/* * Copyright (c) 1987, 1991, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_malloc.c 8.3 (Berkeley) 1/4/94 * $Id: kern_malloc.c,v 1.29 1997/09/02 20:05:39 bde Exp $ */ #include #include #include #include #include #include #include #include #include #include #include #include #include static void kmeminit __P((void *)); SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, kmeminit, NULL) #if defined(KMEMSTATS) || defined(DIAGNOSTIC) #define MAYBE_STATIC static #else #define MAYBE_STATIC #endif MAYBE_STATIC struct kmembuckets bucket[MINBUCKET + 16]; #ifdef KMEMSTATS static struct kmemstats kmemstats[M_LAST]; #endif MAYBE_STATIC struct kmemusage *kmemusage; MAYBE_STATIC char *kmembase; static char *kmemlimit; #if defined(KMEMSTATS) || defined(DIAGNOSTIC) static char *memname[] = INITKMEMNAMES; #endif #ifdef DIAGNOSTIC /* * This structure provides a set of masks to catch unaligned frees. */ static long addrmask[] = { 0, 0x00000001, 0x00000003, 0x00000007, 0x0000000f, 0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff, 0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff, 0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff, }; /* * The WEIRD_ADDR is used as known text to copy into free objects so * that modifications after frees can be detected. */ #define WEIRD_ADDR 0xdeadc0de #define MAX_COPY 64 /* * Normally the first word of the structure is used to hold the list * pointer for free objects. However, when running with diagnostics, * we use the third and fourth fields, so as to catch modifications * in the most commonly trashed first two words. */ struct freelist { long spare0; short type; long spare1; caddr_t next; }; #else /* !DIAGNOSTIC */ struct freelist { caddr_t next; }; #endif /* DIAGNOSTIC */ /* * Allocate a block of memory */ void * malloc(size, type, flags) unsigned long size; int type, flags; { register struct kmembuckets *kbp; register struct kmemusage *kup; register struct freelist *freep; long indx, npg, allocsize; int s; caddr_t va, cp, savedlist; #ifdef DIAGNOSTIC long *end, *lp; int copysize; char *savedtype; #endif #ifdef KMEMSTATS register struct kmemstats *ksp = &kmemstats[type]; if (((unsigned long)type) > M_LAST) panic("malloc - bogus type"); #endif indx = BUCKETINDX(size); kbp = &bucket[indx]; s = splhigh(); #ifdef KMEMSTATS while (ksp->ks_memuse >= ksp->ks_limit) { if (flags & M_NOWAIT) { splx(s); return ((void *) NULL); } if (ksp->ks_limblocks < 65535) ksp->ks_limblocks++; tsleep((caddr_t)ksp, PSWP+2, memname[type], 0); } ksp->ks_size |= 1 << indx; #endif #ifdef DIAGNOSTIC copysize = 1 << indx < MAX_COPY ? 1 << indx : MAX_COPY; #endif if (kbp->kb_next == NULL) { kbp->kb_last = NULL; if (size > MAXALLOCSAVE) allocsize = roundup(size, PAGE_SIZE); else allocsize = 1 << indx; npg = btoc(allocsize); va = (caddr_t) kmem_malloc(kmem_map, (vm_size_t)ctob(npg), flags); if (va == NULL) { splx(s); return ((void *) NULL); } #ifdef KMEMSTATS kbp->kb_total += kbp->kb_elmpercl; #endif kup = btokup(va); kup->ku_indx = indx; if (allocsize > MAXALLOCSAVE) { if (npg > 65535) panic("malloc: allocation too large"); kup->ku_pagecnt = npg; #ifdef KMEMSTATS ksp->ks_memuse += allocsize; #endif goto out; } #ifdef KMEMSTATS