/*- * Copyright (c) 1995, David Greenman * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * Device driver for National Semiconductor DS8390/WD83C690 based ethernet * adapters. By David Greenman, 29-April-1993 * * Currently supports the Western Digital/SMC 8003 and 8013 series, * the SMC Elite Ultra (8216), the 3Com 3c503, the NE1000 and NE2000, * and a variety of similar clones. * */ #include "opt_ed.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include devclass_t ed_devclass; static void ed_init(void *); static void ed_init_locked(struct ed_softc *); static int ed_ioctl(struct ifnet *, u_long, caddr_t); static void ed_start(struct ifnet *); static void ed_start_locked(struct ifnet *); static void ed_reset(struct ifnet *); static void ed_watchdog(struct ifnet *); static void ed_ds_getmcaf(struct ed_softc *, uint32_t *); static void ed_get_packet(struct ed_softc *, bus_size_t, u_short); static void ed_stop_hw(struct ed_softc *sc); static __inline void ed_rint(struct ed_softc *); static __inline void ed_xmit(struct ed_softc *); static __inline void ed_ring_copy(struct ed_softc *, bus_size_t, char *, u_short); static void ed_setrcr(struct ed_softc *); /* * Generic probe routine for testing for the existance of a DS8390. * Must be called after the NIC has just been reset. This routine * works by looking at certain register values that are guaranteed * to be initialized a certain way after power-up or reset. Seems * not to currently work on the 83C690. * * Specifically: * * Register reset bits set bits * Command Register (CR) TXP, STA RD2, STP * Interrupt Status (ISR) RST * Interrupt Mask (IMR) All bits * Data Control (DCR) LAS * Transmit Config. (TCR) LB1, LB0 * * We only look at the CR and ISR registers, however, because looking at * the others would require changing register pages (which would be * intrusive if this isn't an 8390). * * Return 1 if 8390 was found, 0 if not. */ int ed_probe_generic8390(struct ed_softc *sc) { if ((ed_nic_inb(sc, ED_P0_CR) & (ED_CR_RD2 | ED_CR_TXP | ED_CR_STA | ED_CR_STP)) != (ED_CR_RD2 | ED_CR_STP)) return (0); if ((ed_nic_inb(sc, ED_P0_ISR) & ED_ISR_RST) != ED_ISR_RST) return (0); return (1); } void ed_disable_16bit_access(struct ed_softc *sc) { /* * Disable 16 bit access to shared memory */ if (sc->isa16bit && sc->vendor == ED_VENDOR_WD_SMC) { if (sc->chip_type == ED_CHIP_TYPE_WD790) ed_asic_outb(sc, ED_WD_MSR, 0x00); ed_asic_outb(sc, ED_WD_LAAR, sc->wd_laar_proto & ~ED_WD_LAAR_M16EN); } } void ed_enable_16bit_access(struct ed_softc *sc) { if (sc->isa16bit && sc->vendor == ED_VENDOR_WD_SMC) { ed_asic_outb(sc, ED_WD_LAAR, sc->wd_laar_proto | ED_WD_LAAR_M16EN); if (sc->chip_type == ED_CHIP_TYPE_WD790) ed_asic_outb(sc, ED_WD_MSR, ED_WD_MSR_MENB); } } /* * Allocate a port resource with the given resource id. */ int ed_alloc_port(device_t dev, int rid, int size) { struct ed_softc *sc = device_get_softc(dev); struct resource *res; res = bus_alloc_resource(dev, SYS_RES_IOPORT, &rid, 0ul, ~0ul, size, RF_ACTIVE); if (res) { sc->port_rid = rid; sc->port_res = res; sc->port_used = size; sc->port_bst = rman_get_bustag(res); sc->port_bsh = rman_get_bushandle(res); return (0); } return (ENOENT); } /* * Allocate a memory resource with the given resource id. */ int ed_alloc_memory(device_t dev, int rid, int size) { struct ed_softc *sc = device_get_softc(dev); struct resource *res; res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid, 0ul, ~0ul, size, RF_ACTIVE); if (res) { sc->mem_rid = rid; sc->mem_res = res; sc->mem_used = size; sc->mem_bst = rman_get_bustag(res); sc->mem_bsh = rman_get_bushandle(res); return (0); } return (ENOENT); } /* * Allocate an irq resource with the given resource id. */ int ed_alloc_irq(device_t dev, int rid, int flags) { struct ed_softc *sc = device_get_softc(dev); struct resource *res; res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE | flags); if (res) { sc->irq_rid = rid; sc->irq_res = res; return (0); } return (ENOENT); } /* * Release all resources */ void ed_release_resources(device_t dev) { struct ed_softc *sc = device_get_softc(dev); if (sc->port_res) { bus_release_resource(dev, SYS_RES_IOPORT, sc->port_rid, sc->port_res); sc->port_res = 0; } if (sc->mem_res) { bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem_res); sc->mem_res = 0; } if (sc->irq_res) { bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq_res); sc->irq_res = 0; } if (sc->ifp) if_free(sc->ifp); } /* * Install interface into kernel networking data structures */ int ed_attach(device_t dev) { struct ed_softc *sc = device_get_softc(dev); struct ifnet *ifp; sc->dev = dev; ED_LOCK_INIT(sc); ifp = sc->ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { device_printf(dev, "can not if_alloc()\n"); ED_LOCK_DESTROY(sc); return (ENOSPC); } if (sc->readmem == NULL) { if (sc->mem_shared) { if (sc->isa16bit) sc->readmem = ed_shmem_readmem16; else sc->readmem = ed_shmem_readmem8; } else { sc->readmem = ed_pio_readmem; } } if (sc->sc_write_mbufs == NULL) { device_printf(dev, "No write mbufs routine set\n"); return (ENXIO); } callout_init_mtx(&sc->tick_ch, ED_MUTEX(sc), 0); /* * Set interface to stopped condition (reset) */ ed_stop_hw(sc); /* * Initialize ifnet structure */ ifp->if_softc = sc; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_start = ed_start; ifp->if_ioctl = ed_ioctl; ifp->if_watchdog = ed_watchdog; ifp->if_init = ed_init; IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN; IFQ_SET_READY(&ifp->if_snd); ifp->if_linkmib = &sc->mibdata; ifp->if_linkmiblen = sizeof sc->mibdata; /* * XXX - should do a better job. */ if (sc->chip_type == ED_CHIP_TYPE_WD790) sc->mibdata.dot3StatsEtherChipSet = DOT3CHIPSET(dot3VendorWesternDigital, dot3ChipSetWesternDigital83C790); else sc->mibdata.dot3StatsEtherChipSet = DOT3CHIPSET(dot3VendorNational, dot3ChipSetNational8390); sc->mibdata.dot3Compliance = DOT3COMPLIANCE_COLLS; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; /* * Set default state for LINK2 flag (used to disable the * tranceiver for AUI operation), based on config option. * We only set this flag before we attach the device, so there's * no race. It is convenient to allow users to turn this off * by default in the kernel config, but given our more advanced * boot time configuration options, this might no longer be needed. */ if (device_get_flags(dev) & ED_FLAGS_DISABLE_TRANCEIVER) ifp->if_flags |= IFF_LINK2; /* * Attach the interface */ ether_ifattach(ifp, sc->enaddr); /* device attach does transition from UNCONFIGURED to IDLE state */ sc->tx_mem = sc->txb_cnt * ED_PAGE_SIZE * ED_TXBUF_SIZE; sc->rx_mem = (sc->rec_page_stop - sc->rec_page_start) * ED_PAGE_SIZE; SYSCTL_ADD_STRING(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 0, "type", CTLTYPE_STRING | CTLFLAG_RD, sc->type_str, 0, "Type of chip in card"); SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 1, "TxMem", CTLTYPE_STRING | CTLFLAG_RD, &sc->tx_mem, 0, "Memory set aside for transmitting packets"); SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 2, "RxMem", CTLTYPE_STRING | CTLFLAG_RD, &sc->rx_mem, 0, "Memory set aside for receiving packets"); SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 3, "Mem", CTLTYPE_STRING | CTLFLAG_RD, &sc->mem_size, 0, "Total Card Memory"); if (bootverbose) { if (sc->type_str && (*sc->type_str != 0)) device_printf(dev, "type %s ", sc->type_str); else device_printf(dev, "type unknown (0x%x) ", sc->type); #ifdef ED_HPP if (sc->vendor == ED_VENDOR_HP) printf("(%s %s IO)", (sc->hpp_id & ED_HPP_ID_16_BIT_ACCESS) ? "16-bit" : "32-bit", sc->hpp_mem_start ? "memory mapped" : "regular"); else #endif printf("%s", sc->isa16bit ? "(16 bit)" : "(8 bit)"); #if defined(ED_HPP) || defined(ED_3C503) printf("%s", (((sc->vendor == ED_VENDOR_3COM) || (sc->vendor == ED_VENDOR_HP)) && (ifp->if_flags & IFF_LINK2)) ? " tranceiver disabled" : ""); #endif printf("\n"); } return (0); } /* * Detach the driver from the hardware and other systems in the kernel. */ int ed_detach(device_t dev) { struct ed_softc *sc = device_get_softc(dev); struct ifnet *ifp = sc->ifp; ED_ASSERT_UNLOCKED(sc); if (ifp) { ED_LOCK(sc); if (bus_child_present(dev)) ed_stop(sc); ifp->if_drv_flags &= ~IFF_DRV_RUNNING; ED_UNLOCK(sc); callout_drain(&sc->tick_ch); ether_ifdetach(ifp); } if (sc->irq_res != NULL && sc->irq_handle) bus_teardown_intr(dev, sc->irq_res, sc->irq_handle); ed_release_resources(dev); if (sc->miibus) device_delete_child(dev, sc->miibus); ED_LOCK_DESTROY(sc); bus_generic_detach(dev); return (0); } /* * Reset interface. */ static void ed_reset(struct ifnet *ifp) { struct ed_softc *sc = ifp->if_softc; ED_ASSERT_LOCKED(sc); /* * Stop interface and re-initialize. */ ed_stop(sc); ed_init_locked(sc); } static void ed_stop_hw(struct ed_softc *sc) { int n = 5000; /* * Stop everything on the interface, and select page 0 registers. */ ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_STP); /* * Wait for interface to enter stopped state, but limit # of checks to * 'n' (about 5ms). It shouldn't even take 5us on modern DS8390's, but * just in case it's an old one. * * The AX88x90 chips don't seem to implement this behavor. The * datasheets say it is only turned on when the chip enters a RESET * state and is silent about behavior for the stopped state we just * entered. */ if (sc->chip_type == ED_CHIP_TYPE_AX88190 || sc->chip_type == ED_CHIP_TYPE_AX88790) return; while (((ed_nic_inb(sc, ED_P0_ISR) & ED_ISR_RST) == 0) && --n) continue; if (n <= 0) device_printf(sc->dev, "ed_stop_hw RST never set\n"); } /* * Take interface offline. */ void ed_stop(struct ed_softc *sc) { ED_ASSERT_LOCKED(sc); if (sc->sc_tick) callout_stop(&sc->tick_ch); ed_stop_hw(sc); } /* * Device