/*- * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)udp_usrreq.c 8.6 (Berkeley) 5/23/95 * $FreeBSD$ */ #include "opt_ipfw.h" #include "opt_ipsec.h" #include "opt_inet6.h" #include "opt_mac.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #include #endif #include #include #include #include #ifdef INET6 #include #endif #include #include #ifdef FAST_IPSEC #include #endif /*FAST_IPSEC*/ #ifdef IPSEC #include #endif /*IPSEC*/ #include /* * UDP protocol implementation. * Per RFC 768, August, 1980. */ #ifndef COMPAT_42 static int udpcksum = 1; #else static int udpcksum = 0; /* XXX */ #endif SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_RW, &udpcksum, 0, ""); int log_in_vain = 0; SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_RW, &log_in_vain, 0, "Log all incoming UDP packets"); static int blackhole = 0; SYSCTL_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_RW, &blackhole, 0, "Do not send port unreachables for refused connects"); static int strict_mcast_mship = 0; SYSCTL_INT(_net_inet_udp, OID_AUTO, strict_mcast_mship, CTLFLAG_RW, &strict_mcast_mship, 0, "Only send multicast to member sockets"); struct inpcbhead udb; /* from udp_var.h */ #define udb6 udb /* for KAME src sync over BSD*'s */ struct inpcbinfo udbinfo; #ifndef UDBHASHSIZE #define UDBHASHSIZE 16 #endif struct udpstat udpstat; /* from udp_var.h */ SYSCTL_STRUCT(_net_inet_udp, UDPCTL_STATS, stats, CTLFLAG_RW, &udpstat, udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)"); static void udp_append(struct inpcb *last, struct ip *ip, struct mbuf *n, int off, struct sockaddr_in *udp_in); static void udp_detach(struct socket *so); static int udp_output(struct inpcb *, struct mbuf *, struct sockaddr *, struct mbuf *, struct thread *); void udp_init() { INP_INFO_LOCK_INIT(&udbinfo, "udp"); LIST_INIT(&udb); udbinfo.listhead = &udb; udbinfo.hashbase = hashinit(UDBHASHSIZE, M_PCB, &udbinfo.hashmask); udbinfo.porthashbase = hashinit(UDBHASHSIZE, M_PCB, &udbinfo.porthashmask); udbinfo.ipi_zone = uma_zcreate("udpcb", sizeof(struct inpcb), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); uma_zone_set_max(udbinfo.ipi_zone, maxsockets); } void udp_input(m, off) register struct mbuf *m; int off; { int iphlen = off; register struct ip *ip; register struct udphdr *uh; register struct inpcb *inp; int len; struct ip save_ip; struct sockaddr_in udp_in; #ifdef IPFIREWALL_FORWARD struct m_tag *fwd_tag; #endif udpstat.udps_ipackets++; /* * Strip IP options, if any; should skip this, * make available to user, and use on returned packets, * but we don't yet have a way to check the checksum * with options still present. */ if (iphlen > sizeof (struct ip)) { ip_stripoptions(m, (struct mbuf *)0); iphlen = sizeof(struct ip); } /* * Get IP and UDP header together in first mbuf. */ ip = mtod(m, struct ip *); if (m->m_len < iphlen + sizeof(struct udphdr)) { if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == 0) { udpstat.udps_hdrops++; return; } ip = mtod(m, struct ip *); } uh = (struct udphdr *)((caddr_t)ip + iphlen); /* destination port of 0 is illegal, based on RFC768. */ if (uh->uh_dport == 0) goto badunlocked; /* * Construct sockaddr format source address. * Stuff source address and datagram in user buffer. */ bzero(&udp_in, sizeof(udp_in)); udp_in.sin_len = sizeof(udp_in); udp_in.sin_family = AF_INET; udp_in.sin_port = uh->uh_sport; udp_in.sin_addr = ip->ip_src; /* * Make mbuf data length reflect UDP length. * If not enough data to reflect UDP length, drop. */ len = ntohs((u_short)uh->uh_ulen); if (ip->ip_len != len) { if (len > ip->ip_len || len < sizeof(struct udphdr)) { udpstat.udps_badlen++; goto badunlocked; } m_adj(m, len - ip->ip_len); /* ip->ip_len = len; */ } /* * Save a copy of the IP header in case we want restore it * for sending an ICMP error message in response. */ if (!blackhole) save_ip = *ip; /* * Checksum extended UDP header and data. */ if (uh->uh_sum) { if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) uh->uh_sum = m->m_pkthdr.csum_data; else uh->uh_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, htonl((u_short)len + m->m_pkthdr.csum_data + IPPROTO_UDP)); uh->uh_sum ^= 0xffff; } else { char b[9]; bcopy(((struct ipovly *)ip)->ih_x1, b, 9); bzero(((struct ipovly *)ip)->ih_x1, 9); ((struct ipovly *)ip)->ih_len = uh->uh_ulen; uh->uh_sum = in_cksum(m, len + sizeof (struct ip)); bcopy(b, ((struct ipovly *)ip)->ih_x1, 9); } if (uh->uh_sum) { udpstat.udps_badsum++; m_freem(m); return; } } else udpstat.udps_nosum++; #ifdef IPFIREWALL_FORWARD /* Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain. */ fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL); if (fwd_tag != NULL) { struct sockaddr_in *next_hop; /* Do the hack. */ next_hop = (struct sockaddr_in *)(fwd_tag + 1); ip->ip_dst = next_hop->sin_addr; uh->uh_dport = ntohs(next_hop->sin_port); /* Remove the tag from the packet. We don't need it anymore. */ m_tag_delete(m, fwd_tag); } #endif INP_INFO_RLOCK(&udbinfo); if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) || in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) { struct inpcb *last; /* * Deliver a multicast or broadcast datagram to *all* sockets * for which the local and remote addresses and ports match * those of the incoming datagram. This allows more than * one process to receive multi/broadcasts on the same port. * (This really ought to be done for unicast datagrams as * well, but that would cause problems with existing * applications that open both address-specific sockets and * a wildcard socket listening to the same port -- they would * end up receiving duplicates of every unicast datagram. * Those applications open the multiple sockets to overcome an * inadequacy of the UDP socket interface, but for backwards * compatibility we avoid the problem here rather than * fixing the interface. Maybe 4.5BSD will remedy this?) */ /* * Locate pcb(s) for datagram. * (Algorithm copied from raw_intr().) */ last = NULL; LIST_FOREACH(inp, &udb, inp_list) { if (inp->inp_lport != uh->uh_dport) continue; #ifdef INET6 if ((inp->inp_vflag & INP_IPV4) == 0) continue; #endif if (inp->inp_laddr.s_addr != INADDR_ANY) { if (inp->inp_laddr.s_addr != ip->ip_dst.s_addr) continue; } if (inp->inp_faddr.s_addr != INADDR_ANY) { if (inp->inp_faddr.s_addr != ip->ip_src.s_addr || inp->inp_fport != uh->uh_sport) continue; } INP_LOCK(inp); /* * Check multicast packets to make sure they are only * sent to sockets with multicast memberships for the * packet's destination address and arrival interface */ #define MSHIP(_inp, n) ((_inp)->inp_moptions->imo_membership[(n)]) #define NMSHIPS(_inp) ((_inp)->inp_moptions->imo_num_memberships) if (strict_mcast_mship && inp->inp_moptions != NULL) { int mship, foundmship = 0; for (mship = 0; mship < NMSHIPS(inp); mship++) { if (MSHIP(inp, mship)->inm_addr.s_addr == ip->ip_dst.s_addr && MSHIP(inp, mship)->inm_ifp == m->m_pkthdr.rcvif) { foundmship = 1; break; } } if (foundmship == 0) { INP_UNLOCK(inp); continue; } } #undef