/* * Copyright (c) 1989, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_ktrace.c 8.2 (Berkeley) 9/23/93 */ #include __FBSDID("$FreeBSD$"); #include "opt_ktrace.h" #include "opt_mac.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static MALLOC_DEFINE(M_KTRACE, "KTRACE", "KTRACE"); #ifdef KTRACE #ifndef KTRACE_REQUEST_POOL #define KTRACE_REQUEST_POOL 100 #endif struct ktr_request { struct ktr_header ktr_header; struct ucred *ktr_cred; struct vnode *ktr_vp; union { struct ktr_syscall ktr_syscall; struct ktr_sysret ktr_sysret; struct ktr_genio ktr_genio; struct ktr_psig ktr_psig; struct ktr_csw ktr_csw; } ktr_data; STAILQ_ENTRY(ktr_request) ktr_list; }; static int data_lengths[] = { 0, /* none */ offsetof(struct ktr_syscall, ktr_args), /* KTR_SYSCALL */ sizeof(struct ktr_sysret), /* KTR_SYSRET */ 0, /* KTR_NAMEI */ sizeof(struct ktr_genio), /* KTR_GENIO */ sizeof(struct ktr_psig), /* KTR_PSIG */ sizeof(struct ktr_csw), /* KTR_CSW */ 0 /* KTR_USER */ }; static STAILQ_HEAD(, ktr_request) ktr_todo; static STAILQ_HEAD(, ktr_request) ktr_free; SYSCTL_NODE(_kern, OID_AUTO, ktrace, CTLFLAG_RD, 0, "KTRACE options"); static uint ktr_requestpool = KTRACE_REQUEST_POOL; TUNABLE_INT("kern.ktrace.request_pool", &ktr_requestpool); static uint ktr_geniosize = PAGE_SIZE; TUNABLE_INT("kern.ktrace.genio_size", &ktr_geniosize); SYSCTL_UINT(_kern_ktrace, OID_AUTO, genio_size, CTLFLAG_RW, &ktr_geniosize, 0, "Maximum size of genio event payload"); static int print_message = 1; struct mtx ktrace_mtx; static struct sema ktrace_sema; static void ktrace_init(void *dummy); static int sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS); static uint ktrace_resize_pool(uint newsize); static struct ktr_request *ktr_getrequest(int type); static void ktr_submitrequest(struct ktr_request *req); static void ktr_freerequest(struct ktr_request *req); static void ktr_loop(void *dummy); static void ktr_writerequest(struct ktr_request *req); static int ktrcanset(struct thread *,struct proc *); static int ktrsetchildren(struct thread *,struct proc *,int,int,struct vnode *); static int ktrops(struct thread *,struct proc *,int,int,struct vnode *); static void ktrace_init(void *dummy) { struct ktr_request *req; int i; mtx_init(&ktrace_mtx, "ktrace", NULL, MTX_DEF | MTX_QUIET); sema_init(&ktrace_sema, 0, "ktrace"); STAILQ_INIT(&ktr_todo); STAILQ_INIT(&ktr_free); for (i = 0; i < ktr_requestpool; i++) { req = malloc(sizeof(struct ktr_request), M_KTRACE, M_WAITOK); STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list); } kthread_create(ktr_loop, NULL, NULL, RFHIGHPID, 0, "ktrace"); } SYSINIT(ktrace_init, SI_SUB_KTRACE, SI_ORDER_ANY, ktrace_init, NULL); static int sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS) { struct thread *td; uint newsize, oldsize, wantsize; int error; /* Handle easy read-only case first to avoid warnings from GCC. */ if (!req->newptr) { mtx_lock(&ktrace_mtx); oldsize = ktr_requestpool; mtx_unlock(&ktrace_mtx); return (SYSCTL_OUT(req, &oldsize, sizeof(uint))); } error = SYSCTL_IN(req, &wantsize, sizeof(uint)); if (error) return (error); td = curthread; td->td_pflags |= TDP_INKTRACE; mtx_lock(&ktrace_mtx); oldsize = ktr_requestpool; newsize = ktrace_resize_pool(wantsize); mtx_unlock(&ktrace_mtx); td->td_pflags &= ~TDP_INKTRACE; error = SYSCTL_OUT(req, &oldsize, sizeof(uint)); if (error) return (error); if (newsize != wantsize) return (ENOSPC); return (0); } SYSCTL_PROC(_kern_ktrace, OID_AUTO, request_pool, CTLTYPE_UINT|CTLFLAG_RW, &ktr_requestpool, 0, sysctl_kern_ktrace_request_pool, "IU", ""); static uint ktrace_resize_pool(uint newsize) { struct ktr_request *req; mtx_assert(&ktrace_mtx, MA_OWNED); print_message = 1; if (newsize == ktr_requestpool) return (newsize); if (newsize < ktr_requestpool) /* Shrink pool down to newsize if possible. */ while (ktr_requestpool > newsize) { req = STAILQ_FIRST(&ktr_free); if (req == NULL) return (ktr_requestpool); STAILQ_REMOVE_HEAD(&ktr_free, ktr_list); ktr_requestpool--; mtx_unlock(&ktrace_mtx); free(req, M_KTRACE); mtx_lock(&ktrace_mtx); } else /* Grow pool up to newsize. */ while (ktr_requestpool < newsize) { mtx_unlock(&ktrace_mtx); req = malloc(sizeof(struct ktr_request), M_KTRACE, M_WAITOK); mtx_lock(&ktrace_mtx); STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list); ktr_requestpool++; } return (ktr_requestpool); } static struct ktr_request * ktr_getrequest(int type) { struct ktr_request *req; struct thread *td = curthread; struct proc *p = td->td_proc; int pm; td->td_pflags |= TDP_INKTRACE; mtx_lock(&ktrace_mtx); if (!KTRCHECK(td, type)) { mtx_unlock(&ktrace_mtx); td->td_pflags &= ~TDP_INKTRACE; return (NULL); } req = STAILQ_FIRST(&ktr_free); if (req != NULL) { STAILQ_REMOVE_HEAD(&ktr_free, ktr_list); req->ktr_header.ktr_type = type; if (p->p_traceflag & KTRFAC_DROP) { req->ktr_header.ktr_type |= KTR_DROP; p->p_traceflag &= ~KTRFAC_DROP; } KASSERT(p->p_tracevp != NULL, ("ktrace: no trace vnode")); KASSERT(p->p_tracecred != NULL, ("ktrace: no trace cred")); req->ktr_vp = p->p_tracevp; VREF(p->p_tracevp); req->ktr_cred = crhold(p->p_tracecred); mtx_unlock(&ktrace_mtx); microtime(&req->ktr_header.ktr_time); req->ktr_header.ktr_pid = p->p_pid; bcopy(p->p_comm, req->ktr_header.ktr_comm, MAXCOMLEN + 1); req->ktr_header.ktr_buffer = NULL; req->ktr_header.ktr_len = 0; } else { p->p_traceflag |= KTRFAC_DROP; pm = print_message; print_message = 0; mtx_unlock(&ktrace_mtx); if (pm) printf("Out of ktrace request objects.\n"); td->td_pflags &= ~TDP_INKTRACE; } return (req); } static void ktr_submitrequest(struct ktr_request *req) { mtx_lock(&ktrace_mtx); STAILQ_INSERT_TAIL(&ktr_todo, req, ktr_list); sema_post(&ktrace_sema); mtx_unlock(&ktrace_mtx); curthread->td_pflags &= ~TDP_INKTRACE; } static void ktr_freerequest(struct ktr_request *req) { crfree(req->ktr_cred); if (req->ktr_vp != NULL) { mtx_lock(&Giant); vrele(req->ktr_vp); mtx_unlock(&Giant); } if (req->ktr_header.ktr_buffer != NULL) free(req->ktr_header.ktr_buffer, M_KTRACE); mtx_lock(&ktrace_mtx); STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list); mtx_unlock(&ktrace_mtx); } static