timeout/watchdog routine. Entered if the device neglects to * generate an interrupt after a transmit has been started on it. */ static void ed_watchdog(struct ifnet *ifp) { struct ed_softc *sc = ifp->if_softc; log(LOG_ERR, "%s: device timeout\n", ifp->if_xname); ifp->if_oerrors++; ED_LOCK(sc); ed_reset(ifp); ED_UNLOCK(sc); } /* * Initialize device. */ static void ed_init(void *xsc) { struct ed_softc *sc = xsc; ED_ASSERT_UNLOCKED(sc); ED_LOCK(sc); ed_init_locked(sc); ED_UNLOCK(sc); } static void ed_init_locked(struct ed_softc *sc) { struct ifnet *ifp = sc->ifp; int i; ED_ASSERT_LOCKED(sc); /* * Initialize the NIC in the exact order outlined in the NS manual. * This init procedure is "mandatory"...don't change what or when * things happen. */ /* reset transmitter flags */ sc->xmit_busy = 0; ifp->if_timer = 0; sc->txb_inuse = 0; sc->txb_new = 0; sc->txb_next_tx = 0; /* This variable is used below - don't move this assignment */ sc->next_packet = sc->rec_page_start + 1; /* * Set interface for page 0, Remote DMA complete, Stopped */ ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_STP); if (sc->isa16bit) /* * Set FIFO threshold to 8, No auto-init Remote DMA, byte * order=80x86, word-wide DMA xfers, */ ed_nic_outb(sc, ED_P0_DCR, ED_DCR_FT1 | ED_DCR_WTS | ED_DCR_LS); else /* * Same as above, but byte-wide DMA xfers */ ed_nic_outb(sc, ED_P0_DCR, ED_DCR_FT1 | ED_DCR_LS); /* * Clear Remote Byte Count Registers */ ed_nic_outb(sc, ED_P0_RBCR0, 0); ed_nic_outb(sc, ED_P0_RBCR1, 0); /* * For the moment, don't store incoming packets in memory. */ ed_nic_outb(sc, ED_P0_RCR, ED_RCR_MON); /* * Place NIC in internal loopback mode */ ed_nic_outb(sc, ED_P0_TCR, ED_TCR_LB0); /* * Initialize transmit/receive (ring-buffer) Page Start */ ed_nic_outb(sc, ED_P0_TPSR, sc->tx_page_start); ed_nic_outb(sc, ED_P0_PSTART, sc->rec_page_start); /* Set lower bits of byte addressable framing to 0 */ if (sc->chip_type == ED_CHIP_TYPE_WD790) ed_nic_outb(sc, 0x09, 0); /* * Initialize Receiver (ring-buffer) Page Stop and Boundry */ ed_nic_outb(sc, ED_P0_PSTOP, sc->rec_page_stop); ed_nic_outb(sc, ED_P0_BNRY, sc->rec_page_start); /* * Clear all interrupts. A '1' in each bit position clears the * corresponding flag. */ ed_nic_outb(sc, ED_P0_ISR, 0xff); /* * Enable the following interrupts: receive/transmit complete, * receive/transmit error, and Receiver OverWrite. * * Counter overflow and Remote DMA complete are *not* enabled. */ ed_nic_outb(sc, ED_P0_IMR, ED_IMR_PRXE | ED_IMR_PTXE | ED_IMR_RXEE | ED_IMR_TXEE | ED_IMR_OVWE); /* * Program Command Register for page 1 */ ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STP); /* * Copy out our station address */ for (i = 0; i < ETHER_ADDR_LEN; ++i) ed_nic_outb(sc, ED_P1_PAR(i), IF_LLADDR(sc->ifp)[i]); /* * Set Current Page pointer to next_packet (initialized above) */ ed_nic_outb(sc, ED_P1_CURR, sc->next_packet); /* * Program Receiver Configuration Register and multicast filter. CR is * set to page 0 on return. */ ed_setrcr(sc); /* * Take interface out of loopback */ ed_nic_outb(sc, ED_P0_TCR, 0); if (sc->sc_mediachg) sc->sc_mediachg(sc); /* * Set 'running' flag, and clear output active flag. */ ifp->if_drv_flags |= IFF_DRV_RUNNING; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; /* * ...and attempt to start output */ ed_start_locked(ifp); if (sc->sc_tick) callout_reset(&sc->tick_ch, hz, sc->sc_tick, sc); } /* * This routine actually starts the transmission on the interface */ static __inline void ed_xmit(struct ed_softc *sc) { struct ifnet *ifp = sc->ifp; unsigned short len; len = sc->txb_len[sc->txb_next_tx]; /* * Set NIC for page 0 register access */ ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_STA); /* * Set TX buffer start page */ ed_nic_outb(sc, ED_P0_TPSR, sc->tx_page_start + sc->txb_next_tx * ED_TXBUF_SIZE); /* * Set TX length */ ed_nic_outb(sc, ED_P0_TBCR0, len); ed_nic_outb(sc, ED_P0_TBCR1, len >> 8); /* * Set page 0, Remote DMA complete, Transmit Packet, and *Start* */ ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_TXP | ED_CR_STA); sc->xmit_busy = 1; /* * Point to next transmit buffer slot and wrap if necessary. */ sc->txb_next_tx++; if (sc->txb_next_tx == sc->txb_cnt) sc->txb_next_tx = 0; /* * Set a timer just in case we never hear from the board again */ ifp->if_timer = 2; } /* * Start output on interface. * We make two assumptions here: * 1) that the current priority is set to splimp _before_ this code * is called *and* is returned to the appropriate priority after * return * 2) that the IFF_DRV_OACTIVE flag is checked before this code is called * (i.e. that the output part of the interface is idle) */ static void ed_start(struct ifnet *ifp) { struct ed_softc *sc = ifp->if_softc; ED_ASSERT_UNLOCKED(sc); ED_LOCK(sc); ed_start_locked(ifp); ED_UNLOCK(sc); } static void