NMSHIPS #undef MSHIP if (last != NULL) { struct mbuf *n; n = m_copy(m, 0, M_COPYALL); if (n != NULL) udp_append(last, ip, n, iphlen + sizeof(struct udphdr), &udp_in); INP_UNLOCK(last); } last = inp; /* * Don't look for additional matches if this one does * not have either the SO_REUSEPORT or SO_REUSEADDR * socket options set. This heuristic avoids searching * through all pcbs in the common case of a non-shared * port. It * assumes that an application will never * clear these options after setting them. */ if ((last->inp_socket->so_options&(SO_REUSEPORT|SO_REUSEADDR)) == 0) break; } if (last == NULL) { /* * No matching pcb found; discard datagram. * (No need to send an ICMP Port Unreachable * for a broadcast or multicast datgram.) */ udpstat.udps_noportbcast++; goto badheadlocked; } udp_append(last, ip, m, iphlen + sizeof(struct udphdr), &udp_in); INP_UNLOCK(last); INP_INFO_RUNLOCK(&udbinfo); return; } /* * Locate pcb for datagram. */ inp = in_pcblookup_hash(&udbinfo, ip->ip_src, uh->uh_sport, ip->ip_dst, uh->uh_dport, 1, m->m_pkthdr.rcvif); if (inp == NULL) { if (log_in_vain) { char buf[4*sizeof "123"]; strcpy(buf, inet_ntoa(ip->ip_dst)); log(LOG_INFO, "Connection attempt to UDP %s:%d from %s:%d\n", buf, ntohs(uh->uh_dport), inet_ntoa(ip->ip_src), ntohs(uh->uh_sport)); } udpstat.udps_noport++; if (m->m_flags & (M_BCAST | M_MCAST)) { udpstat.udps_noportbcast++; goto badheadlocked; } if (blackhole) goto badheadlocked; if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0) goto badheadlocked; *ip = save_ip; ip->ip_len += iphlen; icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0); INP_INFO_RUNLOCK(&udbinfo); return; } INP_LOCK(inp); /* Check the minimum TTL for socket. */ if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) goto badheadlocked; udp_append(inp, ip, m, iphlen + sizeof(struct udphdr), &udp_in); INP_UNLOCK(inp); INP_INFO_RUNLOCK(&udbinfo); return; badheadlocked: if (inp) INP_UNLOCK(inp); INP_INFO_RUNLOCK(&udbinfo); badunlocked: m_freem(m); return; } /* * Subroutine of udp_input(), which appends the provided mbuf chain to the * passed pcb/socket. The caller must provide a sockaddr_in via udp_in that * contains the source address. If the socket ends up being an IPv6 socket, * udp_append() will convert to a sockaddr_in6 before passing the address * into the socket code. */ static void udp_append(last, ip, n, off, udp_in) struct inpcb *last; struct ip *ip; struct mbuf *n; int off; struct sockaddr_in *udp_in; { struct sockaddr *append_sa; struct socket *so; struct mbuf *opts = 0; #ifdef INET6 struct sockaddr_in6 udp_in6; #endif INP_LOCK_ASSERT(last); #if defined(IPSEC) || defined(FAST_IPSEC) /* check AH/ESP integrity. */ if (ipsec4_in_reject(n, last)) { #ifdef IPSEC ipsecstat.in_polvio++; #endif /*IPSEC*/ m_freem(n); return; } #endif /*IPSEC || FAST_IPSEC*/ #ifdef MAC if (mac_check_inpcb_deliver(last, n) != 0) { m_freem(n); return; } #endif if (last->inp_flags & INP_CONTROLOPTS || last->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) { #ifdef INET6 if (last->inp_vflag & INP_IPV6) { int savedflags; savedflags = last->inp_flags; last->inp_flags &= ~INP_UNMAPPABLEOPTS; ip6_savecontrol(last, n, &opts); last->inp_flags = savedflags; } else #endif ip_savecontrol(last, &opts, ip, n); } #ifdef INET6 if (last->inp_vflag & INP_IPV6) { bzero(&udp_in6, sizeof(udp_in6)); udp_in6.sin6_len = sizeof(udp_in6); udp_in6.sin6_family = AF_INET6; in6_sin_2_v4mapsin6(udp_in, &udp_in6); append_sa = (struct sockaddr *)&udp_in6; } else #endif append_sa = (struct sockaddr *)udp_in; m_adj(n, off); so = last->inp_socket; SOCKBUF_LOCK(&so->so_rcv); if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) { m_freem(n); if (opts) m_freem(opts); udpstat.udps_fullsock++; SOCKBUF_UNLOCK(&so->so_rcv); } else sorwakeup_locked(so); } /* * Notify a udp user of an asynchronous error; * just wake up so that he can collect error status. */ struct inpcb * udp_notify(inp, errno) register struct inpcb *inp; int errno; { inp->inp_socket->so_error = errno; sorwakeup(inp->inp_socket); sowwakeup(inp->inp_socket); return inp; } void udp_ctlinput(cmd, sa, vip) int cmd; struct sockaddr *sa; void *vip; { struct ip *ip = vip; struct udphdr *uh; struct inpcb *(*notify)(struct inpcb *, int) = udp_notify; struct in_addr faddr; struct inpcb *inp; faddr = ((struct sockaddr_in *)sa)->sin_addr; if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY) return; /* * Redirects don't need to be handled up here. */ if (PRC_IS_REDIRECT(cmd)) return; /* * Hostdead is ugly because it goes linearly through all PCBs. * XXX: We never get this from ICMP, otherwise it makes an * excellent DoS attack on machines with many connections. */ if (cmd == PRC_HOSTDEAD) ip = 0; else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) return; if (ip) { uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2)); INP_INFO_RLOCK(&udbinfo); inp = in_pcblookup_hash(&udbinfo, faddr, uh->uh_dport, ip->ip_src, uh->uh_sport, 0, NULL); if (inp != NULL) { INP_LOCK(inp); if (inp->inp_socket != NULL) { (*notify)(inp, inetctlerrmap[cmd]); } INP_UNLOCK(inp); } INP_INFO_RUNLOCK(&udbinfo); } else in_pcbnotifyall(&udbinfo, faddr, inetctlerrmap[cmd], notify); } static int udp_pcblist(SYSCTL_HANDLER_ARGS) { int error, i, n; struct inpcb *inp, **inp_list; inp_gen_t gencnt; struct xinpgen xig; /* * The process of preparing the TCB list is too time-consuming and * resource-intensive to repeat twice on every request. */ if (req->oldptr == 0) { n = udbinfo.ipi_count; req->oldidx = 2 * (sizeof xig) + (n + n/8) * sizeof(struct xinpcb); return 0; } if (req->newptr != 0) return EPERM; /* * OK, now we're committed to doing something. */ INP_INFO_RLOCK(&udbinfo); gencnt = udbinfo.ipi_gencnt; n = udbinfo.ipi_count; INP_INFO_RUNLOCK(&udbinfo); error = sysctl_wire_old_buffer(req, 2 * (sizeof xig) + n * sizeof(struct xinpcb)); if (error != 0) return (error); xig.xig_len = sizeof xig; xig.xig_count = n; xig.xig_gen = gencnt; xig.xig_sogen = so_gencnt; error = SYSCTL_OUT(req, &xig, sizeof xig); if (error) return error; inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK); if (inp_list == 0) return ENOMEM; INP_INFO_RLOCK(&udbinfo); for (inp = LIST_FIRST(udbinfo.listhead), i = 0; inp && i < n; inp = LIST_NEXT(inp, inp_list)) { INP_LOCK(inp); if (inp->inp_gencnt <= gencnt && cr_canseesocket(req->td->td_ucred, inp->inp_socket) == 0) inp_list[i++] = inp; INP_UNLOCK(inp); } INP_INFO_RUNLOCK(&udbinfo); n = i; error = 0; for (i = 0; i < n; i++) { inp = inp_list[i]; if (inp->inp_gencnt <= gencnt) { struct xinpcb xi; bzero(&xi, sizeof(xi)); xi.xi_len = sizeof xi; /* XXX should avoid extra copy */ bcopy(inp, &xi.xi_inp, sizeof *inp); if (inp->inp_socket) sotoxsocket(inp->inp_socket, &xi.xi_socket); xi.xi_inp.inp_gencnt = inp->inp_gencnt; error = SYSCTL_OUT(req, &xi, sizeof xi); } } if (!error) { /* * Give the user an updated idea of our state. * If the generation differs from what we told * her before, she knows that something happened * while we