/* * CAM SCSI interface for the the Advanced Systems Inc. * Second Generation SCSI controllers. * * Product specific probe and attach routines can be found in: * * pci/adw_pci.c ABP940UW * * Copyright (c) 1998 Justin Gibbs. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification, immediately at the beginning of the file. * 2. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $Id: adwcam.c,v 1.2 1998/10/15 23:47:14 gibbs Exp $ */ /* * Ported from: * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters * * Copyright (c) 1995-1998 Advanced System Products, Inc. * All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that redistributions of source * code retain the above copyright notice and this comment without * modification. */ #include /* For offsetof */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Definitions for our use of the SIM private CCB area */ #define ccb_acb_ptr spriv_ptr0 #define ccb_adw_ptr spriv_ptr1 #define MIN(a, b) (((a) < (b)) ? (a) : (b)) u_long adw_unit; static __inline u_int32_t acbvtop(struct adw_softc *adw, struct acb *acb); static __inline struct acb * acbptov(struct adw_softc *adw, u_int32_t busaddr); static __inline struct acb* adwgetacb(struct adw_softc *adw); static __inline void adwfreeacb(struct adw_softc *adw, struct acb *acb); static void adwmapmem(void *arg, bus_dma_segment_t *segs, int nseg, int error); static struct sg_map_node* adwallocsgmap(struct adw_softc *adw); static int adwallocacbs(struct adw_softc *adw); static void adwexecuteacb(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error); static void adw_action(struct cam_sim *sim, union ccb *ccb); static void adw_poll(struct cam_sim *sim); static void adw_async(void *callback_arg, u_int32_t code, struct cam_path *path, void *arg); static void adwprocesserror(struct adw_softc *adw, struct acb *acb); static void adwtimeout(void *arg); static void adw_handle_device_reset(struct adw_softc *adw, u_int target); static void adw_handle_bus_reset(struct adw_softc *adw, int initiated); static __inline u_int32_t acbvtop(struct adw_softc *adw, struct acb *acb) { return (adw->acb_busbase + (u_int32_t)((caddr_t)acb - (caddr_t)adw->acbs)); } static __inline struct acb * acbptov(struct adw_softc *adw, u_int32_t busaddr) { return (adw->acbs + ((struct acb *)busaddr - (struct acb *)adw->acb_busbase)); } static __inline struct acb* adwgetacb(struct adw_softc *adw) { struct acb* acb; int s; s = splcam(); if ((acb = SLIST_FIRST(&adw->free_acb_list)) != NULL) { SLIST_REMOVE_HEAD(&adw->free_acb_list, links); } else if (adw->num_acbs < adw->max_acbs) { adwallocacbs(adw); acb = SLIST_FIRST(&adw->free_acb_list); if (acb == NULL) printf("%s: Can't malloc ACB\n", adw_name(adw)); else { SLIST_REMOVE_HEAD(&adw->free_acb_list, links); } } splx(s); return (acb); } static __inline void adwfreeacb(struct adw_softc *adw, struct acb *acb) { int s; s = splcam(); if ((acb->state & ACB_ACTIVE) != 0) LIST_REMOVE(&acb->ccb->ccb_h, sim_links.le); if ((acb->state & ACB_RELEASE_SIMQ) != 0) acb->ccb->ccb_h.status |= CAM_RELEASE_SIMQ; else if ((adw->state & ADW_RESOURCE_SHORTAGE) != 0 && (acb->ccb->ccb_h.status & CAM_RELEASE_SIMQ) == 0) { acb->ccb->ccb_h.status |= CAM_RELEASE_SIMQ; adw->state &= ~ADW_RESOURCE_SHORTAGE; } acb->state = ACB_FREE; SLIST_INSERT_HEAD(&adw->free_acb_list, acb, links); splx(s); } static void adwmapmem(void *arg, bus_dma_segment_t *segs, int nseg, int error) { bus_addr_t *busaddrp; busaddrp = (bus_addr_t *)arg; *busaddrp = segs->ds_addr; } static struct sg_map_node * adwallocsgmap(struct adw_softc *adw) { struct sg_map_node *sg_map; sg_map = malloc(sizeof(*sg_map), M_DEVBUF, M_NOWAIT); if (sg_map == NULL) return (NULL); /* Allocate S/G space for the next batch of ACBS */ if (bus_dmamem_alloc(adw->sg_dmat, (void **)&sg_map->sg_vaddr, BUS_DMA_NOWAIT, &sg_map->sg_dmamap) != 0) { free(sg_map, M_DEVBUF); return (NULL); } SLIST_INSERT_HEAD(&adw->sg_maps, sg_map, links); bus_dmamap_load(adw->sg_dmat, sg_map->sg_dmamap, sg_map->sg_vaddr, PAGE_SIZE, adwmapmem, &sg_map->sg_physaddr, /*flags*/0); bzero(sg_map->sg_vaddr, PAGE_SIZE); return (sg_map); } /* * Allocate another chunk of CCB's. Return count of entries added. * Assumed to be called at splcam(). */ static int adwallocacbs(struct adw_softc *adw) { struct acb *next_acb; struct sg_map_node *sg_map; bus_addr_t busaddr; struct adw_sg_block *blocks; int newcount; int i; next_acb = &adw->acbs[adw->num_acbs]; sg_map = adwallocsgmap(adw); if (sg_map == NULL) return (0); blocks = sg_map->sg_vaddr; busaddr = sg_map->sg_physaddr; newcount = (PAGE_SIZE / (ADW_SG_BLOCKCNT * sizeof(*blocks))); for (i = 0; adw->num_acbs < adw->max_acbs && i < newcount; i++) { int error; int j; error = bus_dmamap_create(adw->buffer_dmat, /*flags*/0, &next_acb->dmamap); if (error != 0) break; next_acb->queue.scsi_req_baddr = acbvtop(adw, next_acb); next_acb->queue.sense_addr = acbvtop(adw, next_acb) + offsetof(struct acb, sense_data); next_acb->sg_blocks = blocks; next_acb->sg_busaddr = busaddr; /* Setup static data in the sg blocks */ for (j = 0; j < ADW_SG_BLOCKCNT; j++) { next_acb->sg_blocks[j].first_entry_no = j * ADW_NO_OF_SG_PER_BLOCK; } next_acb->state = ACB_FREE; SLIST_INSERT_HEAD(&adw->free_acb_list, next_acb, links); blocks += ADW_SG_BLOCKCNT; busaddr += ADW_SG_BLOCKCNT * sizeof(*blocks); next_acb++; adw->num_acbs++; } return (i); } static void adwexecuteacb(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error) { struct acb *acb; union ccb *ccb; struct adw_softc *adw; int s; acb = (struct acb *)arg; ccb = acb->ccb; adw = (struct adw_softc *)ccb->ccb_h.ccb_adw_ptr; if (error != 0) { if (error != EFBIG) printf("%s: Unexepected error 0x%x returned from " "bus_dmamap_load\n", adw_name(adw), error); if (ccb->ccb_h.status == CAM_REQ_INPROG) { xpt_freeze_devq(ccb->ccb_h.path, /*count*/1); ccb->ccb_h.status = CAM_REQ_TOO_BIG|CAM_DEV_QFRZN; } adwfreeacb(adw, acb); xpt_done(ccb); return; } if (nseg != 0) { bus_dmasync_op_t op; acb->queue.data_addr = dm_segs[0].ds_addr; acb->queue.data_cnt = ccb->csio.dxfer_len; if (nseg > 1) { struct adw_sg_block *sg_block; struct adw_sg_elm *sg; bus_addr_t sg_busaddr; u_int sg_index; bus_dma_segment_t *end_seg; end_seg = dm_segs + nseg; sg_busaddr = acb->sg_busaddr; sg_index = 0; /* Copy the segments into our SG list */ for (sg_block = acb->sg_blocks;; sg_block++) { u_int sg_left; sg_left = ADW_NO_OF_SG_PER_BLOCK; sg = sg_block->sg_list; while (dm_segs < end_seg && sg_left != 0) { sg->sg_addr = dm_segs->ds_addr; sg->sg_count = dm_segs->ds_len; sg++; dm_segs++; sg_left--; } sg_index += ADW_NO_OF_SG_PER_BLOCK - sg_left; sg_block->last_entry_no = sg_index - 1; if (dm_segs == end_seg) { sg_block->sg_busaddr_next = 0; break; } else { sg_busaddr += sizeof(struct adw_sg_block); sg_block->sg_busaddr_next = sg_busaddr; } } acb->queue.sg_entry_cnt = nseg; acb->queue.sg_real_addr = acb->sg_busaddr; } else { acb->queue.sg_entry_cnt = 0; acb->queue.sg_real_addr = 0; } if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) op = BUS_DMASYNC_PREREAD; else op = BUS_DMASYNC_PREWRITE; bus_dmamap_sync(adw->buffer_dmat, acb->dmamap, op); } else { acb->queue.sg_entry_cnt = 0; acb->queue.data_addr = 0; acb->queue.data_cnt = 0; acb->queue.sg_real_addr = 0; } acb->queue.free_scsiq_link = 0; acb->queue.ux_wk_data_cnt = 0; s = splcam(); /* * Last time we need to check if this CCB needs to * be aborted. */ if (ccb->ccb_h.status != CAM_REQ_INPROG) { if (nseg != 0) bus_dmamap_unload(adw->buffer_dmat, acb->dmamap); adwfreeacb(adw, acb); xpt_done(ccb); splx(s); return; } acb->state |= ACB_ACTIVE; ccb->ccb_h.status |= CAM_SIM_QUEUED; LIST_INSERT_HEAD(&adw->pending_ccbs, &ccb->ccb_h, sim_links.le); ccb->ccb_h.timeout_ch = timeout(adwtimeout, (caddr_t)acb, (ccb->ccb_h.timeout * hz) / 1000); adw_send_acb(adw, acb, acbvtop(adw, acb)); splx(s); } static