ed_start_locked(struct ifnet *ifp) { struct ed_softc *sc = ifp->if_softc; struct mbuf *m0, *m; bus_size_t buffer; int len; ED_ASSERT_LOCKED(sc); outloop: /* * First, see if there are buffered packets and an idle transmitter - * should never happen at this point. */ if (sc->txb_inuse && (sc->xmit_busy == 0)) { printf("ed: packets buffered, but transmitter idle\n"); ed_xmit(sc); } /* * See if there is room to put another packet in the buffer. */ if (sc->txb_inuse == sc->txb_cnt) { /* * No room. Indicate this to the outside world and exit. */ ifp->if_drv_flags |= IFF_DRV_OACTIVE; return; } IFQ_DRV_DEQUEUE(&ifp->if_snd, m); if (m == 0) { /* * We are using the !OACTIVE flag to indicate to the outside * world that we can accept an additional packet rather than * that the transmitter is _actually_ active. Indeed, the * transmitter may be active, but if we haven't filled all the * buffers with data then we still want to accept more. */ ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; return; } /* * Copy the mbuf chain into the transmit buffer */ m0 = m; /* txb_new points to next open buffer slot */ buffer = sc->mem_start + (sc->txb_new * ED_TXBUF_SIZE * ED_PAGE_SIZE); len = sc->sc_write_mbufs(sc, m, buffer); if (len == 0) { m_freem(m0); goto outloop; } sc->txb_len[sc->txb_new] = max(len, (ETHER_MIN_LEN-ETHER_CRC_LEN)); sc->txb_inuse++; /* * Point to next buffer slot and wrap if necessary. */ sc->txb_new++; if (sc->txb_new == sc->txb_cnt) sc->txb_new = 0; if (sc->xmit_busy == 0) ed_xmit(sc); /* * Tap off here if there is a bpf listener. */ BPF_MTAP(ifp, m0); m_freem(m0); /* * Loop back to the top to possibly buffer more packets */ goto outloop; } /* * Ethernet interface receiver interrupt. */ static __inline void ed_rint(struct ed_softc *sc) { struct ifnet *ifp = sc->ifp; u_char boundry; u_short len; struct ed_ring packet_hdr; bus_size_t packet_ptr; ED_ASSERT_LOCKED(sc); /* * Set NIC to page 1 registers to get 'current' pointer */ ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STA); /* * 'sc->next_packet' is the logical beginning of the ring-buffer - * i.e. it points to where new data has been buffered. The 'CURR' * (current) register points to the logical end of the ring-buffer - * i.e. it points to where additional new data will be added. We loop * here until the logical beginning equals the logical end (or in * other words, until the ring-buffer is empty). */ while (sc->next_packet != ed_nic_inb(sc, ED_P1_CURR)) { /* get pointer to this buffer's header structure */ packet_ptr = sc->mem_ring + (sc->next_packet - sc->rec_page_start) * ED_PAGE_SIZE; /* * The byte count includes a 4 byte header that was added by * the NIC. */ sc->readmem(sc, packet_ptr, (char *) &packet_hdr, sizeof(packet_hdr)); len = packet_hdr.count; if (len > (ETHER_MAX_LEN - ETHER_CRC_LEN + sizeof(struct ed_ring)) || len < (ETHER_MIN_LEN - ETHER_CRC_LEN + sizeof(struct ed_ring))) { /* * Length is a wild value. There's a good chance that * this was caused by the NIC being old and buggy. * The bug is that the length low byte is duplicated * in the high byte. Try to recalculate the length * based on the pointer to the next packet. Also, * need ot preserve offset into page. * * NOTE: sc->next_packet is pointing at the current * packet. */ len &= ED_PAGE_SIZE - 1; if (packet_hdr.next_packet >= sc->next_packet) len += (packet_hdr.next_packet - sc->next_packet) * ED_PAGE_SIZE; else len += ((packet_hdr.next_packet - sc->rec_page_start) + (sc->rec_page_stop - sc->next_packet)) * ED_PAGE_SIZE; /* * because buffers are aligned on 256-byte boundary, * the length computed above is off by 256 in almost * all cases. Fix it... */ if (len & 0xff) len -= 256; if (len > (ETHER_MAX_LEN - ETHER_CRC_LEN + sizeof(struct ed_ring))) sc->mibdata.dot3StatsFrameTooLongs++; } /* * Be fairly liberal about what we allow as a "reasonable" * length so that a [crufty] packet will make it to BPF (and * can thus be analyzed). Note that all that is really * important is that we have a length that will fit into one * mbuf cluster or less; the upper layer protocols can then * figure out the length from their own length field(s). But * make sure that we have at least a full ethernet header or * we would be unable to call ether_input() later. */ if ((len >= sizeof(struct ed_ring) + ETHER_HDR_LEN) && (len <= MCLBYTES) && (packet_hdr.next_packet >= sc->rec_page_start) && (packet_hdr.next_packet < sc->rec_page_stop)) { /* * Go get packet. */ ed_get_packet(sc, packet_ptr + sizeof(struct ed_ring), len - sizeof(struct ed_ring)); ifp->if_ipackets++; } else { /* * Really BAD. The ring pointers are corrupted. */ log(LOG_ERR, "%s: NIC memory corrupt - invalid packet length %d\n", ifp->if_xname, len); ifp->if_ierrors++; ed_reset(ifp); return; } /* * Update next packet pointer */ sc->next_packet = packet_hdr.next_packet; /* * Update