/* * Copyright (c) 1997, 1998, 1999 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ /* * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for FreeBSD. * * Written by Bill Paul * Electrical Engineering Department * Columbia University, New York City */ /* * The WaveLAN/IEEE adapter is the second generation of the WaveLAN * from Lucent. Unlike the older cards, the new ones are programmed * entirely via a firmware-driven controller called the Hermes. * Unfortunately, Lucent will not release the Hermes programming manual * without an NDA (if at all). What they do release is an API library * called the HCF (Hardware Control Functions) which is supposed to * do the device-specific operations of a device driver for you. The * publically available version of the HCF library (the 'HCF Light') is * a) extremely gross, b) lacks certain features, particularly support * for 802.11 frames, and c) is contaminated by the GNU Public License. * * This driver does not use the HCF or HCF Light at all. Instead, it * programs the Hermes controller directly, using information gleaned * from the HCF Light code and corresponding documentation. * * This driver supports both the PCMCIA and ISA versions of the * WaveLAN/IEEE cards. Note however that the ISA card isn't really * anything of the sort: it's actually a PCMCIA bridge adapter * that fits into an ISA slot, into which a PCMCIA WaveLAN card is * inserted. Consequently, you need to use the pccard support for * both the ISA and PCMCIA adapters. */ #define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */ #define WI_HERMES_STATS_WAR /* Work around stats counter bug. */ #define WICACHE /* turn on signal strength cache code */ #include "pci.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if NPCI > 0 #include #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "card_if.h" #if !defined(lint) static const char rcsid[] = "$FreeBSD$"; #endif #ifdef foo static u_int8_t wi_mcast_addr[6] = { 0x01, 0x60, 0x1D, 0x00, 0x01, 0x00 }; #endif /* * The following is for compatibility with NetBSD, but should really be * brought in from NetBSD en toto. */ #define le16toh(a) (a) #define LE16TOH(a) static void wi_intr __P((void *)); static void wi_reset __P((struct wi_softc *)); static int wi_ioctl __P((struct ifnet *, u_long, caddr_t)); static void wi_init __P((void *)); static void wi_start __P((struct ifnet *)); static void wi_stop __P((struct wi_softc *)); static void wi_watchdog __P((struct ifnet *)); static void wi_rxeof __P((struct wi_softc *)); static void wi_txeof __P((struct wi_softc *, int)); static void wi_update_stats __P((struct wi_softc *)); static void wi_setmulti __P((struct wi_softc *)); static int wi_cmd __P((struct wi_softc *, int, int)); static int wi_read_record __P((struct wi_softc *, struct wi_ltv_gen *)); static int wi_write_record __P((struct wi_softc *, struct wi_ltv_gen *)); static int wi_read_data __P((struct wi_softc *, int, int, caddr_t, int)); static int wi_write_data __P((struct wi_softc *, int, int, caddr_t, int)); static int wi_seek __P((struct wi_softc *, int, int, int)); static int wi_alloc_nicmem __P((struct wi_softc *, int, int *)); static void wi_inquire __P((void *)); static void wi_setdef __P((struct wi_softc *, struct wi_req *)); static int wi_mgmt_xmit __P((struct wi_softc *, caddr_t, int)); #ifdef WICACHE static void wi_cache_store __P((struct wi_softc *, struct ether_header *, struct mbuf *, unsigned short)); #endif static int wi_generic_attach __P((device_t)); static int wi_pccard_match __P((device_t)); static int wi_pccard_probe __P((device_t)); static int wi_pccard_attach __P((device_t)); #if NPCI > 0 static int wi_pci_probe __P((device_t)); static int wi_pci_attach __P((device_t)); #endif static int wi_pccard_detach __P((device_t)); static void wi_shutdown __P((device_t)); static int wi_alloc __P((device_t, int)); static void wi_free __P((device_t)); static int wi_get_cur_ssid __P((struct wi_softc *, char *, int *)); static void wi_get_id __P((struct wi_softc *, device_t)); static int wi_media_change __P((struct ifnet *)); static void wi_media_status __P((struct ifnet *, struct ifmediareq *)); static device_method_t wi_pccard_methods[] = { /* Device interface */ DEVMETHOD(device_probe, pccard_compat_probe), DEVMETHOD(device_attach, pccard_compat_attach), DEVMETHOD(device_detach, wi_pccard_detach), DEVMETHOD(device_shutdown, wi_shutdown), /* Card interface */ DEVMETHOD(card_compat_match, wi_pccard_match), DEVMETHOD(card_compat_probe, wi_pccard_probe), DEVMETHOD(card_compat_attach, wi_pccard_attach), { 0, 0 } }; #if NPCI > 0 static device_method_t wi_pci_methods[] = { /* Device interface */ DEVMETHOD(device_probe, wi_pci_probe), DEVMETHOD(device_attach, wi_pci_attach), DEVMETHOD(device_detach, wi_pccard_detach), DEVMETHOD(device_shutdown, wi_shutdown), { 0, 0 } }; #endif static driver_t wi_pccard_driver = { "wi", wi_pccard_methods, sizeof(struct wi_softc) }; #if NPCI > 0 static driver_t wi_pci_driver = { "wi", wi_pci_methods, sizeof(struct wi_softc) }; static struct { unsigned int vendor,device; int bus_type; char *desc; } pci_ids[] = { {0x1638, 0x1100, WI_BUS_PCI_PLX, "PRISM2STA PCI WaveLAN/IEEE 802.11"}, {0x1385, 0x4100, WI_BUS_PCI_PLX, "Netgear MA301 PCI IEEE 802.11b"}, {0x16ab, 0x1101, WI_BUS_PCI_PLX, "GLPRISM2 PCI WaveLAN/IEEE 802.11"}, {0x16ab, 0x1102, WI_BUS_PCI_PLX, "Linksys WDT11 PCI IEEE 802.11b"}, {0x1260, 0x3873, WI_BUS_PCI_NATIVE, "Linksys WMP11 PCI Prism2.5"}, {0, 0, NULL} }; #endif static devclass_t wi_devclass; DRIVER_MODULE(if_wi, pccard, wi_pccard_driver, wi_devclass, 0, 0); #if NPCI > 0 DRIVER_MODULE(if_wi, pci, wi_pci_driver, wi_devclass, 0, 0); #endif static const struct pccard_product wi_pccard_products[] = { PCMCIA_CARD(3COM, 3CRWE737A, 0), PCMCIA_CARD(BUFFALO, WLI_PCM_S11, 0), PCMCIA_CARD(BUFFALO, WLI_CF_S11G, 0), PCMCIA_CARD(COMPAQ, NC5004, 0), PCMCIA_CARD(CONTEC, FX_DS110_PCC, 0), PCMCIA_CARD(COREGA, WIRELESS_LAN_PCC_11, 0), PCMCIA_CARD(COREGA, WIRELESS_LAN_PCCA_11, 0), PCMCIA_CARD(COREGA, WIRELESS_LAN_PCCB_11, 0), PCMCIA_CARD(ELSA, XI300_IEEE, 0), PCMCIA_CARD(ELSA, XI800_IEEE, 0), PCMCIA_CARD(EMTAC, WLAN, 0), PCMCIA_CARD(GEMTEK, WLAN, 0), PCMCIA_CARD(INTEL, PRO_WLAN_2011, 0), PCMCIA_CARD(INTERSIL, PRISM2, 0), PCMCIA_CARD(IODATA2, WNB11PCM, 0), PCMCIA_CARD2(LUCENT, WAVELAN_IEEE, NANOSPEED_PRISM2, 0), PCMCIA_CARD2(LUCENT, WAVELAN_IEEE, NEC_CMZ_RT_WP, 0), PCMCIA_CARD2(LUCENT, WAVELAN_IEEE, NTT_ME_WLAN, 0), PCMCIA_CARD2(LUCENT, WAVELAN_IEEE, SMC_2632W, 0), /* Must be after other LUCENT ones because it is less specific */ PCMCIA_CARD(LUCENT, WAVELAN_IEEE, 0), PCMCIA_CARD(LINKSYS2, IWN, 0), PCMCIA_CARD(SAMSUNG, SWL_2000N, 0), PCMCIA_CARD(TDK, LAK_CD011WL, 0), { NULL } }; static int wi_pccard_match(dev) device_t dev; { const struct pccard_product *pp; if ((pp = pccard_product_lookup(dev, wi_pccard_products, sizeof(wi_pccard_products[0]), NULL)) != NULL) { device_set_desc(dev, pp->pp_name); return 0; } return ENXIO; } static int wi_pccard_probe(dev) device_t dev; { struct wi_softc *sc; int error; sc = device_get_softc(dev); sc->wi_gone = 0; sc->wi_bus_type = WI_BUS_PCCARD; error = wi_alloc(dev, 0); if (error) return (error); wi_free(dev); /* Make sure interrupts are disabled. */ CSR_WRITE_2(sc, WI_INT_EN, 0); CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF); return (0); } #if NPCI > 0 static int wi_pci_probe(dev) device_t dev; { struct wi_softc *sc; int i; sc = device_get_softc(dev); for(i=0; pci_ids[i].vendor != 0; i++) { if ((pci_get_vendor(dev) == pci_ids[i].vendor) && (pci_get_device(dev) == pci_ids[i].device)) { sc->wi_prism2 = 1; sc->wi_bus_type = pci_ids[i].bus_type; device_set_desc(dev, pci_ids[i].desc); return (0); } } return(ENXIO); } #endif static int wi_pccard_detach(dev) device_t dev; { struct wi_softc *sc; struct ifnet *ifp; sc = device_get_softc(dev); WI_LOCK(sc); ifp = &sc->arpcom.ac_if; if (sc->wi_gone) { device_printf(dev, "already unloaded\n"); WI_UNLOCK(sc); return(ENODEV); } wi_stop(sc); /* Delete all remaining media. */ ifmedia_removeall(&sc->ifmedia); ether_ifdetach(ifp, ETHER_BPF_SUPPORTED); bus_teardown_intr(dev, sc->irq, sc->wi_intrhand); wi_free(dev); sc->wi_gone = 1; WI_UNLOCK(sc); mtx_destroy(&sc->wi_mtx); return(0); } static int wi_pccard_attach(device_t dev) { struct wi_softc *sc; int error; sc = device_get_softc(dev); error = wi_alloc(dev, 0); if (error) { device_printf(dev, "wi_alloc() failed! (%d)\n", error); return (error); } return (wi_generic_attach(dev)); } #if NPCI > 0 static int wi_pci_attach(device_t dev) { struct wi_softc *sc; u_int32_t command, wanted; u_int16_t reg; int error; int timeout; sc = device_get_softc(dev); command = pci_read_config(dev, PCIR_COMMAND, 4); wanted = PCIM_CMD_PORTEN|PCIM_CMD_MEMEN; command |= wanted; pci_write_config(dev, PCIR_COMMAND, command, 4); command = pci_read_config(dev, PCIR_COMMAND, 4); if ((command & wanted) != wanted) { device_printf(dev, "wi_pci_attach() failed to enable pci!\n"); return (ENXIO); } if (sc->wi_bus_type != WI_BUS_PCI_NATIVE) { error = wi_alloc(dev, WI_PCI_IORES); if (error) return (error); /* Make sure interrupts are disabled. */ CSR_WRITE_2(sc, WI_INT_EN, 0); CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF); /* We have to do a magic PLX poke to enable interrupts */ sc->local_rid = WI_PCI_LOCALRES; sc->local = bus_alloc_resource(dev, SYS_RES_IOPORT, &sc->local_rid, 0, ~0, 1, RF_ACTIVE); sc->wi_localtag = rman_get_bustag(sc->local); sc->wi_localhandle = rman_get_bushandle(sc->local); command = bus_space_read_4(sc->wi_localtag, sc->wi_localhandle, WI_LOCAL_INTCSR); command |= WI_LOCAL_INTEN; bus_space_write_4(sc->wi_localtag, sc->wi_localhandle, WI_LOCAL_INTCSR, command); bus_release_resource(dev, SYS_RES_IOPORT, sc->local_rid, sc->local); sc->local = NULL; sc->mem_rid = WI_PCI_MEMRES; sc->mem = bus_alloc_resource(dev, SYS_RES_MEMORY, &sc->mem_rid, 0, ~0, 1, RF_ACTIVE); if (sc->mem == NULL) { device_printf(dev, "couldn't allocate memory\n"); wi_free(dev); return (ENXIO); } sc->wi_bmemtag = rman_get_bustag(sc->mem); sc->wi_bmemhandle = rman_get_bushandle(sc->mem); /* * From Linux driver: * Write COR to enable PC card * This is a subset of the protocol that the pccard bus code * would do. */ CSM_WRITE_1(sc, WI_COR_OFFSET, WI_COR_VALUE); reg = CSM_READ_1(sc, WI_COR_OFFSET); if (reg != WI_COR_VALUE) { device_printf(dev, "CSM_READ_1(WI_COR_OFFSET) " "wanted %d, got %d\n", WI_COR_VALUE, reg); wi_free(dev); return (ENXIO); } } else { error = wi_alloc(dev, WI_PCI_LMEMRES); if (error) return (error); CSR_WRITE_2(sc, WI_HFA384X_PCICOR_OFF, 0x0080); DELAY(250000); CSR_WRITE_2(sc, WI_HFA384X_PCICOR_OFF, 0x0000); DELAY(500000); timeout=2000000; while ((--timeout > 0) && (CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY)) DELAY(10); if (timeout == 0) { device_printf(dev, "couldn't reset prism2.5 core.\n"); wi_free(dev); return(ENXIO); } } CSR_WRITE_2(sc, WI_HFA384X_SWSUPPORT0_OFF, WI_PRISM2STA_MAGIC); reg = CSR_READ_2(sc, WI_HFA384X_SWSUPPORT0_OFF); if (reg != WI_PRISM2STA_MAGIC) { device_printf(dev, "CSR_READ_2(WI_HFA384X_SWSUPPORT0_OFF) " "wanted %d, got %d\n", WI_PRISM2STA_MAGIC, reg); wi_free(dev); return (ENXIO); } error = wi_generic_attach(dev); if (error != 0) return (error); return (0); } #endif static int wi_generic_attach(device_t dev) { struct wi_softc *sc; struct wi_ltv_macaddr mac; struct wi_ltv_gen gen; struct ifnet *ifp; int error; sc = device_get_softc(dev); ifp = &sc->arpcom.ac_if; error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET, wi_intr, sc, &sc->wi_intrhand); if (error) { device_printf(dev, "bus_setup_intr() failed! (%d)\n", error); wi_free(dev); return (error); } mtx_init(&sc->wi_mtx, device_get_nameunit(dev), MTX_DEF | MTX_RECURSE); WI_LOCK(sc); /* Reset the NIC. */ wi_reset(sc); /* * Read the station address. * And do it twice. I've seen PRISM-based cards that return * an error when trying to read it the first time, which causes * the probe to fail. */ mac.wi_type = WI_RID_MAC_NODE; mac.wi_len = 4; wi_read_record(sc, (struct wi_ltv_gen *)&mac); if ((error = wi_read_record(sc, (struct wi_ltv_gen *)&mac)) != 0) { device_printf(dev, "mac read failed %d\n", error); wi_free(dev); return (error); } bcopy((char *)&mac.wi_mac_addr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN); device_printf(dev, "802.11 address: %6D\n", sc->arpcom.ac_enaddr, ":"); wi_get_id(sc, dev); ifp->if_softc = sc; ifp->if_unit = sc->wi_unit; ifp->if_name = "wi"; ifp->if_mtu = ETHERMTU; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = wi_ioctl; ifp->if_output = ether_output; ifp->if_start = wi_start; ifp->if_watchdog = wi_watchdog; ifp->if_init = wi_init; ifp->if_baudrate = 10000000; ifp->if_snd.ifq_maxlen = IFQ_MAXLEN; bzero(sc->wi_node_name, sizeof(sc->wi_node_name)); bcopy(WI_DEFAULT_NODENAME, sc->wi_node_name, sizeof(WI_DEFAULT_NODENAME) - 1); bzero(sc->wi_net_name, sizeof(sc->wi_net_name)); bcopy(WI_DEFAULT_NETNAME, sc->wi_net_name, sizeof(WI_DEFAULT_NETNAME) - 1); bzero(sc->wi_ibss_name, sizeof(sc->wi_ibss_name)); bcopy(WI_DEFAULT_IBSS, sc->wi_ibss_name, sizeof(WI_DEFAULT_IBSS) - 1); sc->wi_portnum = WI_DEFAULT_PORT; sc->wi_ptype = WI_PORTTYPE_BSS; sc->wi_ap_density = WI_DEFAULT_AP_DENSITY; sc->wi_rts_thresh = WI_DEFAULT_RTS_THRESH; sc->wi_tx_rate = WI_DEFAULT_TX_RATE; sc->wi_max_data_len = WI_DEFAULT_DATALEN; sc->wi_create_ibss = WI_DEFAULT_CREATE_IBSS; sc->wi_pm_enabled = WI_DEFAULT_PM_ENABLED; sc->wi_max_sleep = WI_DEFAULT_MAX_SLEEP; /* * Read the default channel from the NIC. This may vary * depending on the country where the NIC was purchased, so * we can't hard-code a default and expect it to work for * everyone. */ gen.wi_type = WI_RID_OWN_CHNL; gen.wi_len = 2; wi_read_record(sc, &gen); sc->wi_channel = gen.wi_val; /* * Find out if we support WEP on this card. */ gen.wi_type = WI_RID_WEP_AVAIL; gen.wi_len = 2; wi_read_record(sc, &gen); sc->wi_has_wep = gen.wi_val; if (bootverbose) { device_printf(sc->dev, "%s:wi_has_wep = %d\n", __func__, sc->wi_has_wep); } bzero((char *)&sc->wi_stats, sizeof(sc->wi_stats)); wi_init(sc); wi_stop(sc); ifmedia_init(&sc->ifmedia, 0, wi_media_change, wi_media_status); /* XXX: Should read from card capabilities */ #define ADD(m, c) ifmedia_add(&sc->ifmedia, (m), (c), NULL) ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1, IFM_IEEE80211_ADHOC, 0), 0); ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1, 0, 0), 0); ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2, IFM_IEEE80211_ADHOC, 0), 0); ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2, 0, 0), 0); ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5, IFM_IEEE80211_ADHOC, 0), 0); ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5, 0, 0), 0); ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11, IFM_IEEE80211_ADHOC, 0), 0); ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11, 0, 0), 0); ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, IFM_IEEE80211_ADHOC, 0), 0); ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0), 0); #undef ADD ifmedia_set(&sc->ifmedia, IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0)); /* * Call MI attach routine. */ ether_ifattach(ifp, ETHER_BPF_SUPPORTED); callout_handle_init(&sc->wi_stat_ch); WI_UNLOCK(sc); return(0); } static void wi_get_id(sc, dev) struct wi_softc *sc; device_t dev; { struct wi_ltv_ver ver; /* getting chip identity */ memset(&ver, 0, sizeof(ver)); ver.wi_type = WI_RID_CARDID; ver.wi_len = 5; wi_read_record(sc, (struct wi_ltv_gen *)&ver); device_printf(dev, "using "); switch (le16toh(ver.wi_ver[0])) { case WI_NIC_EVB2: printf("RF:PRISM2 MAC:HFA3841"); sc->wi_prism2 = 1; break; case WI_NIC_HWB3763: printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3763 rev.B"); sc->wi_prism2 = 1; break; case WI_NIC_HWB3163: printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3163 rev.A"); sc->wi_prism2 = 1; break; case WI_NIC_HWB3163B: printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3163 rev.B"); sc->wi_prism2 = 1; break; case WI_NIC_EVB3: printf("RF:PRISM2 MAC:HFA3842"); sc->wi_prism2 = 1; break; case WI_NIC_HWB1153: printf("RF:PRISM1 MAC:HFA3841 CARD:HWB1153"); sc->wi_prism2 = 1; break; case WI_NIC_P2_SST: printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3163-SST-flash"); sc->wi_prism2 = 1; break; case WI_NIC_PRISM2_5: printf("RF:PRISM2.5 MAC:ISL3873"); sc->wi_prism2 = 1; break; case WI_NIC_3874A: printf("RF:PRISM2.5 MAC:ISL3874A(PCI)"); sc->wi_prism2 = 1; break; default: printf("Lucent chip or unknown chip\n"); sc->wi_prism2 = 0; break; } if (sc->wi_prism2) { /* try to get prism2 firm version */ memset(&ver, 0, sizeof(ver)); ver.wi_type = WI_RID_IDENT; ver.wi_len = 5; wi_read_record(sc, (struct wi_ltv_gen *)&ver); LE16TOH(ver.wi_ver[1]); LE16TOH(ver.wi_ver[2]); LE16TOH(ver.wi_ver[3]); printf(", Firmware: %d.