void adw_action(struct cam_sim *sim, union ccb *ccb) { struct adw_softc *adw; CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("adw_action\n")); adw = (struct adw_softc *)cam_sim_softc(sim); switch (ccb->ccb_h.func_code) { /* Common cases first */ case XPT_SCSI_IO: /* Execute the requested I/O operation */ { struct ccb_scsiio *csio; struct ccb_hdr *ccbh; struct acb *acb; csio = &ccb->csio; ccbh = &ccb->ccb_h; /* Max supported CDB length is 12 bytes */ if (csio->cdb_len > 12) { ccb->ccb_h.status = CAM_REQ_INVALID; xpt_done(ccb); return; } if ((acb = adwgetacb(adw)) == NULL) { int s; s = splcam(); adw->state |= ADW_RESOURCE_SHORTAGE; splx(s); xpt_freeze_simq(sim, /*count*/1); ccb->ccb_h.status = CAM_REQUEUE_REQ; xpt_done(ccb); return; } /* Link dccb and ccb so we can find one from the other */ acb->ccb = ccb; ccb->ccb_h.ccb_acb_ptr = acb; ccb->ccb_h.ccb_adw_ptr = adw; acb->queue.cntl = 0; acb->queue.target_id = ccb->ccb_h.target_id; acb->queue.target_lun = ccb->ccb_h.target_lun; acb->queue.srb_ptr = 0; acb->queue.a_flag = 0; acb->queue.sense_len = MIN(csio->sense_len, sizeof(acb->sense_data)); acb->queue.cdb_len = csio->cdb_len; if ((ccb->ccb_h.flags & CAM_TAG_ACTION_VALID) != 0) acb->queue.tag_code = csio->tag_action; else acb->queue.tag_code = 0; acb->queue.done_status = 0; acb->queue.scsi_status = 0; acb->queue.host_status = 0; acb->queue.ux_sg_ix = 0; if ((ccb->ccb_h.flags & CAM_CDB_POINTER) != 0) { if ((ccb->ccb_h.flags & CAM_CDB_PHYS) == 0) { bcopy(csio->cdb_io.cdb_ptr, acb->queue.cdb, csio->cdb_len); } else { /* I guess I could map it in... */ ccb->ccb_h.status = CAM_REQ_INVALID; adwfreeacb(adw, acb); xpt_done(ccb); return; } } else { bcopy(csio->cdb_io.cdb_bytes, acb->queue.cdb, csio->cdb_len); } /* * If we have any data to send with this command, * map it into bus space. */ if ((ccbh->flags & CAM_DIR_MASK) != CAM_DIR_NONE) { if ((ccbh->flags & CAM_SCATTER_VALID) == 0) { /* * We've been given a pointer * to a single buffer. */ if ((ccbh->flags & CAM_DATA_PHYS) == 0) { int s; int error; s = splsoftvm(); error = bus_dmamap_load(adw->buffer_dmat, acb->dmamap, csio->data_ptr, csio->dxfer_len, adwexecuteacb, acb, /*flags*/0); if (error == EINPROGRESS) { /* * So as to maintain ordering, * freeze the controller queue * until our mapping is * returned. */ xpt_freeze_simq(sim, 1); acb->state |= CAM_RELEASE_SIMQ; } splx(s); } else { struct bus_dma_segment seg; /* Pointer to physical buffer */ seg.ds_addr = (bus_addr_t)csio->data_ptr; seg.ds_len = csio->dxfer_len; adwexecuteacb(acb, &seg, 1, 0); } } else { struct bus_dma_segment *segs; if ((ccbh->flags & CAM_DATA_PHYS) != 0) panic("adw_action - Physical " "segment pointers " "unsupported"); if ((ccbh->flags&CAM_SG_LIST_PHYS)==0) panic("adw_action - Virtual " "segment addresses " "unsupported"); /* Just use the segments provided */ segs = (struct bus_dma_segment *)csio->data_ptr; adwexecuteacb(acb, segs, csio->sglist_cnt, (csio->sglist_cnt < ADW_SGSIZE) ? 0 : EFBIG); } } else { adwexecuteacb(acb, NULL, 0, 0); } break; } case XPT_RESET_DEV: /* Bus Device Reset the specified SCSI device */ { adw_idle_cmd_status_t status; adw_idle_cmd_send(adw, ADW_IDLE_CMD_DEVICE_RESET, ccb->ccb_h.target_id); status = adw_idle_cmd_wait(adw); if (status == ADW_IDLE_CMD_SUCCESS) { ccb->ccb_h.status = CAM_REQ_CMP; if (bootverbose) { xpt_print_path(ccb->ccb_h.path); printf("BDR Delivered\n"); } } else ccb->ccb_h.status = CAM_REQ_CMP_ERR; xpt_done(ccb); break; } case XPT_ABORT: /* Abort the specified CCB */ /* XXX Implement */ ccb->ccb_h.status = CAM_REQ_INVALID; xpt_done(ccb); break; case XPT_SET_TRAN_SETTINGS: { struct ccb_trans_settings *cts; u_int target_mask; int s; cts = &ccb->cts; target_mask = 0x01 << ccb->ccb_h.target_id; s = splcam(); if ((cts->flags & CCB_TRANS_CURRENT_SETTINGS) != 0) { if ((cts->valid & CCB_TRANS_DISC_VALID) != 0) { u_int discenb; discenb = adw_lram_read_16(adw, ADW_MC_DISC_ENABLE); if ((cts->flags & CCB_TRANS_DISC_ENB) != 0) discenb |= target_mask; else discenb &= ~target_mask; adw_lram_write_16(adw, ADW_MC_DISC_ENABLE, discenb); } if ((cts->valid & CCB_TRANS_TQ_VALID) != 0) { if ((cts->flags & CCB_TRANS_TAG_ENB) != 0) adw->tagenb |= target_mask; else adw->tagenb &= ~target_mask; } if ((cts->valid & CCB_TRANS_BUS_WIDTH_VALID) != 0) { u_int wdtrenb_orig; u_int wdtrenb; u_int wdtrdone; wdtrenb_orig = adw_lram_read_16(adw, ADW_MC_WDTR_ABLE); wdtrenb = wdtrenb_orig; wdtrdone = adw_lram_read_16(adw, ADW_MC_WDTR_DONE); switch (cts->bus_width) { case MSG_EXT_WDTR_BUS_32_BIT: case MSG_EXT_WDTR_BUS_16_BIT: wdtrenb |= target_mask; break; case MSG_EXT_WDTR_BUS_8_BIT: default: wdtrenb &= ~target_mask; break; } if (wdtrenb != wdtrenb_orig) { adw_lram_write_16(adw, ADW_MC_WDTR_ABLE, wdtrenb); wdtrdone &= ~target_mask; adw_lram_write_16(adw, ADW_MC_WDTR_DONE, wdtrdone); } } if (((cts->valid & CCB_TRANS_SYNC_RATE_VALID) != 0) || ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0)) { u_int sdtrenb_orig; u_int sdtrenb; u_int ultraenb_orig; u_int ultraenb; u_int sdtrdone; sdtrenb_orig = adw_lram_read_16(adw, ADW_MC_SDTR_ABLE); sdtrenb = sdtrenb_orig; ultraenb_orig = adw_lram_read_16(adw, ADW_MC_ULTRA_ABLE); ultraenb = ultraenb_orig; sdtrdone = adw_lram_read_16(adw, ADW_MC_SDTR_DONE); if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) != 0) { if (cts->sync_period == 0) { sdtrenb &= ~target_mask; } else if (cts->sync_period > 12) { ultraenb &= ~target_mask; sdtrenb |= target_mask; } else { ultraenb |= target_mask; sdtrenb |= target_mask; } } if ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0) { if (cts->sync_offset == 0) sdtrenb &= ~target_mask; } if (sdtrenb != sdtrenb_orig || ultraenb != ultraenb_orig) { adw_lram_write_16(adw, ADW_MC_SDTR_ABLE, sdtrenb); adw_lram_write_16(adw, ADW_MC_ULTRA_ABLE, ultraenb); sdtrdone &= ~target_mask; adw_lram_write_16(adw, ADW_MC_SDTR_DONE, sdtrdone); } } } splx(s); ccb->ccb_h.status = CAM_REQ_CMP; xpt_done(ccb); break; } case XPT_GET_TRAN_SETTINGS: /* Get default/user set transfer settings for the target */ { struct ccb_trans_settings *cts; u_int target_mask; cts = &ccb->cts; target_mask = 0x01 << ccb->ccb_h.target_id; if ((cts->flags & CCB_TRANS_USER_SETTINGS) != 0) { cts->flags = 0; if ((adw->user_discenb & target_mask) != 0) cts->flags |= CCB_TRANS_DISC_ENB; if ((adw->user_tagenb & target_mask) != 0) cts->flags |= CCB_TRANS_TAG_ENB; if ((adw->user_wdtr & target_mask) != 0) cts->bus_width = MSG_EXT_WDTR_BUS_16_BIT; else cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT; if ((adw->user_sdtr & target_mask) != 0) { if ((adw->user_ultra & target_mask) != 0) cts->sync_period = 12; /* 20MHz */ else cts->sync_period = 25; /* 10MHz */ cts->sync_offset = 15; /* XXX ??? */ } cts->valid = CCB_TRANS_SYNC_RATE_VALID | CCB_TRANS_SYNC_OFFSET_VALID | CCB_TRANS_BUS_WIDTH_VALID | CCB_TRANS_DISC_VALID | CCB_TRANS_TQ_VALID; ccb->ccb_h.status = CAM_REQ_CMP; } else { u_int targ_tinfo; cts->flags = 0; if ((adw_lram_read_16(adw, ADW_MC_DISC_ENABLE) & target_mask) != 0) cts->flags |= CCB_TRANS_DISC_ENB; if ((adw->tagenb & target_mask) != 0) cts->flags |= CCB_TRANS_TAG_ENB; targ_tinfo = adw_lram_read_16(adw, ADW_MC_DEVICE_HSHK_CFG_TABLE + (2 * ccb->ccb_h.target_id)); if ((targ_tinfo & ADW_HSHK_CFG_WIDE_XFR) != 0) cts->bus_width = MSG_EXT_WDTR_BUS_16_BIT; else cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT; cts->sync_period = ADW_HSHK_CFG_PERIOD_FACTOR(targ_tinfo); cts->sync_offset = targ_tinfo & ADW_HSHK_CFG_OFFSET; if (cts->sync_period == 0) cts->sync_offset = 0; if (cts->sync_offset == 0) cts->sync_period = 0; } cts->valid = CCB_TRANS_SYNC_RATE_VALID | CCB_TRANS_SYNC_OFFSET_VALID | CCB_TRANS_BUS_WIDTH_VALID | CCB_TRANS_DISC_VALID | CCB_TRANS_TQ_VALID; ccb->ccb_h.status = CAM_REQ_CMP; xpt_done(ccb); break; } case XPT_CALC_GEOMETRY: { struct ccb_calc_geometry *ccg; u_int32_t size_mb; u_int32_t secs_per_cylinder; int extended; /* * XXX Use Adaptec translation until I find out how to * get this information from the card. */ ccg = &ccb->ccg; size_mb = ccg->volume_size / ((1024L * 1024L) / ccg->block_size); extended = 1; if (size_mb > 1024 && extended) { ccg->heads = 255; ccg->secs_per_track = 63; } else { ccg->heads = 64; ccg->secs_per_track = 32; } secs_per_cylinder = ccg->heads * ccg->secs_per_track; ccg->cylinders = ccg->volume_size / secs_per_cylinder; ccb->ccb_h.status = CAM_REQ_CMP; xpt_done(ccb); break; } case XPT_RESET_BUS: /* Reset the specified SCSI bus */ { adw_idle_cmd_status_t status; adw_idle_cmd_send(adw, ADW_IDLE_CMD_SCSI_RESET, /*param*/0); status = adw_idle_cmd_wait(adw); if (status == ADW_IDLE_CMD_SUCCESS) { ccb->ccb_h.status = CAM_REQ_CMP; if (bootverbose) { xpt_print_path(adw->path); printf("Bus Reset Delivered\n"); } } else ccb->ccb_h.status = CAM_REQ_CMP_ERR; xpt_done(ccb); break; } case XPT_TERM_IO: /* Terminate the I/O process */ /* XXX Implement */ ccb->ccb_h.status = CAM_REQ_INVALID; xpt_done(ccb); break; case XPT_PATH_INQ: /* Path routing inquiry */ { struct ccb_pathinq *cpi = &ccb->cpi; cpi->version_num = 1; cpi->hba_inquiry = PI_WIDE_16|PI_SDTR_ABLE|PI_TAG_ABLE; cpi->target_sprt = 0; cpi->hba_misc = 0; cpi->hba_eng_cnt = 0; cpi->max_target = ADW_MAX_TID; cpi->max_lun = ADW_MAX_LUN; cpi->initiator_id = adw->initiator_id; cpi->bus_id = cam_sim_bus(sim); cpi->base_transfer_speed = 3300; strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); strncpy(cpi->hba_vid, "AdvanSys", HBA_IDLEN); strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN); cpi->unit_number = cam_sim_unit(sim); cpi->ccb_h.status = CAM_REQ_CMP; xpt_done(ccb); break; } default: ccb->ccb_h.status = CAM_REQ_INVALID; xpt_done(ccb); break; } } static void adw_poll(struct cam_sim *sim) { adw_intr(cam_sim_softc(sim)); } static void adw_async(void *callback_arg, u_int32_t code, struct cam_path *path, void *arg) { } struct adw_softc * adw_alloc(int unit, bus_space_tag_t tag, bus_space_handle_t bsh) { struct adw_softc *adw; int i; /* * Allocate a storage area for us */ adw = malloc(sizeof(struct adw_softc), M_DEVBUF, M_NOWAIT); if (adw == NULL) { printf("adw%d: cannot malloc!\n", unit); return NULL; } bzero(adw, sizeof(struct adw_softc)); LIST_INIT(&adw->pending_ccbs); SLIST_INIT(&adw->sg_maps); adw->unit = unit; adw->tag = tag; adw->bsh = bsh; i = adw->unit / 10; adw->name = malloc(sizeof("adw") + i + 1, M_DEVBUF, M_NOWAIT); if (adw->name == NULL) { printf("adw%d: cannot malloc name!\n", unit); free(adw, M_DEVBUF); return NULL; } sprintf(adw->name, "adw%d", adw->unit); return(adw); } void adw_free(struct adw_softc *adw) { switch (adw->init_level) { case 6: { struct sg_map_node *sg_map; while ((sg_map = SLIST_FIRST(&adw->sg_maps)) != NULL) { SLIST_REMOVE_HEAD(&adw->sg_maps, links); bus_dmamap_unload(adw->sg_dmat, sg_map->sg_dmamap); bus_dmamem_free(adw->sg_dmat, sg_map->sg_vaddr, sg_map->sg_dmamap); free(sg_map, M_DEVBUF); } bus_dma_tag_destroy(adw->sg_dmat); } case 5: bus_dmamap_unload(adw->acb_dmat, adw->acb_dmamap); case 4: bus_dmamem_free(adw->acb_dmat, adw->acbs, adw->acb_dmamap); bus_dmamap_destroy(adw->acb_dmat, adw->acb_dmamap); case 3: bus_dma_tag_destroy(adw->acb_dmat); case 2: bus_dma_tag_destroy(adw->buffer_dmat); case 1: bus_dma_tag_destroy(adw->parent_dmat); case 0: break; } free(adw->name, M_DEVBUF); free(adw, M_DEVBUF); } int adw_init(struct adw_softc *adw) { struct adw_eeprom eep_config; u_int16_t checksum; u_int16_t scsicfg1; adw_reset_chip(adw); checksum = adw_eeprom_read(adw, &eep_config); bcopy(eep_config.serial_number, adw->serial_number, sizeof(adw->serial_number)); if (checksum != eep_config.checksum) { u_int16_t serial_number[3]; printf("%s: EEPROM checksum failed. Restoring Defaults\n", adw_name(adw)); /* * Restore the default