void ktr_loop(void *dummy) { struct ktr_request *req; struct thread *td; struct ucred *cred; /* Only cache these values once. */ td = curthread; cred = td->td_ucred; for (;;) { sema_wait(&ktrace_sema); mtx_lock(&ktrace_mtx); req = STAILQ_FIRST(&ktr_todo); STAILQ_REMOVE_HEAD(&ktr_todo, ktr_list); KASSERT(req != NULL, ("got a NULL request")); mtx_unlock(&ktrace_mtx); /* * It is not enough just to pass the cached cred * to the VOP's in ktr_writerequest(). Some VFS * operations use curthread->td_ucred, so we need * to modify our thread's credentials as well. * Evil. */ td->td_ucred = req->ktr_cred; ktr_writerequest(req); td->td_ucred = cred; ktr_freerequest(req); } } /* * MPSAFE */ void ktrsyscall(code, narg, args) int code, narg; register_t args[]; { struct ktr_request *req; struct ktr_syscall *ktp; size_t buflen; char *buf = NULL; buflen = sizeof(register_t) * narg; if (buflen > 0) { buf = malloc(buflen, M_KTRACE, M_WAITOK); bcopy(args, buf, buflen); } req = ktr_getrequest(KTR_SYSCALL); if (req == NULL) { if (buf != NULL) free(buf, M_KTRACE); return; } ktp = &req->ktr_data.ktr_syscall; ktp->ktr_code = code; ktp->ktr_narg = narg; if (buflen > 0) { req->ktr_header.ktr_len = buflen; req->ktr_header.ktr_buffer = buf; } ktr_submitrequest(req); } /* * MPSAFE */ void ktrsysret(code, error, retval) int code, error; register_t retval; { struct ktr_request *req; struct ktr_sysret *ktp; req = ktr_getrequest(KTR_SYSRET); if (req == NULL) return; ktp = &req->ktr_data.ktr_sysret; ktp->ktr_code = code; ktp->ktr_error = error; ktp->ktr_retval = retval; /* what about val2 ? */ ktr_submitrequest(req); } void ktrnamei(path) char *path; { struct ktr_request *req; int namelen; char *buf = NULL; namelen = strlen(path); if (namelen > 0) { buf = malloc(namelen, M_KTRACE, M_WAITOK); bcopy(path, buf, namelen); } req = ktr_getrequest(KTR_NAMEI); if (req == NULL) { if (buf != NULL) free(buf, M_KTRACE); return; } if (namelen > 0) { req->ktr_header.ktr_len = namelen; req->ktr_header.ktr_buffer = buf; } ktr_submitrequest(req); } /* * Since the uio may not stay valid, we can not hand off this request to * the thread and need to process it synchronously. However, we wish to * keep the relative order of records in a trace file correct, so we * do put this request on the queue (if it isn't empty) and then block. * The ktrace thread waks us back up when it is time for this event to * be posted and blocks until we have completed writing out the event * and woken it back up. */ void ktrgenio(fd, rw, uio, error) int fd; enum uio_rw rw; struct uio *uio; int error; { struct ktr_request *req; struct ktr_genio *ktg; int datalen; char *buf; if (error) return; uio->uio_offset = 0; uio->uio_rw = UIO_WRITE; datalen = imin(uio->uio_resid, ktr_geniosize); buf = malloc(datalen, M_KTRACE, M_WAITOK); if (uiomove(buf, datalen, uio)) { free(buf, M_KTRACE); return; } req = ktr_getrequest(KTR_GENIO); if (req == NULL) { free(buf, M_KTRACE); return; } ktg = &req->ktr_data.ktr_genio; ktg->ktr_fd = fd; ktg->ktr_rw = rw; req->ktr_header.ktr_len = datalen; req->ktr_header.ktr_buffer = buf; ktr_submitrequest(req); } void ktrpsig(sig, action, mask, code) int sig; sig_t action; sigset_t *mask; int code; { struct ktr_request *req; struct ktr_psig *kp; req = ktr_getrequest(KTR_PSIG); if (req == NULL) return; kp = &req->ktr_data.ktr_psig; kp->signo = (char)sig; kp->action = action; kp->mask = *mask; kp->code = code; ktr_submitrequest(req); } void ktrcsw(out, user) int out, user; { struct ktr_request *req; struct ktr_csw *kc; req = ktr_getrequest(KTR_CSW); if (req == NULL) return; kc = &req->ktr_data.ktr_csw; kc->out = out; kc->user = user; ktr_submitrequest(req); } #endif /* KTRACE */ /* Interface and common routines */ /* * ktrace system call * * MPSAFE */ #ifndef _SYS_SYSPROTO_H_ struct ktrace_args { char *fname; int ops; int facs; int pid; }; #endif /* ARGSUSED */ int ktrace(td, uap) struct thread *td; register struct ktrace_args *uap; { #ifdef KTRACE register struct vnode *vp = NULL; register struct proc *p; struct pgrp *pg; int facs = uap->facs & ~KTRFAC_ROOT; int ops = KTROP(uap->ops); int descend = uap->ops & KTRFLAG_DESCEND; int ret = 0; int flags, error = 0; struct nameidata nd; struct ucred *cred; /* * Need something to (un)trace. */ if (ops != KTROP_CLEARFILE && facs == 0) return (EINVAL); td->td_pflags |= TDP_INKTRACE; if (ops != KTROP_CLEAR) { /* * an operation which requires a file argument. */ NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_USERSPACE, uap->fname, td); flags = FREAD | FWRITE | O_NOFOLLOW; mtx_lock(&Giant); error = vn_open(&nd, &flags, 0, -1); if (error) { mtx_unlock(&Giant); td->td_pflags &= ~TDP_INKTRACE; return (error); } NDFREE(&nd, NDF_ONLY_PNBUF); vp = nd.ni_vp; VOP_UNLOCK(vp, 0, td); if (vp->v_type != VREG) { (void) vn_close(vp, FREAD|FWRITE, td->td_ucred, td); mtx_unlock(&Giant); td->td_pflags &= ~TDP_INKTRACE; return (EACCES); } mtx_unlock(&Giant); } /* * Clear all uses of the tracefile. */ if (ops == KTROP_CLEARFILE) { sx_slock(&allproc_lock); LIST_FOREACH(p, &allproc, p_list) { PROC_LOCK(p); if (p->p_tracevp == vp) { if (ktrcanset(td, p)) { mtx_lock(&ktrace_mtx); cred = p->p_tracecred; p->p_tracecred = NULL; p->p_tracevp = NULL; p->p_traceflag = 0; mtx_unlock(&ktrace_mtx); PROC_UNLOCK(p); mtx_lock(&Giant); (void) vn_close(vp, FREAD|FWRITE, cred, td); mtx_unlock(&Giant); crfree(cred); } else { PROC_UNLOCK(p); error = EPERM; } } else PROC_UNLOCK(p); } sx_sunlock(&allproc_lock); goto done; } /* * do it */ sx_slock(&proctree_lock); if (uap->pid < 0) { /* * by process group */ pg = pgfind(-uap->pid); if (pg == NULL) { sx_sunlock(&proctree_lock); error = ESRCH; goto done; } /* * ktrops() may call vrele(). Lock pg_members * by the proctree_lock rather than pg_mtx. */ PGRP_UNLOCK(pg); LIST_FOREACH(p, &pg->pg_members, p_pglist) if (descend) ret |= ktrsetchildren(td, p, ops, facs, vp); else ret |= ktrops(td, p, ops, facs, vp); } else { /* * by pid */ p = pfind(uap->pid); if (p == NULL) { sx_sunlock(&proctree_lock); error = ESRCH; goto done; } /* * The slock of the proctree lock will keep this process * from