata.vr_tx_tail) { sc->vr_cdata.vr_tx_head = NULL; sc->vr_cdata.vr_tx_tail = NULL; break; } sc->vr_cdata.vr_tx_head = cur_tx->vr_nextdesc; } return; } /* * TX 'end of channel' interrupt handler. */ static void vr_txeoc(sc) struct vr_softc *sc; { struct ifnet *ifp; ifp = &sc->arpcom.ac_if; ifp->if_timer = 0; if (sc->vr_cdata.vr_tx_head == NULL) { ifp->if_flags &= ~IFF_OACTIVE; sc->vr_cdata.vr_tx_tail = NULL; } return; } static void vr_tick(xsc) void *xsc; { struct vr_softc *sc; struct mii_data *mii; int s; s = splimp(); sc = xsc; mii = device_get_softc(sc->vr_miibus); mii_tick(mii); sc->vr_stat_ch = timeout(vr_tick, sc, hz); splx(s); return; } static void vr_intr(arg) void *arg; { struct vr_softc *sc; struct ifnet *ifp; u_int16_t status; sc = arg; ifp = &sc->arpcom.ac_if; /* Supress unwanted interrupts. */ if (!(ifp->if_flags & IFF_UP)) { vr_stop(sc); return; } /* Disable interrupts. */ CSR_WRITE_2(sc, VR_IMR, 0x0000); for (;;) { status = CSR_READ_2(sc, VR_ISR); if (status) CSR_WRITE_2(sc, VR_ISR, status); if ((status & VR_INTRS) == 0) break; if (status & VR_ISR_RX_OK) vr_rxeof(sc); if ((status & VR_ISR_RX_ERR) || (status & VR_ISR_RX_NOBUF) || (status & VR_ISR_RX_NOBUF) || (status & VR_ISR_RX_OFLOW) || (status & VR_ISR_RX_DROPPED)) { vr_rxeof(sc); vr_rxeoc(sc); } if (status & VR_ISR_TX_OK) { vr_txeof(sc); vr_txeoc(sc); } if ((status & VR_ISR_TX_UNDERRUN)||(status & VR_ISR_TX_ABRT)){ ifp->if_oerrors++; vr_txeof(sc); if (sc->vr_cdata.vr_tx_head != NULL) { VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON); VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO); } } if (status & VR_ISR_BUSERR) { vr_reset(sc); vr_init(sc); } } /* Re-enable interrupts. */ CSR_WRITE_2(sc, VR_IMR, VR_INTRS); if (ifp->if_snd.ifq_head != NULL) { vr_start(ifp); } return; } /* * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data * pointers to the fragment pointers. */ static int vr_encap(sc, c, m_head) struct vr_softc *sc; struct vr_chain *c; struct mbuf *m_head; { int frag = 0; struct vr_desc *f = NULL; int total_len; struct mbuf *m; m = m_head; total_len = 0; /* * The VIA Rhine wants packet buffers to be longword * aligned, but very often our mbufs aren't. Rather than * waste time trying to decide when to copy and when not * to copy, just do it all the time. */ if (m != NULL) { struct mbuf *m_new = NULL; MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) { printf("vr%d: no memory for tx list", sc->vr_unit); return(1); } if (m_head->m_pkthdr.len > MHLEN) { MCLGET(m_new, M_DONTWAIT); if (!(m_new->m_flags & M_EXT)) { m_freem(m_new); printf("vr%d: no memory for tx list", sc->vr_unit); return(1); } } m_copydata(m_head, 0, m_head->m_pkthdr.len, mtod(m_new, caddr_t)); m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len; m_freem(m_head); m_head = m_new; /* * The Rhine chip doesn't auto-pad, so we have to make * sure to pad short frames out to the minimum frame length * ourselves. */ if (m_head->m_len < VR_MIN_FRAMELEN) { m_new->m_pkthdr.len += VR_MIN_FRAMELEN - m_new->m_len; m_new->m_len = m_new->m_pkthdr.len; } f = c->vr_ptr; f->vr_data = vtophys(mtod(m_new, caddr_t)); f->vr_ctl = total_len = m_new->m_len; f->vr_ctl |= VR_TXCTL_TLINK|VR_TXCTL_FIRSTFRAG; f->vr_status = 0; frag = 1; } c->vr_mbuf = m_head; c->vr_ptr->vr_ctl |= VR_TXCTL_LASTFRAG|VR_TXCTL_FINT; c->vr_ptr->vr_next = vtophys(c->vr_nextdesc->vr_ptr); return(0); } /* * Main transmit routine. To avoid having to do mbuf copies, we put pointers * to the mbuf data regions directly in the transmit lists. We also save a * copy of the pointers since the transmit list fragment pointers are * physical addresses. */ static void vr_start(ifp) struct ifnet *ifp; { struct vr_softc *sc; struct mbuf *m_head = NULL; struct vr_chain *cur_tx = NULL, *start_tx; sc = ifp->if_softc; if (ifp->if_flags & IFF_OACTIVE) return; /* * Check for an available queue slot. If there are none, * punt. */ if (sc->vr_cdata.vr_tx_free->vr_mbuf != NULL) { ifp->if_flags |= IFF_OACTIVE; return; } start_tx = sc->vr_cdata.vr_tx_free; while(sc->vr_cdata.vr_tx_free->vr_mbuf == NULL) { IF_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) break; /* Pick a descriptor off the free list. */ cur_tx = sc->vr_cdata.vr_tx_free; sc->vr_cdata.vr_tx_free = cur_tx->vr_nextdesc; /* Pack the data into the descriptor. */ vr_encap(sc, cur_tx, m_head); if (cur_tx != start_tx) VR_TXOWN(cur_tx) = VR_TXSTAT_OWN; #if NBPF > 0 /* * If there's a BPF listener, bounce a copy of this frame * to him. */ if (ifp->if_bpf) bpf_mtap(ifp, cur_tx->vr_mbuf); #endif VR_TXOWN(cur_tx) = VR_TXSTAT_OWN; VR_SETBIT16(sc, VR_COMMAND, /*VR_CMD_TX_ON|*/VR_CMD_TX_GO); } /* * If there are no frames queued, bail. */ if (cur_tx == NULL) return; sc->vr_cdata.vr_tx_tail = cur_tx; if (sc->vr_cdata.vr_tx_head == NULL) sc->vr_cdata.vr_tx_head = start_tx; /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; return; } static void vr_init(xsc) void *xsc; { struct vr_softc *sc = xsc; struct ifnet *ifp = &sc->arpcom.ac_if; struct mii_data *mii; int s; s = splimp(); mii = device_get_softc(sc->vr_miibus); /* * Cancel pending I/O and free all RX/TX buffers. */ vr_stop(sc); vr_reset(sc); VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH); VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_STORENFWD); VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH); VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD); /* Init circular RX list. */ if (vr_list_rx_init(sc) == ENOBUFS) { printf("vr%d: initialization failed: no " "memory for rx buffers\n", sc->vr_unit); vr_stop(sc); (void)splx(s); return; } /* * Init tx descriptors. */ vr_list_tx_init(sc); /* If we want promiscuous mode, set the allframes bit. */ if (ifp->if_flags & IFF_PROMISC) VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC); else VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC); /* Set capture broadcast bit to capture broadcast frames. */ if (ifp->if_flags & IFF_BROADCAST) VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD); else VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD); /* * Program the multicast filter, if necessary. */ vr_setmulti(sc); /* * Load the address of the RX list. */ CSR_WRITE_4(sc, VR_RXADDR, vtophys(sc->vr_cdata.vr_rx_head->vr_ptr)); /* Enable receiver and transmitter. */ CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START| VR_CMD_TX_ON|VR_CMD_RX_ON| VR_CMD_RX_GO); CSR_WRITE_4(sc, VR_TXADDR, vtophys(&sc->vr_ldata->vr_tx_list[0])); /* * Enable interrupts. */ CSR_WRITE_2(sc, VR_ISR, 0xFFFF); CSR_WRITE_2(sc, VR_IMR, VR_INTRS); mii_mediachg(mii); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; (void)splx(s); sc->vr_stat_ch = timeout(vr_tick, sc, hz); return; } /* * Set media options. */ static int vr_ifmedia_upd(ifp) struct ifnet *ifp; { struct vr_softc *sc; sc = ifp->if_softc; if (ifp->if_flags & IFF_UP) vr_init(sc); return(0); } /* * Report current media status. */ static void vr_ifmedia_sts(ifp, ifmr) struct ifnet *ifp; struct ifmediareq *ifmr; { struct vr_softc *sc; struct mii_data *mii; sc = ifp->if_softc; mii = device_get_softc(sc->vr_miibus); mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; return; } static int vr_ioctl(ifp, command, data) struct ifnet *ifp; u_long command; caddr_t data; { struct vr_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; struct mii_data *mii; int s, error = 0; s = splimp(); switch(command) { case SIOCSIFADDR: case SIOCGIFADDR: case SIOCSIFMTU: error = ether_ioctl(ifp, command, data); break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { vr_init(sc); } else { if (ifp->if_flags & IFF_RUNNING) vr_stop(sc); } error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: vr_setmulti(sc); error = 0; break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: mii = device_get_softc(sc->vr_miibus); error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); break; default: error = EINVAL; break; } (void)splx(s); return(error); } static void vr_watchdog(ifp) struct ifnet *ifp; { struct vr_softc *sc; sc = ifp->if_softc; ifp->if_oerrors++; printf("vr%d: watchdog timeout\n", sc->vr_unit); vr_stop(sc); vr_reset(sc); vr_init(sc); if (ifp->if_snd.ifq_head != NULL) vr_start(ifp); return; } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ static void vr_stop(sc) struct vr_softc *sc; { register int i; struct ifnet *ifp; ifp = &sc->arpcom.ac_if; ifp->if_timer = 0; untimeout(vr_tick, sc, sc->vr_stat_ch); VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP); VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON)); CSR_WRITE_2(sc, VR_IMR, 0x0000); CSR_WRITE_4(sc, VR_TXADDR, 0x00000000); CSR_WRITE_4(sc, VR_RXADDR, 0x00000000); /* * Free data in the RX lists. */ for (i = 0; i < VR_RX_LIST_CNT; i++) { if (sc->vr_cdata.vr_rx_chain[i].vr_mbuf != NULL) { m_freem(sc->vr_cdata.vr_rx_chain[i].vr_mbuf); sc->vr_cdata.vr_rx_chain[i].vr_mbuf = NULL; } } bzero((char *)&sc->vr_ldata->vr_rx_list, sizeof(sc->vr_ldata->vr_rx_list)); /* * Free the TX list buffers. */ for (i = 0; i < VR_TX_LIST_CNT; i++) { if (sc->vr_cdata.vr_tx_chain[i].vr_mbuf != NULL) { m_freem(sc->vr_cdata.vr_tx_chain[i].vr_mbuf); sc->vr_cdata.vr_tx_chain[i].vr_mbuf = NULL; } } bzero((char *)&sc->vr_ldata->vr_tx_list, sizeof(sc->vr_ldata->vr_tx_list)); ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); return; } /* * Stop all chip I/O so that the kernel's probe routines don't * get confused by errant DMAs when rebooting. */ static void vr_shutdown(dev) device_t dev; { struct vr_softc *sc; sc = device_get_softc(dev); vr_stop(sc); return; }