NIC boundry pointer - being careful to keep it one * buffer behind. (as recommended by NS databook) */ boundry = sc->next_packet - 1; if (boundry < sc->rec_page_start) boundry = sc->rec_page_stop - 1; /* * Set NIC to page 0 registers to update boundry register */ ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_STA); ed_nic_outb(sc, ED_P0_BNRY, boundry); /* * Set NIC to page 1 registers before looping to top (prepare * to get 'CURR' current pointer) */ ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STA); } } /* * Ethernet interface interrupt processor */ void edintr(void *arg) { struct ed_softc *sc = (struct ed_softc*) arg; struct ifnet *ifp = sc->ifp; u_char isr; int count; ED_LOCK(sc); if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { ED_UNLOCK(sc); return; } /* * Set NIC to page 0 registers */ ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_STA); /* * loop until there are no more new interrupts. When the card goes * away, the hardware will read back 0xff. Looking at the interrupts, * it would appear that 0xff is impossible, or at least extremely * unlikely. */ while ((isr = ed_nic_inb(sc, ED_P0_ISR)) != 0 && isr != 0xff) { /* * reset all the bits that we are 'acknowledging' by writing a * '1' to each bit position that was set (writing a '1' * *clears* the bit) */ ed_nic_outb(sc, ED_P0_ISR, isr); /* * The AX88190 and AX88190A has problems acking an interrupt * and having them clear. This interferes with top-level loop * here. Wait for all the bits to clear. * * We limit this to 5000 iterations. At 1us per inb/outb, * this translates to about 15ms, which should be plenty of * time, and also gives protection in the card eject case. */ if (sc->chip_type == ED_CHIP_TYPE_AX88190) { count = 5000; /* 15ms */ while (count-- && (ed_nic_inb(sc, ED_P0_ISR) & isr)) { ed_nic_outb(sc, ED_P0_ISR,0); ed_nic_outb(sc, ED_P0_ISR,isr); } if (count == 0) break; } /* * Handle transmitter interrupts. Handle these first because * the receiver will reset the board under some conditions. */ if (isr & (ED_ISR_PTX | ED_ISR_TXE)) { u_char collisions = ed_nic_inb(sc, ED_P0_NCR) & 0x0f; /* * Check for transmit error. If a TX completed with an * error, we end up throwing the packet away. Really * the only error that is possible is excessive * collisions, and in this case it is best to allow * the automatic mechanisms of TCP to backoff the * flow. Of course, with UDP we're screwed, but this * is expected when a network is heavily loaded. */ (void) ed_nic_inb(sc, ED_P0_TSR); if (isr & ED_ISR_TXE) { u_char tsr; /* * Excessive collisions (16) */ tsr = ed_nic_inb(sc, ED_P0_TSR); if ((tsr & ED_TSR_ABT) && (collisions == 0)) { /* * When collisions total 16, the * P0_NCR will indicate 0, and the * TSR_ABT is set. */ collisions = 16; sc->mibdata.dot3StatsExcessiveCollisions++; sc->mibdata.dot3StatsCollFrequencies[15]++; } if (tsr & ED_TSR_OWC) sc->mibdata.dot3StatsLateCollisions++; if (tsr & ED_TSR_CDH) sc->mibdata.dot3StatsSQETestErrors++; if (tsr & ED_TSR_CRS) sc->mibdata.dot3StatsCarrierSenseErrors++; if (tsr & ED_TSR_FU) sc->mibdata.dot3StatsInternalMacTransmitErrors++; /* * update output errors counter */ ifp->if_oerrors++; } else { /* * Update total number of successfully * transmitted packets. */ ifp->if_opackets++; } /* * reset tx busy and output active flags */ sc->xmit_busy = 0; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; /* * clear watchdog timer */ ifp->if_timer = 0; /* * Add in total number of collisions on last * transmission. */ ifp->if_collisions += collisions; switch(collisions) { case 0: case 16: break; case 1: sc->mibdata.dot3StatsSingleCollisionFrames++; sc->mibdata.dot3StatsCollFrequencies[0]++; break; default: sc->mibdata.dot3StatsMultipleCollisionFrames++; sc->mibdata. dot3StatsCollFrequencies[collisions-1] ++; break; } /* * Decrement buffer in-use count if not zero (can only * be zero if a transmitter interrupt occured while * not actually transmitting). If data is ready to * transmit, start it transmitting, otherwise defer * until after handling receiver */ if (sc->txb_inuse && --sc->txb_inuse) ed_xmit(sc); } /* * Handle receiver interrupts */ if (isr & (ED_ISR_PRX | ED_ISR_RXE | ED_ISR_OVW)) { /* * Overwrite warning. In order to make sure that a * lockup of the local DMA hasn't occurred, we reset * and re-init the NIC. The NSC manual suggests only a * partial reset/re-init is necessary - but some chips * seem to want more. The DMA lockup has been seen * only with early rev chips - Methinks this bug was * fixed in later revs. -DG */ if (isr & ED_ISR_OVW) { ifp->if_ierrors++; #ifdef DIAGNOSTIC log(LOG_WARNING, "%s: warning - receiver ring buffer overrun\n", ifp->if_xname); #endif /* * Stop/reset/re-init NIC */ ed_reset(ifp); } else { /* * Receiver Error. One or more of: CRC error, * frame alignment error FIFO