EEPROM settings. * Assume the 6 byte board serial number that was read * from EEPROM is correct even if the EEPROM checksum * failed. */ bcopy(&adw_default_eeprom, &eep_config, sizeof(eep_config)); bcopy(adw->serial_number, eep_config.serial_number, sizeof(serial_number)); adw_eeprom_write(adw, &eep_config); } /* Pull eeprom information into our softc. */ adw->bios_ctrl = eep_config.bios_ctrl; adw->user_wdtr = eep_config.wdtr_able; adw->user_sdtr = eep_config.sdtr_able; adw->user_ultra = eep_config.ultra_able; adw->user_tagenb = eep_config.tagqng_able; adw->user_discenb = eep_config.disc_enable; adw->max_acbs = eep_config.max_host_qng; adw->initiator_id = (eep_config.adapter_scsi_id & ADW_MAX_TID); /* * Sanity check the number of host openings. */ if (adw->max_acbs > ADW_DEF_MAX_HOST_QNG) adw->max_acbs = ADW_DEF_MAX_HOST_QNG; else if (adw->max_acbs < ADW_DEF_MIN_HOST_QNG) { /* If the value is zero, assume it is uninitialized. */ if (adw->max_acbs == 0) adw->max_acbs = ADW_DEF_MAX_HOST_QNG; else adw->max_acbs = ADW_DEF_MIN_HOST_QNG; } scsicfg1 = 0; switch (eep_config.termination) { default: printf("%s: Invalid EEPROM Termination Settings.\n", adw_name(adw)); printf("%s: Reverting to Automatic Termination\n", adw_name(adw)); /* FALLTHROUGH */ case ADW_EEPROM_TERM_AUTO: break; case ADW_EEPROM_TERM_BOTH_ON: scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_L; /* FALLTHROUGH */ case ADW_EEPROM_TERM_HIGH_ON: scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_H; /* FALLTHROUGH */ case ADW_EEPROM_TERM_OFF: scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_MANUAL; break; } printf("%s: SCSI ID %d, ", adw_name(adw), adw->initiator_id); if (adw_init_chip(adw, scsicfg1) != 0) return (-1); printf("Queue Depth %d\n", adw->max_acbs); /* DMA tag for mapping buffers into device visible space. */ if (bus_dma_tag_create(adw->parent_dmat, /*alignment*/0, /*boundary*/0, /*lowaddr*/BUS_SPACE_MAXADDR, /*highaddr*/BUS_SPACE_MAXADDR, /*filter*/NULL, /*filterarg*/NULL, /*maxsize*/MAXBSIZE, /*nsegments*/ADW_SGSIZE, /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT, /*flags*/BUS_DMA_ALLOCNOW, &adw->buffer_dmat) != 0) { return (-1); } adw->init_level++; /* DMA tag for our ccb structures */ if (bus_dma_tag_create(adw->parent_dmat, /*alignment*/0, /*boundary*/0, /*lowaddr*/BUS_SPACE_MAXADDR, /*highaddr*/BUS_SPACE_MAXADDR, /*filter*/NULL, /*filterarg*/NULL, adw->max_acbs * sizeof(struct acb), /*nsegments*/1, /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT, /*flags*/0, &adw->acb_dmat) != 0) { return (-1); } adw->init_level++; /* Allocation for our ccbs */ if (bus_dmamem_alloc(adw->acb_dmat, (void **)&adw->acbs, BUS_DMA_NOWAIT, &adw->acb_dmamap) != 0) { return (-1); } adw->init_level++; /* And permanently map them */ bus_dmamap_load(adw->acb_dmat, adw->acb_dmamap, adw->acbs, adw->max_acbs * sizeof(struct acb), adwmapmem, &adw->acb_busbase, /*flags*/0); /* Clear them out. */ bzero(adw->acbs, adw->max_acbs * sizeof(struct acb)); /* DMA tag for our S/G structures. We allocate in page sized chunks */ if (bus_dma_tag_create(adw->parent_dmat, /*alignment*/0, /*boundary*/0, /*lowaddr*/BUS_SPACE_MAXADDR, /*highaddr*/BUS_SPACE_MAXADDR, /*filter*/NULL, /*filterarg*/NULL, PAGE_SIZE, /*nsegments*/1, /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT, /*flags*/0, &adw->sg_dmat) != 0) { return (-1); } adw->init_level++; /* Allocate our first batch of ccbs */ if (adwallocacbs(adw) == 0) return (-1); return (0); } /* * Attach all the sub-devices we can find */ int adw_attach(struct adw_softc *adw) { struct ccb_setasync csa; struct cam_devq *devq; /* Start the Risc processor now that we are fully configured. */ adw_outw(adw, ADW_RISC_CSR, ADW_RISC_CSR_RUN); /* * Create the device queue for our SIM. */ devq = cam_simq_alloc(adw->max_acbs); if (devq == NULL) return (0); /* * Construct our SIM entry. */ adw->sim = cam_sim_alloc(adw_action, adw_poll, "adw", adw, adw->unit, 1, adw->max_acbs, devq); if (adw->sim == NULL) return (0); /* * Register the bus. */ if (xpt_bus_register(adw->sim, 0) != CAM_SUCCESS) { cam_sim_free(adw->sim, /*free devq*/TRUE); return (0); } if (xpt_create_path(&adw->path, /*periph*/NULL, cam_sim_path(adw->sim), CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) == CAM_REQ_CMP) { xpt_setup_ccb(&csa.ccb_h, adw->path, /*priority*/5); csa.ccb_h.func_code = XPT_SASYNC_CB; csa.event_enable = AC_LOST_DEVICE; csa.callback = adw_async; csa.callback_arg = adw; xpt_action((union ccb *)&csa); } return (0); } void adw_intr(void *arg) { struct adw_softc *adw; u_int int_stat; u_int next_doneq; u_int next_completeq; u_int doneq_start; adw = (struct adw_softc *)arg; if ((adw_inw(adw, ADW_CTRL_REG) & ADW_CTRL_REG_HOST_INTR) == 0) return; /* Reading the register clears the interrupt. */ int_stat = adw_inb(adw, ADW_INTR_STATUS_REG); if ((int_stat & ADW_INTR_STATUS_INTRB) != 0) { /* Idle Command Complete */ adw->idle_command_cmp = 1; switch (adw->idle_cmd) { case ADW_IDLE_CMD_DEVICE_RESET: adw_handle_device_reset(adw, /*target*/adw->idle_cmd_param); break; case ADW_IDLE_CMD_SCSI_RESET: adw_handle_bus_reset(adw, /*initiated*/TRUE); break; default: break; } adw->idle_cmd = ADW_IDLE_CMD_COMPLETED; } if ((int_stat & ADW_INTR_STATUS_INTRC) != 0) { /* SCSI Bus Reset */ adw_handle_bus_reset(adw, /*initiated*/FALSE); } /* * ADW_MC_HOST_NEXT_DONE is actually the last completed RISC * Queue List request. Its forward pointer (RQL_FWD) points to the * current completed RISC Queue List request. */ next_doneq = adw_lram_read_8(adw, ADW_MC_HOST_NEXT_DONE); next_doneq = ADW_MC_RISC_Q_LIST_BASE + RQL_FWD + (next_doneq * ADW_MC_RISC_Q_LIST_SIZE); next_completeq = adw_lram_read_8(adw, next_doneq); doneq_start = ADW_MC_NULL_Q; /* Loop until all completed Q's are processed. */ while (next_completeq != ADW_MC_NULL_Q) { u_int32_t acb_busaddr; struct acb *acb; union ccb *ccb; doneq_start = next_completeq; next_doneq = ADW_MC_RISC_Q_LIST_BASE + (next_completeq * ADW_MC_RISC_Q_LIST_SIZE); /* * Read the ADW_SCSI_REQ_Q physical address pointer from * the RISC list entry. */ acb_busaddr = adw_lram_read_32(adw, next_doneq + RQL_PHYADDR); acb = acbptov(adw, acb_busaddr); /* Change the RISC Queue List state to free. */ adw_lram_write_8(adw, next_doneq + RQL_STATE, ADW_MC_QS_FREE); /* Get the RISC Queue List forward pointer. */ next_completeq = adw_lram_read_8(adw, next_doneq + RQL_FWD); /* Process CCB */ ccb = acb->ccb; untimeout(adwtimeout, acb, ccb->ccb_h.timeout_ch); if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) { bus_dmasync_op_t op; if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) op = BUS_DMASYNC_POSTREAD; else op = BUS_DMASYNC_POSTWRITE; bus_dmamap_sync(adw->buffer_dmat, acb->dmamap, op); bus_dmamap_unload(adw->buffer_dmat, acb->dmamap); ccb->csio.resid = acb->queue.data_cnt; } else ccb->csio.resid = 0; /* Common Cases inline... */ if (acb->queue.host_status == QHSTA_NO_ERROR && (acb->queue.done_status == QD_NO_ERROR || acb->queue.done_status == QD_WITH_ERROR)) { ccb->csio.scsi_status = acb->queue.scsi_status; ccb->ccb_h.status = 0; switch (ccb->csio.scsi_status) { case SCSI_STATUS_OK: ccb->ccb_h.status |= CAM_REQ_CMP; break; case SCSI_STATUS_CHECK_COND: case SCSI_STATUS_CMD_TERMINATED: bcopy(&acb->sense_data, &ccb->csio.sense_data, ccb->csio.sense_len); ccb->ccb_h.status |= CAM_AUTOSNS_VALID; ccb->csio.sense_resid = acb->queue.sense_len; /* FALLTHROUGH */ default: ccb->ccb_h.status |= CAM_SCSI_STATUS_ERROR | CAM_DEV_QFRZN; xpt_freeze_devq(ccb->ccb_h.path, /*count*/1); break; } adwfreeacb(adw, acb); xpt_done(ccb); } else { adwprocesserror(adw, acb); } } if (doneq_start != ADW_MC_NULL_Q) adw_lram_write_8(adw, ADW_MC_HOST_NEXT_DONE, doneq_start); } static void adwprocesserror(struct adw_softc *adw, struct acb *acb) { union ccb *ccb; ccb = acb->ccb; if (acb->queue.done_status == QD_ABORTED_BY_HOST) { ccb->ccb_h.status = CAM_REQ_ABORTED; } else { switch (acb->queue.host_status) { case QHSTA_M_SEL_TIMEOUT: ccb->ccb_h.status = CAM_SEL_TIMEOUT; break; case QHSTA_M_SXFR_OFF_UFLW: case QHSTA_M_SXFR_OFF_OFLW: case QHSTA_M_DATA_OVER_RUN: ccb->ccb_h.status = CAM_DATA_RUN_ERR; break; case QHSTA_M_SXFR_DESELECTED: case QHSTA_M_UNEXPECTED_BUS_FREE: ccb->ccb_h.status = CAM_UNEXP_BUSFREE; break; case QHSTA_M_QUEUE_ABORTED: /* BDR or Bus Reset */ ccb->ccb_h.status = adw->last_reset; break; case QHSTA_M_SXFR_SDMA_ERR: case QHSTA_M_SXFR_SXFR_PERR: case QHSTA_M_RDMA_PERR: ccb->ccb_h.status = CAM_UNCOR_PARITY; break; case QHSTA_M_WTM_TIMEOUT: case QHSTA_M_SXFR_WD_TMO: /* The SCSI bus hung in a phase */ ccb->ccb_h.status = CAM_SEQUENCE_FAIL; adw_idle_cmd_send(adw, ADW_IDLE_CMD_SCSI_RESET, /*param*/0); break; case QHSTA_M_SXFR_XFR_PH_ERR: ccb->ccb_h.status = CAM_SEQUENCE_FAIL; break; case QHSTA_M_SXFR_UNKNOWN_ERROR: break; case QHSTA_M_BAD_CMPL_STATUS_IN: /* No command complete after a status message */ ccb->ccb_h.status = CAM_SEQUENCE_FAIL; break; case QHSTA_M_AUTO_REQ_SENSE_FAIL: ccb->ccb_h.status = CAM_AUTOSENSE_FAIL; break; case QHSTA_M_INVALID_DEVICE: ccb->ccb_h.status = CAM_PATH_INVALID; break; case QHSTA_M_NO_AUTO_REQ_SENSE: /* * User didn't request sense, but we got a * check condition. */ ccb->csio.scsi_status = acb->queue.scsi_status; ccb->ccb_h.status = CAM_SCSI_STATUS_ERROR; break; default: panic("%s: Unhandled Host status error %x", adw_name(adw), acb->queue.host_status); /* NOTREACHED */ } } if (ccb->ccb_h.status != CAM_REQ_CMP) { xpt_freeze_devq(ccb->ccb_h.path, /*count*/1); ccb->ccb_h.status |= CAM_DEV_QFRZN; } adwfreeacb(adw, acb); xpt_done(ccb); } static void adwtimeout(void *arg) { struct acb *acb; union ccb *ccb; struct adw_softc *adw; adw_idle_cmd_status_t status; int s; acb = (struct acb *)arg; ccb = acb->ccb; adw = (struct adw_softc *)ccb->ccb_h.ccb_adw_ptr; xpt_print_path(ccb->ccb_h.path); printf("ACB %p - timed out\n", (void *)acb); s = splcam(); if ((acb->state & ACB_ACTIVE) == 0) { xpt_print_path(ccb->ccb_h.path); printf("ACB %p - timed out CCB already completed\n", (void *)acb); splx(s); return; } /* Attempt a BDR first */ adw_idle_cmd_send(adw, ADW_IDLE_CMD_DEVICE_RESET, ccb->ccb_h.target_id); splx(s); status = adw_idle_cmd_wait(adw); if (status == ADW_IDLE_CMD_SUCCESS) { printf("%s: BDR Delivered. No longer in timeout\n", adw_name(adw)); } else { adw_idle_cmd_send(adw, ADW_IDLE_CMD_SCSI_RESET, /*param*/0); status = adw_idle_cmd_wait(adw); if (status != ADW_IDLE_CMD_SUCCESS) panic("%s: Bus Reset during timeout failed", adw_name(adw)); } } static void adw_handle_device_reset(struct adw_softc *adw, u_int target) { struct cam_path *path; cam_status error; error = xpt_create_path(&path, /*periph*/NULL, cam_sim_path(adw->sim), target, CAM_LUN_WILDCARD); if (error == CAM_REQ_CMP) { xpt_async(AC_SENT_BDR, path, NULL); xpt_free_path(path); } adw->last_reset = CAM_BDR_SENT; } static void adw_handle_bus_reset(struct adw_softc *adw, int initiated) { if (initiated) { /* * The microcode currently sets the SCSI Bus Reset signal * while handling the AscSendIdleCmd() IDLE_CMD_SCSI_RESET * command above. But the SCSI Bus Reset Hold Time in the * microcode is not deterministic (it may in fact be for less * than the SCSI Spec. minimum of 25 us). Therefore on return * the Adv Library sets the SCSI Bus Reset signal for * ADW_SCSI_RESET_HOLD_TIME_US, which is defined to be greater * than 25 us. */ u_int scsi_ctrl; scsi_ctrl = adw_inw(adw, ADW_SCSI_CTRL) & ~ADW_SCSI_CTRL_RSTOUT; adw_outw(adw, ADW_SCSI_CTRL, scsi_ctrl | ADW_SCSI_CTRL_RSTOUT); DELAY(ADW_SCSI_RESET_HOLD_TIME_US); adw_outw(adw, ADW_SCSI_CTRL, scsi_ctrl); /* * We will perform the async notification when the * SCSI Reset interrupt occurs. */ } else xpt_async(AC_BUS_RESET, adw->path, NULL); adw->last_reset = CAM_SCSI_BUS_RESET; }