%d variant %d\n", ver.wi_ver[2], ver.wi_ver[3], ver.wi_ver[1]); sc->wi_prism2_ver = ver.wi_ver[2] * 100 + ver.wi_ver[3] * 10 + ver.wi_ver[1]; } return; } static void wi_rxeof(sc) struct wi_softc *sc; { struct ifnet *ifp; struct ether_header *eh; struct wi_frame rx_frame; struct mbuf *m; int id; ifp = &sc->arpcom.ac_if; id = CSR_READ_2(sc, WI_RX_FID); /* First read in the frame header */ if (wi_read_data(sc, id, 0, (caddr_t)&rx_frame, sizeof(rx_frame))) { ifp->if_ierrors++; return; } if (rx_frame.wi_status & WI_STAT_ERRSTAT) { ifp->if_ierrors++; return; } MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) { ifp->if_ierrors++; return; } MCLGET(m, M_DONTWAIT); if (!(m->m_flags & M_EXT)) { m_freem(m); ifp->if_ierrors++; return; } eh = mtod(m, struct ether_header *); m->m_pkthdr.rcvif = ifp; if (rx_frame.wi_status == WI_STAT_1042 || rx_frame.wi_status == WI_STAT_TUNNEL || rx_frame.wi_status == WI_STAT_WMP_MSG) { if((rx_frame.wi_dat_len + WI_SNAPHDR_LEN) > MCLBYTES) { device_printf(sc->dev, "oversized packet received " "(wi_dat_len=%d, wi_status=0x%x)\n", rx_frame.wi_dat_len, rx_frame.wi_status); m_freem(m); ifp->if_ierrors++; return; } m->m_pkthdr.len = m->m_len = rx_frame.wi_dat_len + WI_SNAPHDR_LEN; #if 0 bcopy((char *)&rx_frame.wi_addr1, (char *)&eh->ether_dhost, ETHER_ADDR_LEN); if (sc->wi_ptype == WI_PORTTYPE_ADHOC) { bcopy((char *)&rx_frame.wi_addr2, (char *)&eh->ether_shost, ETHER_ADDR_LEN); } else { bcopy((char *)&rx_frame.wi_addr3, (char *)&eh->ether_shost, ETHER_ADDR_LEN); } #else bcopy((char *)&rx_frame.wi_dst_addr, (char *)&eh->ether_dhost, ETHER_ADDR_LEN); bcopy((char *)&rx_frame.wi_src_addr, (char *)&eh->ether_shost, ETHER_ADDR_LEN); #endif bcopy((char *)&rx_frame.wi_type, (char *)&eh->ether_type, ETHER_TYPE_LEN); if (wi_read_data(sc, id, WI_802_11_OFFSET, mtod(m, caddr_t) + sizeof(struct ether_header), m->m_len + 2)) { m_freem(m); ifp->if_ierrors++; return; } } else { if((rx_frame.wi_dat_len + sizeof(struct ether_header)) > MCLBYTES) { device_printf(sc->dev, "oversized packet received " "(wi_dat_len=%d, wi_status=0x%x)\n", rx_frame.wi_dat_len, rx_frame.wi_status); m_freem(m); ifp->if_ierrors++; return; } m->m_pkthdr.len = m->m_len = rx_frame.wi_dat_len + sizeof(struct ether_header); if (wi_read_data(sc, id, WI_802_3_OFFSET, mtod(m, caddr_t), m->m_len + 2)) { m_freem(m); ifp->if_ierrors++; return; } } ifp->if_ipackets++; /* Receive packet. */ m_adj(m, sizeof(struct ether_header)); #ifdef WICACHE wi_cache_store(sc, eh, m, rx_frame.wi_q_info); #endif ether_input(ifp, eh, m); } static void wi_txeof(sc, status) struct wi_softc *sc; int status; { struct ifnet *ifp; ifp = &sc->arpcom.ac_if; ifp->if_timer = 0; ifp->if_flags &= ~IFF_OACTIVE; if (status & WI_EV_TX_EXC) ifp->if_oerrors++; else ifp->if_opackets++; return; } void wi_inquire(xsc) void *xsc; { struct wi_softc *sc; struct ifnet *ifp; sc = xsc; ifp = &sc->arpcom.ac_if; sc->wi_stat_ch = timeout(wi_inquire, sc, hz * 60); /* Don't do this while we're transmitting */ if (ifp->if_flags & IFF_OACTIVE) return; wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_COUNTERS); return; } void wi_update_stats(sc) struct wi_softc *sc; { struct wi_ltv_gen gen; u_int16_t id; struct ifnet *ifp; u_int32_t *ptr; int len, i; u_int16_t t; ifp = &sc->arpcom.ac_if; id = CSR_READ_2(sc, WI_INFO_FID); wi_read_data(sc, id, 0, (char *)&gen, 4); if (gen.wi_type != WI_INFO_COUNTERS) return; len = (gen.wi_len - 1 < sizeof(sc->wi_stats) / 4) ? gen.wi_len - 1 : sizeof(sc->wi_stats) / 4; ptr = (u_int32_t *)&sc->wi_stats; for (i = 0; i < len - 1; i++) { t = CSR_READ_2(sc, WI_DATA1); #ifdef WI_HERMES_STATS_WAR if (t > 0xF000) t = ~t & 0xFFFF; #endif ptr[i] += t; } ifp->if_collisions = sc->wi_stats.wi_tx_single_retries + sc->wi_stats.wi_tx_multi_retries + sc->wi_stats.wi_tx_retry_limit; return; } static void wi_intr(xsc) void *xsc; { struct wi_softc *sc = xsc; struct ifnet *ifp; u_int16_t status; WI_LOCK(sc); ifp = &sc->arpcom.ac_if; if (sc->wi_gone || !