overrun, or * missed packet. */ if (isr & ED_ISR_RXE) { u_char rsr; rsr = ed_nic_inb(sc, ED_P0_RSR); if (rsr & ED_RSR_CRC) sc->mibdata.dot3StatsFCSErrors++; if (rsr & ED_RSR_FAE) sc->mibdata.dot3StatsAlignmentErrors++; if (rsr & ED_RSR_FO) sc->mibdata.dot3StatsInternalMacReceiveErrors++; ifp->if_ierrors++; #ifdef ED_DEBUG if_printf(ifp, "receive error %x\n", ed_nic_inb(sc, ED_P0_RSR)); #endif } /* * Go get the packet(s) XXX - Doing this on an * error is dubious because there shouldn't be * any data to get (we've configured the * interface to not accept packets with * errors). */ /* * Enable 16bit access to shared memory first * on WD/SMC boards. */ ed_enable_16bit_access(sc); ed_rint(sc); ed_disable_16bit_access(sc); } } /* * If it looks like the transmitter can take more data, * attempt to start output on the interface. This is done * after handling the receiver to give the receiver priority. */ if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0) ed_start_locked(ifp); /* * return NIC CR to standard state: page 0, remote DMA * complete, start (toggling the TXP bit off, even if was just * set in the transmit routine, is *okay* - it is 'edge' * triggered from low to high) */ ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_STA); /* * If the Network Talley Counters overflow, read them to reset * them. It appears that old 8390's won't clear the ISR flag * otherwise - resulting in an infinite loop. */ if (isr & ED_ISR_CNT) { (void) ed_nic_inb(sc, ED_P0_CNTR0); (void) ed_nic_inb(sc, ED_P0_CNTR1); (void) ed_nic_inb(sc, ED_P0_CNTR2); } } ED_UNLOCK(sc); } /* * Process an ioctl request. */ static int ed_ioctl(struct ifnet *ifp, u_long command, caddr_t data) { struct ed_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *)data; int error = 0; /* * XXX really needed? */ if (sc == NULL) { ifp->if_drv_flags &= ~IFF_DRV_RUNNING; return (ENXIO); } switch (command) { case SIOCSIFFLAGS: /* * If the interface is marked up and stopped, then start it. * If we're up and already running, then it may be a mediachg. * If it is marked down and running, then stop it. */ ED_LOCK(sc); if (ifp->if_flags & IFF_UP) { if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) ed_init_locked(sc); else if (sc->sc_mediachg) sc->sc_mediachg(sc); } else { if (ifp->if_drv_flags & IFF_DRV_RUNNING) { ed_stop(sc); ifp->if_drv_flags &= ~IFF_DRV_RUNNING; } } /* * Promiscuous flag may have changed, so reprogram the RCR. */ ed_setrcr(sc); ED_UNLOCK(sc); break; case SIOCADDMULTI: case SIOCDELMULTI: /* * Multicast list has changed; set the hardware filter * accordingly. */ ED_LOCK(sc); ed_setrcr(sc); ED_UNLOCK(sc); error = 0; break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: if (sc->sc_media_ioctl == NULL) { error = EINVAL; break; } sc->sc_media_ioctl(sc, ifr, command); break; default: error = ether_ioctl(ifp, command, data); break; } return (error); } /* * Given a source and destination address, copy 'amount' of a packet from * the ring buffer into a linear destination buffer. Takes into account * ring-wrap. */ static __inline void ed_ring_copy(struct ed_softc *sc, bus_size_t src, char *dst, u_short amount) { u_short tmp_amount; /* does copy wrap to lower addr in ring buffer? */ if (src + amount > sc->mem_end) { tmp_amount = sc->mem_end - src; /* copy amount up to end of NIC memory */ sc->readmem(sc, src, dst, tmp_amount); amount -= tmp_amount; src = sc->mem_ring; dst += tmp_amount; } sc->readmem(sc, src, dst, amount); } /* * Retreive packet from shared memory and send to the next level up via * ether_input(). */ static void ed_get_packet(struct ed_softc *sc, bus_size_t buf, u_short len) { struct ifnet *ifp = sc->ifp; struct ether_header *eh; struct mbuf *m; /* Allocate a header mbuf */ MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) return; m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = len; /* * We always put the received packet in a single buffer - * either with just an mbuf header or in a cluster attached * to the header. The +2 is to compensate for the alignment * fixup below. */ if ((len + 2) > MHLEN) { /* Attach an mbuf cluster */ MCLGET(m, M_DONTWAIT); /* Insist on getting a cluster */ if ((m->m_flags & M_EXT) == 0) { m_freem(m); return; } } /* * The +2 is to longword align the start of the real packet. * This is important for NFS. */ m->m_data += 2; eh = mtod(m, struct ether_header *); /* * Get packet, including link layer address, from interface. */ ed_ring_copy(sc, buf, (char *)eh, len); m->m_pkthdr.len = m->m_len = len; ED_UNLOCK(sc); (*ifp->if_input)(ifp, m); ED_LOCK(sc); } /* * Supporting routines */ /* * Given a NIC memory source address and a host memory destination * address, copy 'amount' from NIC to host using shared memory. * The 'amount' is rounded up to a word - okay as long as mbufs * are word sized. That's what the +1 is