were processing this request, and it * might be necessary to retry. */ INP_INFO_RLOCK(&udbinfo); xig.xig_gen = udbinfo.ipi_gencnt; xig.xig_sogen = so_gencnt; xig.xig_count = udbinfo.ipi_count; INP_INFO_RUNLOCK(&udbinfo); error = SYSCTL_OUT(req, &xig, sizeof xig); } free(inp_list, M_TEMP); return error; } SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0, udp_pcblist, "S,xinpcb", "List of active UDP sockets"); static int udp_getcred(SYSCTL_HANDLER_ARGS) { struct xucred xuc; struct sockaddr_in addrs[2]; struct inpcb *inp; int error; error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL); if (error) return (error); error = SYSCTL_IN(req, addrs, sizeof(addrs)); if (error) return (error); INP_INFO_RLOCK(&udbinfo); inp = in_pcblookup_hash(&udbinfo, addrs[1].sin_addr, addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 1, NULL); if (inp == NULL || inp->inp_socket == NULL) { error = ENOENT; goto out; } error = cr_canseesocket(req->td->td_ucred, inp->inp_socket); if (error) goto out; cru2x(inp->inp_socket->so_cred, &xuc); out: INP_INFO_RUNLOCK(&udbinfo); if (error == 0) error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); return (error); } SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred, CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0, udp_getcred, "S,xucred", "Get the xucred of a UDP connection"); static int udp_output(inp, m, addr, control, td) register struct inpcb *inp; struct mbuf *m; struct sockaddr *addr; struct mbuf *control; struct thread *td; { register struct udpiphdr *ui; register int len = m->m_pkthdr.len; struct in_addr faddr, laddr; struct cmsghdr *cm; struct sockaddr_in *sin, src; int error = 0; int ipflags; u_short fport, lport; int unlock_udbinfo; /* * udp_output() may need to temporarily bind or connect the current * inpcb. As such, we don't know up front what inpcb locks we will * need. Do any work to decide what is needed up front before * acquiring locks. */ if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) { if (control) m_freem(control); m_freem(m); return EMSGSIZE; } src.sin_addr.s_addr = INADDR_ANY; if (control != NULL) { /* * XXX: Currently, we assume all the optional information * is stored in a single mbuf. */ if (control->m_next) { m_freem(control); m_freem(m); return EINVAL; } for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { cm = mtod(control, struct cmsghdr *); if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) { error = EINVAL; break; } if (cm->cmsg_level != IPPROTO_IP) continue; switch (cm->cmsg_type) { case IP_SENDSRCADDR: if (cm->cmsg_len != CMSG_LEN(sizeof(struct in_addr))) { error = EINVAL; break; } bzero(&src, sizeof(src)); src.sin_family = AF_INET; src.sin_len = sizeof(src); src.sin_port = inp->inp_lport; src.sin_addr = *(struct in_addr *)CMSG_DATA(cm); break; default: error = ENOPROTOOPT; break; } if (error) break; } m_freem(control); } if (error) { m_freem(m); return error; } if (src.sin_addr.s_addr != INADDR_ANY || addr != NULL) { INP_INFO_WLOCK(&udbinfo); unlock_udbinfo = 1; } else unlock_udbinfo = 0; INP_LOCK(inp); #ifdef MAC mac_create_mbuf_from_inpcb(inp, m); #endif laddr = inp->inp_laddr; lport = inp->inp_lport; if (src.sin_addr.s_addr != INADDR_ANY) { if (lport == 0) { error = EINVAL; goto release; } error = in_pcbbind_setup(inp, (struct sockaddr *)&src, &laddr.s_addr, &lport, td->td_ucred); if (error) goto release; } if (addr) { sin = (struct sockaddr_in *)addr; if (jailed(td->td_ucred)) prison_remote_ip(td->td_ucred, 