going away, so unlocking the proc here is ok. */ PROC_UNLOCK(p); if (descend) ret |= ktrsetchildren(td, p, ops, facs, vp); else ret |= ktrops(td, p, ops, facs, vp); } sx_sunlock(&proctree_lock); if (!ret) error = EPERM; done: if (vp != NULL) { mtx_lock(&Giant); (void) vn_close(vp, FWRITE, td->td_ucred, td); mtx_unlock(&Giant); } td->td_pflags &= ~TDP_INKTRACE; return (error); #else /* !KTRACE */ return (ENOSYS); #endif /* KTRACE */ } /* * utrace system call * * MPSAFE */ /* ARGSUSED */ int utrace(td, uap) struct thread *td; register struct utrace_args *uap; { #ifdef KTRACE struct ktr_request *req; void *cp; int error; if (!KTRPOINT(td, KTR_USER)) return (0); if (uap->len > KTR_USER_MAXLEN) return (EINVAL); cp = malloc(uap->len, M_KTRACE, M_WAITOK); error = copyin(uap->addr, cp, uap->len); if (error) { free(cp, M_KTRACE); return (error); } req = ktr_getrequest(KTR_USER); if (req == NULL) { free(cp, M_KTRACE); return (0); } req->ktr_header.ktr_buffer = cp; req->ktr_header.ktr_len = uap->len; ktr_submitrequest(req); return (0); #else /* !KTRACE */ return (ENOSYS); #endif /* KTRACE */ } #ifdef KTRACE static int ktrops(td, p, ops, facs, vp) struct thread *td; struct proc *p; int ops, facs; struct vnode *vp; { struct vnode *tracevp = NULL; struct ucred *tracecred = NULL; PROC_LOCK(p); if (!ktrcanset(td, p)) { PROC_UNLOCK(p); return (0); } mtx_lock(&ktrace_mtx); if (ops == KTROP_SET) { if (p->p_tracevp != vp) { /* * if trace file already in use, relinquish below */ tracevp = p->p_tracevp; VREF(vp); p->p_tracevp = vp; } if (p->p_tracecred != td->td_ucred) { tracecred = p->p_tracecred; p->p_tracecred = crhold(td->td_ucred); } p->p_traceflag |= facs; if (td->td_ucred->cr_uid == 0) p->p_traceflag |= KTRFAC_ROOT; } else { /* KTROP_CLEAR */ if (((p->p_traceflag &= ~facs) & KTRFAC_MASK) == 0) { /* no more tracing */ p->p_traceflag = 0; tracevp = p->p_tracevp; p->p_tracevp = NULL; tracecred = p->p_tracecred; p->p_tracecred = NULL; } } mtx_unlock(&ktrace_mtx); PROC_UNLOCK(p); if (tracevp != NULL) { mtx_lock(&Giant); vrele(tracevp); mtx_unlock(&Giant); } if (tracecred != NULL) crfree(tracecred); return (1); } static int ktrsetchildren(td, top, ops, facs, vp) struct thread *td; struct proc *top; int ops, facs; struct vnode *vp; { register struct proc *p; register int ret = 0; p = top; sx_assert(&proctree_lock, SX_LOCKED); for (;;) { ret |= ktrops(td, p, ops, facs, vp); /* * If this process has children, descend to them next, * otherwise do any siblings, and if done with this level, * follow back up the tree (but not past top). */ if (!LIST_EMPTY(&p->p_children)) p = LIST_FIRST(&p->p_children); else for (;;) { if (p == top) return (ret); if (LIST_NEXT(p, p_sibling)) { p = LIST_NEXT(p, p_sibling); break; } p = p->p_pptr; } } /*NOTREACHED*/ } static void ktr_writerequest(struct ktr_request *req) { struct ktr_header *kth; struct vnode *vp; struct proc *p; struct thread *td; struct ucred *cred; struct uio auio; struct iovec aiov[3]; struct mount *mp; int datalen, buflen, vrele_count; int error; vp = req->ktr_vp; /* * If