below. * This routine accesses things as 16 bit quantities. */ void ed_shmem_readmem16(struct ed_softc *sc, bus_size_t src, uint8_t *dst, uint16_t amount) { bus_space_read_region_2(sc->mem_bst, sc->mem_bsh, src, (uint16_t *)dst, (amount + 1) / 2); } /* * Given a NIC memory source address and a host memory destination * address, copy 'amount' from NIC to host using shared memory. * This routine accesses things as 8 bit quantities. */ void ed_shmem_readmem8(struct ed_softc *sc, bus_size_t src, uint8_t *dst, uint16_t amount) { bus_space_read_region_1(sc->mem_bst, sc->mem_bsh, src, dst, amount); } /* * Given a NIC memory source address and a host memory destination * address, copy 'amount' from NIC to host using Programmed I/O. * The 'amount' is rounded up to a word - okay as long as mbufs * are word sized. * This routine is currently Novell-specific. */ void ed_pio_readmem(struct ed_softc *sc, bus_size_t src, uint8_t *dst, uint16_t amount) { /* Regular Novell cards */ /* select page 0 registers */ ed_nic_outb(sc, ED_P0_CR, ED_CR_RD2 | ED_CR_STA); /* round up to a word */ if (amount & 1) ++amount; /* set up DMA byte count */ ed_nic_outb(sc, ED_P0_RBCR0, amount); ed_nic_outb(sc, ED_P0_RBCR1, amount >> 8); /* set up source address in NIC mem */ ed_nic_outb(sc, ED_P0_RSAR0, src); ed_nic_outb(sc, ED_P0_RSAR1, src >> 8); ed_nic_outb(sc, ED_P0_CR, ED_CR_RD0 | ED_CR_STA); if (sc->isa16bit) ed_asic_insw(sc, ED_NOVELL_DATA, dst, amount / 2); else ed_asic_insb(sc, ED_NOVELL_DATA, dst, amount); } /* * Stripped down routine for writing a linear buffer to NIC memory. * Only used in the probe routine to test the memory. 'len' must * be even. */ void ed_pio_writemem(struct ed_softc *sc, uint8_t *src, uint16_t dst, uint16_t len) { int maxwait = 200; /* about 240us */ /* select page 0 registers */ ed_nic_outb(sc, ED_P0_CR, ED_CR_RD2 | ED_CR_STA); /* reset remote DMA complete flag */ ed_nic_outb(sc, ED_P0_ISR, ED_ISR_RDC); /* set up DMA byte count */ ed_nic_outb(sc, ED_P0_RBCR0, len); ed_nic_outb(sc, ED_P0_RBCR1, len >> 8); /* set up destination address in NIC mem */ ed_nic_outb(sc, ED_P0_RSAR0, dst); ed_nic_outb(sc, ED_P0_RSAR1, dst >> 8); /* set remote DMA write */ ed_nic_outb(sc, ED_P0_CR, ED_CR_RD1 | ED_CR_STA); if (sc->isa16bit) ed_asic_outsw(sc, ED_NOVELL_DATA, src, len / 2); else ed_asic_outsb(sc, ED_NOVELL_DATA, src, len); /* * Wait for remote DMA complete. This is necessary because on the * transmit side, data is handled internally by the NIC in bursts and * we can't start another remote DMA until this one completes. Not * waiting causes really bad things to happen - like the NIC * irrecoverably jamming the ISA bus. */ while (((ed_nic_inb(sc, ED_P0_ISR) & ED_ISR_RDC) != ED_ISR_RDC) && --maxwait) continue; } /* * Write an mbuf chain to the destination NIC memory address using * programmed I/O. */ u_short ed_pio_write_mbufs(struct ed_softc *sc, struct mbuf *m, bus_size_t dst) { struct ifnet *ifp = sc->ifp; unsigned short total_len, dma_len; struct mbuf *mp; int maxwait = 200; /* about 240us */ ED_ASSERT_LOCKED(sc); /* Regular Novell cards */ /* First, count up the total number of bytes to copy */ for (total_len = 0, mp = m; mp; mp = mp->m_next) total_len += mp->m_len; dma_len = total_len; if (sc->isa16bit && (dma_len & 1)) dma_len++; /* select page 0 registers */ ed_nic_outb(sc, ED_P0_CR, ED_CR_RD2 | ED_CR_STA); /* reset remote DMA complete flag */ ed_nic_outb(sc, ED_P0_ISR, ED_ISR_RDC); /* set up DMA byte count */ ed_nic_outb(sc, ED_P0_RBCR0, dma_len); ed_nic_outb(sc, ED_P0_RBCR1, dma_len >> 8); /* set up destination address in NIC mem */ ed_nic_outb(sc, ED_P0_RSAR0, dst); ed_nic_outb(sc, ED_P0_RSAR1, dst >> 8); /* set remote DMA write */ ed_nic_outb(sc, ED_P0_CR, ED_CR_RD1 | ED_CR_STA); /* * Transfer the mbuf chain to the NIC memory. * 16-bit cards require that data be transferred as words, and only words. * So that case requires some extra code to patch over odd-length mbufs. */ if (!sc->isa16bit) { /* NE1000s are easy */ while (m) { if (m->m_len) ed_asic_outsb(sc, ED_NOVELL_DATA, m->m_data, m->m_len); m = m->m_next; } } else { /* NE2000s are a pain */ unsigned char *data; int len, wantbyte; unsigned char savebyte[2]; wantbyte = 0; while (m) { len = m->m_len; if (len) { data = mtod(m, caddr_t); /* finish the last word */ if (wantbyte) { savebyte[1] = *data; ed_asic_outw(sc, ED_NOVELL_DATA, *(u_short *)savebyte); data++; len--; wantbyte = 0; } /* output contiguous words */ if (len > 1) { ed_asic_outsw(sc, ED_NOVELL_DATA, data, len >> 1); data += len & ~1; len &= 1; } /* save last byte, if necessary */ if (len == 1) { savebyte[0] = *data; wantbyte = 1; } } m = m->m_next; } /* spit last byte */ if (wantbyte) ed_asic_outw(sc, ED_NOVELL_DATA, *(u_short *)savebyte); } /* * Wait for remote DMA complete. This is necessary because on the * transmit side, data