0, &sin->sin_addr.s_addr); if (inp->inp_faddr.s_addr != INADDR_ANY) { error = EISCONN; goto release; } error = in_pcbconnect_setup(inp, addr, &laddr.s_addr, &lport, &faddr.s_addr, &fport, NULL, td->td_ucred); if (error) goto release; /* Commit the local port if newly assigned. */ if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { /* * Remember addr if jailed, to prevent rebinding. */ if (jailed(td->td_ucred)) inp->inp_laddr = laddr; inp->inp_lport = lport; if (in_pcbinshash(inp) != 0) { inp->inp_lport = 0; error = EAGAIN; goto release; } inp->inp_flags |= INP_ANONPORT; } } else { faddr = inp->inp_faddr; fport = inp->inp_fport; if (faddr.s_addr == INADDR_ANY) { error = ENOTCONN; goto release; } } /* * Calculate data length and get a mbuf for UDP, IP, and possible * link-layer headers. Immediate slide the data pointer back forward * since we won't use that space at this layer. */ M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_DONTWAIT); if (m == NULL) { error = ENOBUFS; goto release; } m->m_data += max_linkhdr; m->m_len -= max_linkhdr; m->m_pkthdr.len -= max_linkhdr; /* * Fill in mbuf with extended UDP header * and addresses and length put into network format. */ ui = mtod(m, struct udpiphdr *); bzero(ui->ui_x1, sizeof(ui->ui_x1)); /* XXX still needed? */ ui->ui_pr = IPPROTO_UDP; ui->ui_src = laddr; ui->ui_dst = faddr; ui->ui_sport = lport; ui->ui_dport = fport; ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr)); /* * Set the Don't Fragment bit in the IP header. */ if (inp->inp_flags & INP_DONTFRAG) { struct ip *ip; ip = (struct ip *)&ui->ui_i; ip->ip_off |= IP_DF; } ipflags = 0; if (inp->inp_socket->so_options & SO_DONTROUTE) ipflags |= IP_ROUTETOIF; if (inp->inp_socket->so_options & SO_BROADCAST) ipflags |= IP_ALLOWBROADCAST; if (inp->inp_vflag & INP_ONESBCAST) ipflags |= IP_SENDONES; /* * Set up checksum and output datagram. */ if (udpcksum) { if (inp->inp_vflag & INP_ONESBCAST) faddr.s_addr = INADDR_BROADCAST; ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr, htons((u_short)len + sizeof(struct udphdr) + IPPROTO_UDP)); m->m_pkthdr.csum_flags = CSUM_UDP; m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); } else { ui->ui_sum = 0; } ((struct ip *)ui)->ip_len = sizeof (struct udpiphdr) + len; ((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl; /* XXX */ ((struct ip *)ui)->ip_tos = inp->inp_ip_tos; /* XXX */ udpstat.udps_opackets++; if (unlock_udbinfo) INP_INFO_WUNLOCK(&udbinfo); error = ip_output(m, inp->inp_options, NULL, ipflags, inp->inp_moptions, inp); INP_UNLOCK(inp); return (error); release: INP_UNLOCK(inp); if (unlock_udbinfo) INP_INFO_WUNLOCK(&udbinfo); m_freem(m); return (error); } u_long udp_sendspace = 9216; /* really max datagram size */ /* 40 1K datagrams */ SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW, &udp_sendspace, 0, "Maximum outgoing UDP datagram size"); u_long udp_recvspace = 40 * (1024 + #ifdef INET6 sizeof(struct sockaddr_in6) #else sizeof(struct sockaddr_in) #endif ); SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW, &udp_recvspace, 0, "Maximum space for incoming UDP datagrams"); static void udp_abort(struct socket *so) { struct inpcb *inp; INP_INFO_WLOCK(&udbinfo); inp = sotoinpcb(so); if (inp == 0) { INP_INFO_WUNLOCK(&udbinfo); return; /* ??? possible? panic instead? */ } INP_LOCK(inp); soisdisconnected(so); in_pcbdetach(inp); INP_INFO_WUNLOCK(&udbinfo); } static int udp_attach(struct socket *so, int proto, struct thread *td) { struct inpcb *inp; int