kup->ku_freecnt = kbp->kb_elmpercl; kbp->kb_totalfree += kbp->kb_elmpercl; #endif /* * Just in case we blocked while allocating memory, * and someone else also allocated memory for this * bucket, don't assume the list is still empty. */ savedlist = kbp->kb_next; kbp->kb_next = cp = va + (npg * PAGE_SIZE) - allocsize; for (;;) { freep = (struct freelist *)cp; #ifdef DIAGNOSTIC /* * Copy in known text to detect modification * after freeing. */ end = (long *)&cp[copysize]; for (lp = (long *)cp; lp < end; lp++) *lp = WEIRD_ADDR; freep->type = M_FREE; #endif /* DIAGNOSTIC */ if (cp <= va) break; cp -= allocsize; freep->next = cp; } freep->next = savedlist; if (kbp->kb_last == NULL) kbp->kb_last = (caddr_t)freep; } va = kbp->kb_next; kbp->kb_next = ((struct freelist *)va)->next; #ifdef DIAGNOSTIC freep = (struct freelist *)va; savedtype = (unsigned)freep->type < M_LAST ? memname[freep->type] : "???"; #if BYTE_ORDER == BIG_ENDIAN freep->type = WEIRD_ADDR >> 16; #endif #if BYTE_ORDER == LITTLE_ENDIAN freep->type = (short)WEIRD_ADDR; #endif if (((long)(&freep->next)) & 0x2) freep->next = (caddr_t)((WEIRD_ADDR >> 16)|(WEIRD_ADDR << 16)); else freep->next = (caddr_t)WEIRD_ADDR; end = (long *)&va[copysize]; for (lp = (long *)va; lp < end; lp++) { if (*lp == WEIRD_ADDR) continue; printf("%s %d of object %p size %ld %s %s (0x%lx != 0x%x)\n", "Data modified on freelist: word", lp - (long *)va, va, size, "previous type", savedtype, *lp, WEIRD_ADDR); break; } freep->spare0 = 0; #endif /* DIAGNOSTIC */ #ifdef KMEMSTATS kup = btokup(va); if (kup->ku_indx != indx) panic("malloc: wrong bucket"); if (kup->ku_freecnt == 0) panic("malloc: lost data"); kup->ku_freecnt--; kbp->kb_totalfree--; ksp->ks_memuse += 1 << indx; out: kbp->kb_calls++; ksp->ks_inuse++; ksp->ks_calls++; if (ksp->ks_memuse > ksp->ks_maxused) ksp->ks_maxused = ksp->ks_memuse; #else out: #endif splx(s); return ((void *) va); } /* * Free a block of memory allocated by malloc. */ void free(addr, type) void *addr; int type; { register struct kmembuckets *kbp; register struct kmemusage *kup; register struct freelist *freep; long size; int s; #ifdef DIAGNOSTIC struct freelist *fp; long *end, *lp, alloc, copysize; #endif #ifdef KMEMSTATS register struct kmemstats *ksp = &kmemstats[type]; #endif #ifdef DIAGNOSTIC if ((char *)addr < kmembase || (char *)addr >= kmemlimit) { panic("free: address 0x%x out of range", addr); } if ((u_long)type > M_LAST) { panic("free: type %d out of range", type); } #endif kup = btokup(addr); size = 1 << kup->ku_indx; kbp = &bucket[kup->ku_indx]; s = splhigh(); #ifdef DIAGNOSTIC /* * Check for returns of data that do not point to the * beginning of the allocation. */ if (size > PAGE_SIZE) alloc = addrmask[BUCKETINDX(PAGE_SIZE)]; else alloc = addrmask[kup->ku_indx]; if (((u_long)addr & alloc) != 0) panic("free: unaligned addr 0x%x, size %d, type %s, mask %d", addr, size, memname[type], alloc); #endif /* DIAGNOSTIC */ if (size > MAXALLOCSAVE) { kmem_free(kmem_map, (vm_offset_t)addr, ctob(kup->ku_pagecnt)); #ifdef KMEMSTATS size = kup->ku_pagecnt << PAGE_SHIFT; ksp->ks_memuse -= size; kup->ku_indx = 0; kup->ku_pagecnt = 0; if (ksp->ks_memuse + size >= ksp->ks_limit && ksp->ks_memuse < ksp->ks_limit) wakeup((caddr_t)ksp); ksp->ks_inuse--; kbp->kb_total -= 1; #endif splx(s); return; } freep = (struct freelist *)addr; #ifdef DIAGNOSTIC /* * Check for multiple frees. Use a quick check to see if * it looks free before laboriously searching the freelist. */ if (freep->spare0 == WEIRD_ADDR) { fp = (struct freelist *)kbp->kb_next; while (fp) { if (fp->spare0 != WEIRD_ADDR) { printf("trashed free item %p\n", fp); panic("free: free item modified"); } else if (addr == (caddr_t)fp) { printf("multiple freed item %p\n", addr); panic("free: multiple free"); } fp = (struct freelist *)fp->next; } } /* * Copy in known text to detect modification after freeing * and to make it look free. Also, save the type being freed * so we can list likely culprit if modification is detected * when the object is reallocated. */ copysize = size < MAX_COPY ? size : MAX_COPY; end = (long *)&((caddr_t)addr)[copysize]; for (lp = (long *)addr; lp < end; lp++) *lp = WEIRD_ADDR; freep->type = type; #endif /* DIAGNOSTIC */ #ifdef KMEMSTATS kup->ku_freecnt++; if (kup->ku_freecnt >= kbp->kb_elmpercl) if (kup->ku_freecnt > kbp->kb_elmpercl) panic("free: multiple frees"); else if (kbp->kb_totalfree > kbp->kb_highwat) kbp->kb_couldfree++; kbp->kb_totalfree++; ksp->ks_memuse -= size; if (ksp->ks_memuse + size >= ksp->ks_limit && ksp->ks_memuse < ksp->ks_limit) wakeup((caddr_t)ksp); ksp->ks_inuse--; #endif #ifdef OLD_MALLOC_MEMORY_POLICY if (kbp->kb_next == NULL) kbp->kb_next = addr; else ((struct freelist *)kbp->kb_last)->next = addr; freep->next = NULL; kbp->kb_last = addr; #else /* * Return memory to the head of the queue for quick reuse. This * can improve performance by improving the probability of the * item being in the cache when it is reused. */ if (kbp->kb_next == NULL) { kbp->kb_next = addr; kbp->kb_last = addr; freep->next = NULL; } else { freep->next = kbp->kb_next; kbp->kb_next = addr; } #endif splx(s); } /* * Initialize the kernel memory allocator */ /* ARGSUSED*/ static void kmeminit(dummy) void *dummy; { register long indx; int npg; #if ((MAXALLOCSAVE & (MAXALLOCSAVE - 1)) != 0) #error "kmeminit: MAXALLOCSAVE not power of 2" #endif #if (MAXALLOCSAVE > MINALLOCSIZE * 32768) #error "kmeminit: MAXALLOCSAVE too big" #endif #if (MAXALLOCSAVE < PAGE_SIZE) #error "kmeminit: MAXALLOCSAVE too small" #endif npg = (nmbufs * MSIZE + nmbclusters * MCLBYTES + VM_KMEM_SIZE) / PAGE_SIZE; kmemusage = (struct kmemusage *) kmem_alloc(kernel_map, (vm_size_t)(npg * sizeof(struct kmemusage))); kmem_map = kmem_suballoc(kernel_map, (vm_offset_t *)&kmembase, (vm_offset_t *)&kmemlimit, (vm_size_t)(npg * PAGE_SIZE), FALSE); kmem_map->system_map = 1; #ifdef KMEMSTATS for (indx = 0; indx < MINBUCKET + 16; indx++) { if (1 << indx >= PAGE_SIZE) bucket[indx].kb_elmpercl = 1; else bucket[indx].kb_elmpercl = PAGE_SIZE / (1 << indx); bucket[indx].kb_highwat = 5 * bucket[indx].kb_elmpercl; } /* * Limit maximum memory for each type to 60% of malloc area size or * 60% of physical memory, whichever is smaller. */ for (indx = 0; indx < M_LAST; indx++) { kmemstats[indx].ks_limit = min(cnt.v_page_count * PAGE_SIZE, (npg * PAGE_SIZE - nmbclusters * MCLBYTES - nmbufs * MSIZE)) * 6 / 10; } #endif }