is handled internally by the NIC in bursts and * we can't start another remote DMA until this one completes. Not * waiting causes really bad things to happen - like the NIC * irrecoverably jamming the ISA bus. */ while (((ed_nic_inb(sc, ED_P0_ISR) & ED_ISR_RDC) != ED_ISR_RDC) && --maxwait) continue; if (!maxwait) { log(LOG_WARNING, "%s: remote transmit DMA failed to complete\n", ifp->if_xname); ed_reset(ifp); return(0); } return (total_len); } static void ed_setrcr(struct ed_softc *sc) { struct ifnet *ifp = sc->ifp; int i; u_char reg1; ED_ASSERT_LOCKED(sc); /* Bit 6 in AX88190 RCR register must be set. */ if (sc->chip_type == ED_CHIP_TYPE_AX88190 || sc->chip_type == ED_CHIP_TYPE_AX88790) reg1 = ED_RCR_INTT; else reg1 = 0x00; /* set page 1 registers */ ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STP); if (ifp->if_flags & IFF_PROMISC) { /* * Reconfigure the multicast filter. */ for (i = 0; i < 8; i++) ed_nic_outb(sc, ED_P1_MAR(i), 0xff); /* * And turn on promiscuous mode. Also enable reception of * runts and packets with CRC & alignment errors. */ /* Set page 0 registers */ ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_STP); ed_nic_outb(sc, ED_P0_RCR, ED_RCR_PRO | ED_RCR_AM | ED_RCR_AB | ED_RCR_AR | ED_RCR_SEP | reg1); } else { /* set up multicast addresses and filter modes */ if (ifp->if_flags & IFF_MULTICAST) { uint32_t mcaf[2]; if (ifp->if_flags & IFF_ALLMULTI) { mcaf[0] = 0xffffffff; mcaf[1] = 0xffffffff; } else ed_ds_getmcaf(sc, mcaf); /* * Set multicast filter on chip. */ for (i = 0; i < 8; i++) ed_nic_outb(sc, ED_P1_MAR(i), ((u_char *) mcaf)[i]); /* Set page 0 registers */ ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_STP); ed_nic_outb(sc, ED_P0_RCR, ED_RCR_AM | ED_RCR_AB | reg1); } else { /* * Initialize multicast address hashing registers to * not accept multicasts. */ for (i = 0; i < 8; ++i) ed_nic_outb(sc, ED_P1_MAR(i), 0x00); /* Set page 0 registers */ ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_STP); ed_nic_outb(sc, ED_P0_RCR, ED_RCR_AB | reg1); } } /* * Start interface. */ ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_STA); } /* * Compute the multicast address filter from the * list of multicast addresses we need to listen to. */ static void ed_ds_getmcaf(struct ed_softc *sc, uint32_t *mcaf) { uint32_t index; u_char *af = (u_char *) mcaf; struct ifmultiaddr *ifma; mcaf[0] = 0; mcaf[1] = 0; IF_ADDR_LOCK(sc->ifp); TAILQ_FOREACH(ifma, &sc->ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; index = ether_crc32_be(LLADDR((struct sockaddr_dl *) ifma->ifma_addr), ETHER_ADDR_LEN) >> 26; af[index >> 3] |= 1 << (index & 7); } IF_ADDR_UNLOCK(sc->ifp); } int ed_isa_mem_ok(device_t dev, u_long pmem, u_int memsize) { if (pmem < 0xa0000 || pmem + memsize > 0x1000000) { device_printf(dev, "Invalid ISA memory address range " "configured: 0x%lx - 0x%lx\n", pmem, pmem + memsize); return (ENXIO); } return (0); } int ed_clear_memory(device_t dev) { struct ed_softc *sc = device_get_softc(dev); bus_size_t i; bus_space_set_region_1(sc->mem_bst, sc->mem_bsh, sc->mem_start, 0, sc->mem_size); for (i = 0; i < sc->mem_size; i++) { if (bus_space_read_1(sc->mem_bst, sc->mem_bsh, sc->mem_start + i)) { device_printf(dev, "failed to clear shared memory at " "0x%jx - check configuration\n", (uintmax_t)rman_get_start(sc->mem_res) + i); return (ENXIO); } } return (0); } u_short ed_shmem_write_mbufs(struct ed_softc *sc, struct mbuf *m, bus_size_t dst) { u_short len; /* * Special case setup for 16 bit boards... */ if (sc->isa16bit) { switch (sc->vendor) { #ifdef ED_3C503 /* * For 16bit 3Com boards (which have 16k of * memory), we have the xmit buffers in a * different page of memory ('page 0') - so * change pages. */ case ED_VENDOR_3COM: ed_asic_outb(sc, ED_3COM_GACFR, ED_3COM_GACFR_RSEL); break; #endif /* * Enable 16bit access to shared memory on * WD/SMC boards. * * XXX - same as ed_enable_16bit_access() */ case ED_VENDOR_WD_SMC: ed_asic_outb(sc, ED_WD_LAAR, sc->wd_laar_proto | ED_WD_LAAR_M16EN); if (sc->chip_type == ED_CHIP_TYPE_WD790) ed_asic_outb(sc, ED_WD_MSR, ED_WD_MSR_MENB); break; } } for (len = 0; m != 0; m = m->m_next) { if (sc->isa16bit) bus_space_write_region_2(sc->mem_bst, sc->mem_bsh, dst, mtod(m, uint16_t *), (m->m_len + 1)/ 2); else bus_space_write_region_1(sc->mem_bst, sc->mem_bsh, dst, mtod(m, uint8_t *), m->m_len); dst += m->m_len; len += m->m_len; } /* * Restore previous shared memory access */ if (sc->isa16bit) { switch (sc->vendor) { #ifdef ED_3C503 case ED_VENDOR_3COM: ed_asic_outb(sc, ED_3COM_GACFR, ED_3COM_GACFR_RSEL | ED_3COM_GACFR_MBS0); break; #endif case ED_VENDOR_WD_SMC: /* XXX - same as ed_disable_16bit_access() */ if (sc->chip_type == ED_CHIP_TYPE_WD790) ed_asic_outb(sc, ED_WD_MSR, 0x00); ed_asic_outb(sc, ED_WD_LAAR, sc->wd_laar_proto & ~ED_WD_LAAR_M16EN); break; } } return (len); }