error; INP_INFO_WLOCK(&udbinfo); inp = sotoinpcb(so); if (inp != 0) { INP_INFO_WUNLOCK(&udbinfo); return EINVAL; } error = soreserve(so, udp_sendspace, udp_recvspace); if (error) { INP_INFO_WUNLOCK(&udbinfo); return error; } error = in_pcballoc(so, &udbinfo, "udpinp"); if (error) { INP_INFO_WUNLOCK(&udbinfo); return error; } inp = (struct inpcb *)so->so_pcb; INP_LOCK(inp); INP_INFO_WUNLOCK(&udbinfo); inp->inp_vflag |= INP_IPV4; inp->inp_ip_ttl = ip_defttl; INP_UNLOCK(inp); return 0; } static int udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td) { struct inpcb *inp; int error; INP_INFO_WLOCK(&udbinfo); inp = sotoinpcb(so); if (inp == 0) { INP_INFO_WUNLOCK(&udbinfo); return EINVAL; } INP_LOCK(inp); error = in_pcbbind(inp, nam, td->td_ucred); INP_UNLOCK(inp); INP_INFO_WUNLOCK(&udbinfo); return error; } static int udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td) { struct inpcb *inp; int error; struct sockaddr_in *sin; INP_INFO_WLOCK(&udbinfo); inp = sotoinpcb(so); if (inp == 0) { INP_INFO_WUNLOCK(&udbinfo); return EINVAL; } INP_LOCK(inp); if (inp->inp_faddr.s_addr != INADDR_ANY) { INP_UNLOCK(inp); INP_INFO_WUNLOCK(&udbinfo); return EISCONN; } sin = (struct sockaddr_in *)nam; if (jailed(td->td_ucred)) prison_remote_ip(td->td_ucred, 0, &sin->sin_addr.s_addr); error = in_pcbconnect(inp, nam, td->td_ucred); if (error == 0) soisconnected(so); INP_UNLOCK(inp); INP_INFO_WUNLOCK(&udbinfo); return error; } static void udp_detach(struct socket *so) { struct inpcb *inp; INP_INFO_WLOCK(&udbinfo); inp = sotoinpcb(so); if (inp == 0) { INP_INFO_WUNLOCK(&udbinfo); } INP_LOCK(inp); in_pcbdetach(inp); INP_INFO_WUNLOCK(&udbinfo); } static int udp_disconnect(struct socket *so) { struct inpcb *inp; INP_INFO_WLOCK(&udbinfo); inp = sotoinpcb(so); if (inp == 0) { INP_INFO_WUNLOCK(&udbinfo); return EINVAL; } INP_LOCK(inp); if (inp->inp_faddr.s_addr == INADDR_ANY) { INP_INFO_WUNLOCK(&udbinfo); INP_UNLOCK(inp); return ENOTCONN; } in_pcbdisconnect(inp); inp->inp_laddr.s_addr = INADDR_ANY; INP_UNLOCK(inp); INP_INFO_WUNLOCK(&udbinfo); so->so_state &= ~SS_ISCONNECTED; /* XXX */ return 0; } static int udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr, struct mbuf *control, struct thread *td) { struct inpcb *inp; inp = sotoinpcb(so); return udp_output(inp, m, addr, control, td); } int udp_shutdown(struct socket *so) { struct inpcb *inp; INP_INFO_RLOCK(&udbinfo); inp = sotoinpcb(so); if (inp == 0) { INP_INFO_RUNLOCK(&udbinfo); return EINVAL; } INP_LOCK(inp); INP_INFO_RUNLOCK(&udbinfo); socantsendmore(so); INP_UNLOCK(inp); return 0; } /* * This is the wrapper function for in_setsockaddr. We just pass down * the pcbinfo for in_setsockaddr to lock. We don't want to do the locking * here because in_setsockaddr will call malloc and might block. */ static int udp_sockaddr(struct socket *so, struct sockaddr **nam) { return (in_setsockaddr(so, nam, &udbinfo)); } /* * This is the wrapper function for in_setpeeraddr. We just pass down * the pcbinfo for in_setpeeraddr to lock. */ static int udp_peeraddr(struct socket *so, struct sockaddr **nam) { return (in_setpeeraddr(so, nam, &udbinfo)); } struct pr_usrreqs udp_usrreqs = { .pru_abort = udp_abort, .pru_attach = udp_attach, .pru_bind = udp_bind, .pru_connect = udp_connect, .pru_control = in_control, .pru_detach = udp_detach, .pru_disconnect = udp_disconnect, .pru_peeraddr = udp_peeraddr, .pru_send = udp_send, .pru_shutdown = udp_shutdown, .pru_sockaddr = udp_sockaddr, .pru_sosetlabel = in_pcbsosetlabel };