//===--- ExprCXX.cpp - (C++) Expression AST Node Implementation -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the subclesses of Expr class declared in ExprCXX.h // //===----------------------------------------------------------------------===// #include "clang/Basic/IdentifierTable.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/TypeLoc.h" using namespace clang; //===----------------------------------------------------------------------===// // Child Iterators for iterating over subexpressions/substatements //===----------------------------------------------------------------------===// // CXXTypeidExpr - has child iterators if the operand is an expression Stmt::child_iterator CXXTypeidExpr::child_begin() { return isTypeOperand() ? child_iterator() : &Operand.Ex; } Stmt::child_iterator CXXTypeidExpr::child_end() { return isTypeOperand() ? child_iterator() : &Operand.Ex+1; } // CXXBoolLiteralExpr Stmt::child_iterator CXXBoolLiteralExpr::child_begin() { return child_iterator(); } Stmt::child_iterator CXXBoolLiteralExpr::child_end() { return child_iterator(); } // CXXNullPtrLiteralExpr Stmt::child_iterator CXXNullPtrLiteralExpr::child_begin() { return child_iterator(); } Stmt::child_iterator CXXNullPtrLiteralExpr::child_end() { return child_iterator(); } // CXXThisExpr Stmt::child_iterator CXXThisExpr::child_begin() { return child_iterator(); } Stmt::child_iterator CXXThisExpr::child_end() { return child_iterator(); } // CXXThrowExpr Stmt::child_iterator CXXThrowExpr::child_begin() { return &Op; } Stmt::child_iterator CXXThrowExpr::child_end() { // If Op is 0, we are processing throw; which has no children. return Op ? &Op+1 : &Op; } // CXXDefaultArgExpr Stmt::child_iterator CXXDefaultArgExpr::child_begin() { return child_iterator(); } Stmt::child_iterator CXXDefaultArgExpr::child_end() { return child_iterator(); } // CXXZeroInitValueExpr Stmt::child_iterator CXXZeroInitValueExpr::child_begin() { return child_iterator(); } Stmt::child_iterator CXXZeroInitValueExpr::child_end() { return child_iterator(); } // CXXNewExpr CXXNewExpr::CXXNewExpr(ASTContext &C, bool globalNew, FunctionDecl *operatorNew, Expr **placementArgs, unsigned numPlaceArgs, bool parenTypeId, Expr *arraySize, CXXConstructorDecl *constructor, bool initializer, Expr **constructorArgs, unsigned numConsArgs, FunctionDecl *operatorDelete, QualType ty, SourceLocation startLoc, SourceLocation endLoc) : Expr(CXXNewExprClass, ty, ty->isDependentType(), ty->isDependentType()), GlobalNew(globalNew), ParenTypeId(parenTypeId), Initializer(initializer), Array(arraySize), NumPlacementArgs(numPlaceArgs), NumConstructorArgs(numConsArgs), OperatorNew(operatorNew), OperatorDelete(operatorDelete), Constructor(constructor), StartLoc(startLoc), EndLoc(endLoc) { unsigned TotalSize = Array + NumPlacementArgs + NumConstructorArgs; SubExprs = new (C) Stmt*[TotalSize]; unsigned i = 0; if (Array) SubExprs[i++] = arraySize; for (unsigned j = 0; j < NumPlacementArgs; ++j) SubExprs[i++] = placementArgs[j]; for (unsigned j = 0; j < NumConstructorArgs; ++j) SubExprs[i++] = constructorArgs[j]; assert(i == TotalSize); } void CXXNewExpr::DoDestroy(ASTContext &C) { DestroyChildren(C); if (SubExprs) C.Deallocate(SubExprs); this->~CXXNewExpr(); C.Deallocate((void*)this); } Stmt::child_iterator CXXNewExpr::child_begin() { return &SubExprs[0]; } Stmt::child_iterator CXXNewExpr::child_end() { return &SubExprs[0] + Array + getNumPlacementArgs() + getNumConstructorArgs(); } // CXXDeleteExpr Stmt::child_iterator CXXDeleteExpr::child_begin() { return &Argument; } Stmt::child_iterator CXXDeleteExpr::child_end() { return &Argument+1; } // CXXPseudoDestructorExpr Stmt::child_iterator CXXPseudoDestructorExpr::child_begin() { return &Base; } Stmt::child_iterator CXXPseudoDestructorExpr::child_end() { return &Base + 1; } PseudoDestructorTypeStorage::PseudoDestructorTypeStorage(TypeSourceInfo *Info) : Type(Info) { Location = Info->getTypeLoc().getSourceRange().getBegin(); } QualType CXXPseudoDestructorExpr::getDestroyedType() const { if (TypeSourceInfo *TInfo = DestroyedType.getTypeSourceInfo()) return TInfo->getType(); return QualType(); } SourceRange CXXPseudoDestructorExpr::getSourceRange() const { SourceLocation End = DestroyedType.getLocation(); if (TypeSourceInfo *TInfo = DestroyedType.getTypeSourceInfo()) End = TInfo->getTypeLoc().getSourceRange().getEnd(); return SourceRange(Base->getLocStart(), End); } // UnresolvedLookupExpr UnresolvedLookupExpr * UnresolvedLookupExpr::Create(ASTContext &C, bool Dependent, CXXRecordDecl *NamingClass, NestedNameSpecifier *Qualifier, SourceRange QualifierRange, DeclarationName Name, SourceLocation NameLoc, bool ADL, const TemplateArgumentListInfo &Args) { void *Mem = C.Allocate(sizeof(UnresolvedLookupExpr) + ExplicitTemplateArgumentList::sizeFor(Args)); UnresolvedLookupExpr *ULE = new (Mem) UnresolvedLookupExpr(Dependent ? C.DependentTy : C.OverloadTy, Dependent, NamingClass, Qualifier, QualifierRange, Name, NameLoc, ADL, /*Overload*/ true, /*ExplicitTemplateArgs*/ true); reinterpret_cast(ULE+1)->initializeFrom(Args); return ULE; } bool OverloadExpr::ComputeDependence(UnresolvedSetIterator Begin, UnresolvedSetIterator End, const TemplateArgumentListInfo *Args) { for (UnresolvedSetImpl::const_iterator I = Begin; I != End; ++I) if ((*I)->getDeclContext()->isDependentContext()) return true; if (Args && TemplateSpecializationType::anyDependentTemplateArguments(*Args)) return true; return false; } Stmt::child_iterator UnresolvedLookupExpr::child_begin() { return child_iterator(); } Stmt::child_iterator UnresolvedLookupExpr::child_end() { return child_iterator(); } // UnaryTypeTraitExpr Stmt::child_iterator UnaryTypeTraitExpr::child_begin() { return child_iterator(); } Stmt::child_iterator UnaryTypeTraitExpr::child_end() { return child_iterator(); } // DependentScopeDeclRefExpr DependentScopeDeclRefExpr * DependentScopeDeclRefExpr::Create(ASTContext &C, NestedNameSpecifier *Qualifier, SourceRange QualifierRange, DeclarationName Name, SourceLocation NameLoc, const TemplateArgumentListInfo *Args) { std::size_t size = sizeof(DependentScopeDeclRefExpr); if (Args) size += ExplicitTemplateArgumentList::sizeFor(*Args); void *Mem = C.Allocate(size); DependentScopeDeclRefExpr *DRE = new (Mem) DependentScopeDeclRefExpr(C.DependentTy, Qualifier, QualifierRange, Name, NameLoc, Args != 0); if (Args) reinterpret_cast(DRE+1) ->initializeFrom(*Args); return DRE; } StmtIterator DependentScopeDeclRefExpr::child_begin() { return child_iterator(); } StmtIterator DependentScopeDeclRefExpr::child_end() { return child_iterator(); } bool UnaryTypeTraitExpr::EvaluateTrait(ASTContext& C) const { switch(UTT) { default: assert(false && "Unknown type trait or not implemented"); case UTT_IsPOD: return QueriedType->isPODType(); case UTT_IsLiteral: return QueriedType->isLiteralType(); case UTT_IsClass: // Fallthrough case UTT_IsUnion: if (const RecordType *Record = QueriedType->getAs()) { bool Union = Record->getDecl()->isUnion(); return UTT == UTT_IsUnion ? Union : !Union; } return false; case UTT_IsEnum: return QueriedType->isEnumeralType(); case UTT_IsPolymorphic: if (const RecordType *Record = QueriedType->getAs()) { // Type traits are only parsed in C++, so we've got CXXRecords. return cast(Record->getDecl())->isPolymorphic(); } return false; case UTT_IsAbstract: if (const RecordType *RT = QueriedType->getAs()) return cast(RT->getDecl())->isAbstract(); return false; case UTT_IsEmpty: if (const RecordType *Record = QueriedType->getAs()) { return !Record->getDecl()->isUnion() && cast(Record->getDecl())->isEmpty(); } return false; case UTT_HasTrivialConstructor: // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: // If __is_pod (type) is true then the trait is true, else if type is // a cv class or union type (or array thereof) with a trivial default // constructor ([class.ctor]) then the trait is true, else it is false. if (QueriedType->isPODType()) return true; if (const RecordType *RT = C.getBaseElementType(QueriedType)->getAs()) return cast(RT->getDecl())->hasTrivialConstructor(); return false; case UTT_HasTrivialCopy: // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: // If __is_pod (type) is true or type is a reference type then // the trait is true, else if type is a cv class or union type // with a trivial copy constructor ([class.copy]) then the trait // is true, else it is false. if (QueriedType->isPODType() || QueriedType->isReferenceType()) return true; if (const RecordType *RT = QueriedType->getAs()) return cast(RT->getDecl())->hasTrivialCopyConstructor(); return false; case UTT_HasTrivialAssign: // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: // If type is const qualified or is a reference type then the // trait is false. Otherwise if __is_pod (type) is true then the // trait is true, else if type is a cv class or union type with // a trivial copy assignment ([class.copy]) then the trait is // true, else it is false. // Note: the const and reference restrictions are interesting, // given that const and reference members don't prevent a class // from having a trivial copy assignment operator (but do cause // errors if the copy assignment operator is actually used, q.v. // [class.copy]p12). if (C.getBaseElementType(QueriedType).isConstQualified()) return false; if (QueriedType->isPODType()) return true; if (const RecordType *RT = QueriedType->getAs()) return cast(RT->getDecl())->hasTrivialCopyAssignment(); return false; case UTT_HasTrivialDestructor: // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: // If __is_pod (type) is true or type is a reference type // then the trait is true, else if type is a cv class or union // type (or array thereof) with a trivial destructor // ([class.dtor]) then the trait is true, else it is // false. if (QueriedType->isPODType() || QueriedType->isReferenceType()) return true; if (const RecordType *RT = C.getBaseElementType(QueriedType)->getAs()) return cast(RT->getDecl())->hasTrivialDestructor(); return false; } } SourceRange CXXConstructExpr::getSourceRange() const { // FIXME: Should we know where the parentheses are, if there are any? for (std::reverse_iterator I(&Args[NumArgs]), E(&Args[0]); I!=E;++I) { // Ignore CXXDefaultExprs when computing the range, as they don't // have a range. if (!isa(*I)) return SourceRange(Loc, (*I)->getLocEnd()); } return SourceRange(Loc); } SourceRange CXXOperatorCallExpr::getSourceRange() const { OverloadedOperatorKind Kind = getOperator(); if (Kind == OO_PlusPlus || Kind == OO_MinusMinus) { if (getNumArgs() == 1) // Prefix operator return SourceRange(getOperatorLoc(), getArg(0)->getSourceRange().getEnd()); else // Postfix operator return SourceRange(getArg(0)->getSourceRange().getEnd(), getOperatorLoc()); } else if (Kind == OO_Call) { return SourceRange(getArg(0)->getSourceRange().getBegin(), getRParenLoc()); } else if (Kind == OO_Subscript) { return SourceRange(getArg(0)->getSourceRange().getBegin(), getRParenLoc()); } else if (getNumArgs() == 1) { return SourceRange(getOperatorLoc(), getArg(0)->getSourceRange().getEnd()); } else if (getNumArgs() == 2) { return SourceRange(getArg(0)->getSourceRange().getBegin(), getArg(1)->getSourceRange().getEnd()); } else { return SourceRange(); } } Expr *CXXMemberCallExpr::getImplicitObjectArgument() { if (MemberExpr *MemExpr = dyn_cast(getCallee()->IgnoreParens())) return MemExpr->getBase(); // FIXME: Will eventually need to cope with member pointers. return 0; } SourceRange CXXMemberCallExpr::getSourceRange() const { SourceLocation LocStart = getCallee()->getLocStart(); if (LocStart.isInvalid() && getNumArgs() > 0) LocStart = getArg(0)->getLocStart(); return SourceRange(LocStart, getRParenLoc()); } //===----------------------------------------------------------------------===// // Named casts //===----------------------------------------------------------------------===// /// getCastName - Get the name of the C++ cast being used, e.g., /// "static_cast", "dynamic_cast", "reinterpret_cast", or /// "const_cast". The returned pointer must not be freed. const char *CXXNamedCastExpr::getCastName() const { switch (getStmtClass()) { case CXXStaticCastExprClass: return "static_cast"; case CXXDynamicCastExprClass: return "dynamic_cast"; case CXXReinterpretCastExprClass: return "reinterpret_cast"; case CXXConstCastExprClass: return "const_cast"; default: return ""; } } CXXDefaultArgExpr * CXXDefaultArgExpr::Create(ASTContext &C, SourceLocation Loc, ParmVarDecl *Param, Expr *SubExpr) { void *Mem = C.Allocate(sizeof(CXXDefaultArgExpr) + sizeof(Stmt *)); return new (Mem) CXXDefaultArgExpr(CXXDefaultArgExprClass, Loc, Param, SubExpr); } void CXXDefaultArgExpr::DoDestroy(ASTContext &C) { if (Param.getInt()) getExpr()->Destroy(C); this->~CXXDefaultArgExpr(); C.Deallocate(this); } CXXTemporary *CXXTemporary::Create(ASTContext &C, const CXXDestructorDecl *Destructor) { return new (C) CXXTemporary(Destructor); } void CXXTemporary::Destroy(ASTContext &Ctx) { this->~CXXTemporary(); Ctx.Deallocate(this); } CXXBindTemporaryExpr *CXXBindTemporaryExpr::Create(ASTContext &C, CXXTemporary *Temp, Expr* SubExpr) { assert(SubExpr->getType()->isRecordType() && "Expression bound to a temporary must have record type!"); return new (C) CXXBindTemporaryExpr(Temp, SubExpr); } void CXXBindTemporaryExpr::DoDestroy(ASTContext &C) { Temp->Destroy(C); this->~CXXBindTemporaryExpr(); C.Deallocate(this); } CXXBindReferenceExpr *CXXBindReferenceExpr::Create(ASTContext &C, Expr *SubExpr, bool ExtendsLifetime, bool RequiresTemporaryCopy) { return new (C) CXXBindReferenceExpr(SubExpr, ExtendsLifetime, RequiresTemporaryCopy); } void CXXBindReferenceExpr::DoDestroy(ASTContext &C) { this->~CXXBindReferenceExpr(); C.Deallocate(this); } CXXTemporaryObjectExpr::CXXTemporaryObjectExpr(ASTContext &C, CXXConstructorDecl *Cons, QualType writtenTy, SourceLocation tyBeginLoc, Expr **Args, unsigned NumArgs, SourceLocation rParenLoc) : CXXConstructExpr(C, CXXTemporaryObjectExprClass, writtenTy, tyBeginLoc, Cons, false, Args, NumArgs), TyBeginLoc(tyBeginLoc), RParenLoc(rParenLoc) { } CXXConstructExpr *CXXConstructExpr::Create(ASTContext &C, QualType T, SourceLocation Loc, CXXConstructorDecl *D, bool Elidable, Expr **Args, unsigned NumArgs, bool ZeroInitialization, bool BaseInitialization) { return new (C) CXXConstructExpr(C, CXXConstructExprClass, T, Loc, D, Elidable, Args, NumArgs, ZeroInitialization, BaseInitialization); } CXXConstructExpr::CXXConstructExpr(ASTContext &C, StmtClass SC, QualType T, SourceLocation Loc, CXXConstructorDecl *D, bool elidable, Expr **args, unsigned numargs, bool ZeroInitialization, bool BaseInitialization) : Expr(SC, T, T->isDependentType(), (T->isDependentType() || CallExpr::hasAnyValueDependentArguments(args, numargs))), Constructor(D), Loc(Loc), Elidable(elidable), ZeroInitialization(ZeroInitialization), BaseInitialization(BaseInitialization), Args(0), NumArgs(numargs) { if (NumArgs) { Args = new (C) Stmt*[NumArgs]; for (unsigned i = 0; i != NumArgs; ++i) { assert(args[i] && "NULL argument in CXXConstructExpr"); Args[i] = args[i]; } } } CXXConstructExpr::CXXConstructExpr(EmptyShell Empty, ASTContext &C, unsigned numargs) : Expr(CXXConstructExprClass, Empty), Args(0), NumArgs(numargs) { if (NumArgs) Args = new (C) Stmt*[NumArgs]; } void CXXConstructExpr::DoDestroy(ASTContext &C) { DestroyChildren(C); if (Args) C.Deallocate(Args); this->~CXXConstructExpr(); C.Deallocate(this); } CXXExprWithTemporaries::CXXExprWithTemporaries(Expr *subexpr, CXXTemporary **temps, unsigned numtemps) : Expr(CXXExprWithTemporariesClass, subexpr->getType(), subexpr->isTypeDependent(), subexpr->isValueDependent()), SubExpr(subexpr), Temps(0), NumTemps(numtemps) { if (NumTemps > 0) { Temps = new CXXTemporary*[NumTemps]; for (unsigned i = 0; i < NumTemps; ++i) Temps[i] = temps[i]; } } CXXExprWithTemporaries *CXXExprWithTemporaries::Create(ASTContext &C, Expr *SubExpr, CXXTemporary **Temps, unsigned NumTemps) { return new (C) CXXExprWithTemporaries(SubExpr, Temps, NumTemps); } void CXXExprWithTemporaries::DoDestroy(ASTContext &C) { DestroyChildren(C); this->~CXXExprWithTemporaries(); C.Deallocate(this); } CXXExprWithTemporaries::~CXXExprWithTemporaries() { delete[] Temps; } // CXXBindTemporaryExpr Stmt::child_iterator CXXBindTemporaryExpr::child_begin() { return &SubExpr; } Stmt::child_iterator CXXBindTemporaryExpr::child_end() { return &SubExpr + 1; } // CXXBindReferenceExpr Stmt::child_iterator CXXBindReferenceExpr::child_begin() { return &SubExpr; } Stmt::child_iterator CXXBindReferenceExpr::child_end() { return &SubExpr + 1; } // CXXConstructExpr Stmt::child_iterator CXXConstructExpr::child_begin() { return &Args[0]; } Stmt::child_iterator CXXConstructExpr::child_end() { return &Args[0]+NumArgs; } // CXXExprWithTemporaries Stmt::child_iterator CXXExprWithTemporaries::child_begin() { return &SubExpr; } Stmt::child_iterator CXXExprWithTemporaries::child_end() { return &SubExpr + 1; } CXXUnresolvedConstructExpr::CXXUnresolvedConstructExpr( SourceLocation TyBeginLoc, QualType T, SourceLocation LParenLoc, Expr **Args, unsigned NumArgs, SourceLocation RParenLoc) : Expr(CXXUnresolvedConstructExprClass, T.getNonReferenceType(), T->isDependentType(), true), TyBeginLoc(TyBeginLoc), Type(T), LParenLoc(LParenLoc), RParenLoc(RParenLoc), NumArgs(NumArgs) { Stmt **StoredArgs = reinterpret_cast(this + 1); memcpy(StoredArgs, Args, sizeof(Expr *) * NumArgs); } CXXUnresolvedConstructExpr * CXXUnresolvedConstructExpr::Create(ASTContext &C, SourceLocation TyBegin, QualType T, SourceLocation LParenLoc, Expr **Args, unsigned NumArgs, SourceLocation RParenLoc) { void *Mem = C.Allocate(sizeof(CXXUnresolvedConstructExpr) + sizeof(Expr *) * NumArgs); return new (Mem) CXXUnresolvedConstructExpr(TyBegin, T, LParenLoc, Args, NumArgs, RParenLoc); } Stmt::child_iterator CXXUnresolvedConstructExpr::child_begin() { return child_iterator(reinterpret_cast(this + 1)); } Stmt::child_iterator CXXUnresolvedConstructExpr::child_end() { return child_iterator(reinterpret_cast(this + 1) + NumArgs); } CXXDependentScopeMemberExpr::CXXDependentScopeMemberExpr(ASTContext &C, Expr *Base, QualType BaseType, bool IsArrow, SourceLocation OperatorLoc, NestedNameSpecifier *Qualifier, SourceRange QualifierRange, NamedDecl *FirstQualifierFoundInScope, DeclarationName Member, SourceLocation MemberLoc, const TemplateArgumentListInfo *TemplateArgs) : Expr(CXXDependentScopeMemberExprClass, C.DependentTy, true, true), Base(Base), BaseType(BaseType), IsArrow(IsArrow), HasExplicitTemplateArgs(TemplateArgs != 0), OperatorLoc(OperatorLoc), Qualifier(Qualifier), QualifierRange(QualifierRange), FirstQualifierFoundInScope(FirstQualifierFoundInScope), Member(Member), MemberLoc(MemberLoc) { if (TemplateArgs) getExplicitTemplateArgumentList()->initializeFrom(*TemplateArgs); } CXXDependentScopeMemberExpr * CXXDependentScopeMemberExpr::Create(ASTContext &C, Expr *Base, QualType BaseType, bool IsArrow, SourceLocation OperatorLoc, NestedNameSpecifier *Qualifier, SourceRange QualifierRange, NamedDecl *FirstQualifierFoundInScope, DeclarationName Member, SourceLocation MemberLoc, const TemplateArgumentListInfo *TemplateArgs) { if (!TemplateArgs) return new (C) CXXDependentScopeMemberExpr(C, Base, BaseType, IsArrow, OperatorLoc, Qualifier, QualifierRange, FirstQualifierFoundInScope, Member, MemberLoc); std::size_t size = sizeof(CXXDependentScopeMemberExpr); if (TemplateArgs) size += ExplicitTemplateArgumentList::sizeFor(*TemplateArgs); void *Mem = C.Allocate(size, llvm::alignof()); return new (Mem) CXXDependentScopeMemberExpr(C, Base, BaseType, IsArrow, OperatorLoc, Qualifier, QualifierRange, FirstQualifierFoundInScope, Member, MemberLoc, TemplateArgs); } Stmt::child_iterator CXXDependentScopeMemberExpr::child_begin() { return child_iterator(&Base); } Stmt::child_iterator CXXDependentScopeMemberExpr::child_end() { if (isImplicitAccess()) return child_iterator(&Base); return child_iterator(&Base + 1); } UnresolvedMemberExpr::UnresolvedMemberExpr(QualType T, bool Dependent, bool HasUnresolvedUsing, Expr *Base, QualType BaseType, bool IsArrow, SourceLocation OperatorLoc, NestedNameSpecifier *Qualifier, SourceRange QualifierRange, DeclarationName MemberName, SourceLocation MemberLoc, const TemplateArgumentListInfo *TemplateArgs) : OverloadExpr(UnresolvedMemberExprClass, T, Dependent, Qualifier, QualifierRange, MemberName, MemberLoc, TemplateArgs != 0), IsArrow(IsArrow), HasUnresolvedUsing(HasUnresolvedUsing), Base(Base), BaseType(BaseType), OperatorLoc(OperatorLoc) { if (TemplateArgs) getExplicitTemplateArgs().initializeFrom(*TemplateArgs); } UnresolvedMemberExpr * UnresolvedMemberExpr::Create(ASTContext &C, bool Dependent, bool HasUnresolvedUsing, Expr *Base, QualType BaseType, bool IsArrow, SourceLocation OperatorLoc, NestedNameSpecifier *Qualifier, SourceRange QualifierRange, DeclarationName Member, SourceLocation MemberLoc, const TemplateArgumentListInfo *TemplateArgs) { std::size_t size = sizeof(UnresolvedMemberExpr); if (TemplateArgs) size += ExplicitTemplateArgumentList::sizeFor(*TemplateArgs); void *Mem = C.Allocate(size, llvm::alignof()); return new (Mem) UnresolvedMemberExpr( Dependent ? C.DependentTy : C.OverloadTy, Dependent, HasUnresolvedUsing, Base, BaseType, IsArrow, OperatorLoc, Qualifier, QualifierRange, Member, MemberLoc, TemplateArgs); } CXXRecordDecl *UnresolvedMemberExpr::getNamingClass() const { // Unlike for UnresolvedLookupExpr, it is very easy to re-derive this. // If there was a nested name specifier, it names the naming class. // It can't be dependent: after all, we were actually able to do the // lookup. const RecordType *RT; if (getQualifier()) { Type *T = getQualifier()->getAsType(); assert(T && "qualifier in member expression does not name type"); RT = T->getAs(); assert(RT && "qualifier in member expression does not name record"); // Otherwise the naming class must have been the base class. } else { QualType BaseType = getBaseType().getNonReferenceType(); if (isArrow()) { const PointerType *PT = BaseType->getAs(); assert(PT && "base of arrow member access is not pointer"); BaseType = PT->getPointeeType(); } RT = BaseType->getAs(); assert(RT && "base of member expression does not name record"); } return cast(RT->getDecl()); } Stmt::child_iterator UnresolvedMemberExpr::child_begin() { return child_iterator(&Base); } Stmt::child_iterator UnresolvedMemberExpr::child_end() { if (isImplicitAccess()) return child_iterator(&Base); return child_iterator(&Base + 1); }