(ifp->if_flags & IFF_UP)) { CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF); CSR_WRITE_2(sc, WI_INT_EN, 0); WI_UNLOCK(sc); return; } /* Disable interrupts. */ CSR_WRITE_2(sc, WI_INT_EN, 0); status = CSR_READ_2(sc, WI_EVENT_STAT); CSR_WRITE_2(sc, WI_EVENT_ACK, ~WI_INTRS); if (status & WI_EV_RX) { wi_rxeof(sc); CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX); } if (status & WI_EV_TX) { wi_txeof(sc, status); CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX); } if (status & WI_EV_ALLOC) { int id; id = CSR_READ_2(sc, WI_ALLOC_FID); CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC); if (id == sc->wi_tx_data_id) wi_txeof(sc, status); } if (status & WI_EV_INFO) { wi_update_stats(sc); CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO); } if (status & WI_EV_TX_EXC) { wi_txeof(sc, status); CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX_EXC); } if (status & WI_EV_INFO_DROP) { CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO_DROP); } /* Re-enable interrupts. */ CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS); if (ifp->if_snd.ifq_head != NULL) { wi_start(ifp); } WI_UNLOCK(sc); return; } static int wi_cmd(sc, cmd, val) struct wi_softc *sc; int cmd; int val; { int i, s = 0; /* wait for the busy bit to clear */ for (i = 500; i > 0; i--) { /* 5s */ if (!(CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY)) { break; } DELAY(10*1000); /* 10 m sec */ } if (i == 0) { device_printf(sc->dev, "wi_cmd: busy bit won't clear.\n" ); return(ETIMEDOUT); } CSR_WRITE_2(sc, WI_PARAM0, val); CSR_WRITE_2(sc, WI_PARAM1, 0); CSR_WRITE_2(sc, WI_PARAM2, 0); CSR_WRITE_2(sc, WI_COMMAND, cmd); for (i = 0; i < WI_TIMEOUT; i++) { /* * Wait for 'command complete' bit to be * set in the event status register. */ s = CSR_READ_2(sc, WI_EVENT_STAT); if (s & WI_EV_CMD) { /* Ack the event and read result code. */ s = CSR_READ_2(sc, WI_STATUS); CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD); #ifdef foo if ((s & WI_CMD_CODE_MASK) != (cmd & WI_CMD_CODE_MASK)) return(EIO); #endif if (s & WI_STAT_CMD_RESULT) return(EIO); break; } DELAY(WI_DELAY); } if (i == WI_TIMEOUT) { device_printf(sc->dev, "timeout in wi_cmd %x; event status %x\n", cmd, s); return(ETIMEDOUT); } return(0); } static void wi_reset(sc) struct wi_softc *sc; { #define WI_INIT_TRIES 5 int i; for (i = 0; i < WI_INIT_TRIES; i++) { if (wi_cmd(sc, WI_CMD_INI, 0) == 0) break; DELAY(WI_DELAY * 1000); } if (i == WI_INIT_TRIES) device_printf(sc->dev, "init failed\n"); CSR_WRITE_2(sc, WI_INT_EN, 0); CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF); /* Calibrate timer. */ WI_SETVAL(WI_RID_TICK_TIME, 8); return; } /* * Read an LTV record from the NIC. */ static int wi_read_record(sc, ltv) struct wi_softc *sc; struct wi_ltv_gen *ltv; { u_int16_t *ptr; int i, len, code; struct wi_ltv_gen *oltv, p2ltv; oltv = ltv; if (sc->wi_prism2) { switch (ltv->wi_type) { case WI_RID_ENCRYPTION: p2ltv.wi_type = WI_RID_P2_ENCRYPTION; p2ltv.wi_len = 2; ltv = &p2ltv; break; case WI_RID_TX_CRYPT_KEY: p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY; p2ltv.wi_len = 2; ltv = &p2ltv; break; } } /* Tell the NIC to enter record read mode. */ if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_READ, ltv->wi_type)) return(EIO); /* Seek to the record. */ if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1)) return(EIO); /* * Read the length and record type and make sure they * match what we expect (this verifies that we have enough * room to hold all of the returned data). */ len = CSR_READ_2(sc, WI_DATA1); if (len > ltv->wi_len) return(ENOSPC); code = CSR_READ_2(sc, WI_DATA1); if (code != ltv->wi_type) return(EIO); ltv->wi_len = len; ltv->wi_type = code; /* Now read the data. */ ptr = <v->wi_val; for (i = 0; i < ltv->wi_len - 1; i++) ptr[i] = CSR_READ_2(sc, WI_DATA1); if (sc->wi_prism2) { switch (oltv->wi_type) { case WI_RID_TX_RATE: case WI_RID_CUR_TX_RATE: switch (ltv->wi_val) { case 1: oltv->wi_val = 1; break; case 2: oltv->wi_val = 2; break; case 3: oltv->wi_val = 6; break; case 4: oltv->wi_val = 5; break; case 7: oltv->wi_val = 7; break; case 8: oltv->wi_val = 11; break; case 15: oltv->wi_val = 3; break; default: oltv->wi_val = 0x100 + ltv->wi_val; break; } break; case WI_RID_ENCRYPTION: oltv->wi_len = 2; if (ltv->wi_val & 0x01) oltv->wi_val = 1; else oltv->wi_val = 0; break; case WI_RID_TX_CRYPT_KEY: oltv->wi_len = 2; oltv->wi_val = ltv->wi_val; break; } } return(0); } /* * Same as read, except we inject data instead of reading it. */ static int wi_write_record(sc, ltv) struct wi_softc *sc; struct wi_ltv_gen *ltv; { u_int16_t *ptr; int i; struct wi_ltv_gen p2ltv; if (sc->wi_prism2) { switch (ltv->wi_type) { case WI_RID_TX_RATE: p2ltv.wi_type = WI_RID_TX_RATE; p2ltv.wi_len = 2; switch (ltv->wi_val) { case 1: p2ltv.wi_val = 1; break; case 2: p2ltv.wi_val = 2; break; case 3: p2ltv.wi_val = 15; break; case 5: p2ltv.wi_val = 4; break; case 6: p2ltv.wi_val = 3; break; case 7: p2ltv.wi_val = 7; break; case 11: p2ltv.wi_val = 8; break; default: return EINVAL; } ltv = &p2ltv; break; case WI_RID_ENCRYPTION: p2ltv.wi_type = WI_RID_P2_ENCRYPTION; p2ltv.wi_len = 2; if (ltv->wi_val) p2ltv.wi_val = 0x03; else p2ltv.wi_val = 0x90; ltv = &p2ltv; break; case WI_RID_TX_CRYPT_KEY: p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY; p2ltv.wi_len = 2; p2ltv.wi_val = ltv->wi_val; ltv = &p2ltv; break; case WI_RID_DEFLT_CRYPT_KEYS: { int error; struct wi_ltv_str ws; struct wi_ltv_keys *wk = (struct wi_ltv_keys *)ltv; for (i = 0; i < 4; i++) { ws.wi_len = 4; ws.wi_type = WI_RID_P2_CRYPT_KEY0 + i; memcpy(ws.wi_str, &wk->wi_keys[i].wi_keydat, 5); ws.wi_str[5] = '\0'; error = wi_write_record(sc, (struct wi_ltv_gen *)&ws); if (error) return error; } return 0; } } } if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1)) return(EIO); CSR_WRITE_2(sc, WI_DATA1, ltv->wi_len); CSR_WRITE_2(sc, WI_DATA1, ltv->wi_type); ptr = <v->wi_val; for (i = 0; i < ltv->wi_len - 1; i++) CSR_WRITE_2(sc, WI_DATA1, ptr[i]); if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_WRITE, ltv->wi_type)) return(EIO); return(0); } static int wi_seek(sc, id, off, chan) struct wi_softc *sc; int id, off, chan; { int i; int selreg, offreg; int status; switch (chan) { case WI_BAP0: selreg = WI_SEL0; offreg = WI_OFF0; break; case WI_BAP1: selreg = WI_SEL1; offreg = WI_OFF1; break; default: device_printf(sc->dev, "invalid data path: %x\n", chan); return(EIO); } CSR_WRITE_2(sc, selreg, id); CSR_WRITE_2(sc, offreg, off); for (i = 0; i < WI_TIMEOUT; i++) { status = CSR_READ_2(sc, offreg); if (!(status & (WI_OFF_BUSY|WI_OFF_ERR))) break; DELAY(WI_DELAY); } if (i == WI_TIMEOUT) { device_printf(sc->dev, "timeout in wi_seek to %x/%x; last status %x\n", id, off, status); return(ETIMEDOUT); } return(0); } static int wi_read_data(sc, id, off, buf, len) struct wi_softc *sc; int id, off; caddr_t buf; int len; { int i; u_int16_t *ptr; if (wi_seek(sc, id, off, WI_BAP1)) return(EIO); ptr = (u_int16_t *)buf; for (i = 0; i < len / 2; i++) ptr[i] = CSR_READ_2(sc, WI_DATA1); return(0); } /* * According to the comments in the HCF Light code, there is a bug in * the Hermes (or possibly in certain Hermes firmware revisions) where * the chip's internal autoincrement counter gets thrown off during * data writes: the autoincrement is missed, causing one data word to * be overwritten and subsequent words to be written to the wrong memory * locations. The end result is that we could end up transmitting bogus * frames without realizing it. The workaround for this is to write a * couple of extra guard words after the end of the transfer, then * attempt to read then back. If