vp is NULL, the vp has been cleared out from under this * request, so just drop it. */ if (vp == NULL) return; kth = &req->ktr_header; datalen = data_lengths[(ushort)kth->ktr_type & ~KTR_DROP]; buflen = kth->ktr_len; cred = req->ktr_cred; td = curthread; auio.uio_iov = &aiov[0]; auio.uio_offset = 0; auio.uio_segflg = UIO_SYSSPACE; auio.uio_rw = UIO_WRITE; aiov[0].iov_base = (caddr_t)kth; aiov[0].iov_len = sizeof(struct ktr_header); auio.uio_resid = sizeof(struct ktr_header); auio.uio_iovcnt = 1; auio.uio_td = td; if (datalen != 0) { aiov[1].iov_base = (caddr_t)&req->ktr_data; aiov[1].iov_len = datalen; auio.uio_resid += datalen; auio.uio_iovcnt++; kth->ktr_len += datalen; } if (buflen != 0) { KASSERT(kth->ktr_buffer != NULL, ("ktrace: nothing to write")); aiov[auio.uio_iovcnt].iov_base = kth->ktr_buffer; aiov[auio.uio_iovcnt].iov_len = buflen; auio.uio_resid += buflen; auio.uio_iovcnt++; } mtx_lock(&Giant); vn_start_write(vp, &mp, V_WAIT); vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td); (void)VOP_LEASE(vp, td, cred, LEASE_WRITE); #ifdef MAC error = mac_check_vnode_write(cred, NOCRED, vp); if (error == 0) #endif error = VOP_WRITE(vp, &auio, IO_UNIT | IO_APPEND, cred); VOP_UNLOCK(vp, 0, td); vn_finished_write(mp); mtx_unlock(&Giant); if (!error) return; /* * If error encountered, give up tracing on this vnode. We defer * all the vrele()'s on the vnode until after we are finished walking * the various lists to avoid needlessly holding locks. */ log(LOG_NOTICE, "ktrace write failed, errno %d, tracing stopped\n", error); vrele_count = 0; /* * First, clear this vnode from being used by any processes in the * system. * XXX - If one process gets an EPERM writing to the vnode, should * we really do this? Other processes might have suitable * credentials for the operation. */ cred = NULL; sx_slock(&allproc_lock); LIST_FOREACH(p, &allproc, p_list) { PROC_LOCK(p); if (p->p_tracevp == vp) { mtx_lock(&ktrace_mtx); p->p_tracevp = NULL; p->p_traceflag = 0; cred = p->p_tracecred; p->p_tracecred = NULL; mtx_unlock(&ktrace_mtx); vrele_count++; } PROC_UNLOCK(p); if (cred != NULL) { crfree(cred); cred = NULL; } } sx_sunlock(&allproc_lock); /* * Second, clear this vnode from any pending requests. */ mtx_lock(&ktrace_mtx); STAILQ_FOREACH(req, &ktr_todo, ktr_list) { if (req->ktr_vp == vp) { req->ktr_vp = NULL; vrele_count++; } } mtx_unlock(&ktrace_mtx); mtx_lock(&Giant); while (vrele_count-- > 0) vrele(vp); mtx_unlock(&Giant); } /* * Return true if caller has permission to set the ktracing state * of target. Essentially, the target can't possess any * more permissions than the caller. KTRFAC_ROOT signifies that * root previously set the tracing status on the target process, and * so, only root may further change it. */ static int ktrcanset(td, targetp) struct thread *td; struct proc *targetp; { PROC_LOCK_ASSERT(targetp, MA_OWNED); if (targetp->p_traceflag & KTRFAC_ROOT && suser_cred(td->td_ucred, PRISON_ROOT)) return (0); if (p_candebug(td, targetp) != 0) return (0); return (1); } #endif /* KTRACE */