we fail to locate the guard words where * we expect them, we preform the transfer over again. */ static int wi_write_data(sc, id, off, buf, len) struct wi_softc *sc; int id, off; caddr_t buf; int len; { int i; u_int16_t *ptr; #ifdef WI_HERMES_AUTOINC_WAR int retries; retries = 512; again: #endif if (wi_seek(sc, id, off, WI_BAP0)) return(EIO); ptr = (u_int16_t *)buf; for (i = 0; i < (len / 2); i++) CSR_WRITE_2(sc, WI_DATA0, ptr[i]); #ifdef WI_HERMES_AUTOINC_WAR CSR_WRITE_2(sc, WI_DATA0, 0x1234); CSR_WRITE_2(sc, WI_DATA0, 0x5678); if (wi_seek(sc, id, off + len, WI_BAP0)) return(EIO); if (CSR_READ_2(sc, WI_DATA0) != 0x1234 || CSR_READ_2(sc, WI_DATA0) != 0x5678) { if (--retries >= 0) goto again; device_printf(sc->dev, "wi_write_data device timeout\n"); return (EIO); } #endif return(0); } /* * Allocate a region of memory inside the NIC and zero * it out. */ static int wi_alloc_nicmem(sc, len, id) struct wi_softc *sc; int len; int *id; { int i; if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len)) { device_printf(sc->dev, "failed to allocate %d bytes on NIC\n", len); return(ENOMEM); } for (i = 0; i < WI_TIMEOUT; i++) { if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC) break; DELAY(WI_DELAY); } if (i == WI_TIMEOUT) { device_printf(sc->dev, "time out allocating memory on card\n"); return(ETIMEDOUT); } CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC); *id = CSR_READ_2(sc, WI_ALLOC_FID); if (wi_seek(sc, *id, 0, WI_BAP0)) { device_printf(sc->dev, "seek failed while allocating memory on card\n"); return(EIO); } for (i = 0; i < len / 2; i++) CSR_WRITE_2(sc, WI_DATA0, 0); return(0); } static void wi_setmulti(sc) struct wi_softc *sc; { struct ifnet *ifp; int i = 0; struct ifmultiaddr *ifma; struct wi_ltv_mcast mcast; ifp = &sc->arpcom.ac_if; bzero((char *)&mcast, sizeof(mcast)); mcast.wi_type = WI_RID_MCAST; mcast.wi_len = (3 * 16) + 1; if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { wi_write_record(sc, (struct wi_ltv_gen *)&mcast); return; } TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; if (i < 16) { bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr), (char *)&mcast.wi_mcast[i], ETHER_ADDR_LEN); i++; } else { bzero((char *)&mcast, sizeof(mcast)); break; } } mcast.wi_len = (i * 3) + 1; wi_write_record(sc, (struct wi_ltv_gen *)&mcast); return; } static void wi_setdef(sc, wreq) struct wi_softc *sc; struct wi_req *wreq; { struct sockaddr_dl *sdl; struct ifaddr *ifa; struct ifnet *ifp; ifp = &sc->arpcom.ac_if; switch(wreq->wi_type) { case WI_RID_MAC_NODE: ifa = ifaddr_byindex(ifp->if_index); sdl = (struct sockaddr_dl *)ifa->ifa_addr; bcopy((char *)&wreq->wi_val, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN); bcopy((char *)&wreq->wi_val, LLADDR(sdl), ETHER_ADDR_LEN); break; case WI_RID_PORTTYPE: sc->wi_ptype = wreq->wi_val[0]; break; case WI_RID_TX_RATE: sc->wi_tx_rate = wreq->wi_val[0]; break; case WI_RID_MAX_DATALEN: sc->wi_max_data_len = wreq->wi_val[0]; break; case WI_RID_RTS_THRESH: sc->wi_rts_thresh = wreq->wi_val[0]; break; case WI_RID_SYSTEM_SCALE: sc->wi_ap_density = wreq->wi_val[0]; break; case WI_RID_CREATE_IBSS: sc->wi_create_ibss = wreq->wi_val[0]; break; case WI_RID_OWN_CHNL: sc->wi_channel = wreq->wi_val[0]; break; case WI_RID_NODENAME: bzero(sc->wi_node_name, sizeof(sc->wi_node_name)); bcopy((char *)&wreq->wi_val[1], sc->wi_node_name, 30); break; case WI_RID_DESIRED_SSID: bzero(sc->wi_net_name, sizeof(sc->wi_net_name)); bcopy((char *)&wreq->wi_val[1], sc->wi_net_name, 30); break; case WI_RID_OWN_SSID: bzero(sc->wi_ibss_name, sizeof(sc->wi_ibss_name)); bcopy((char *)&wreq->wi_val[1], sc->wi_ibss_name, 30); break; case WI_RID_PM_ENABLED: sc->wi_pm_enabled = wreq->wi_val[0]; break; case WI_RID_MAX_SLEEP: sc->wi_max_sleep = wreq->wi_val[0]; break; case WI_RID_ENCRYPTION: sc->wi_use_wep = wreq->wi_val[0]; break; case WI_RID_TX_CRYPT_KEY: sc->wi_tx_key = wreq->wi_val[0]; break; case WI_RID_DEFLT_CRYPT_KEYS: bcopy((char *)wreq, (char *)&sc->wi_keys, sizeof(struct wi_ltv_keys)); break; default: break; } /* Reinitialize WaveLAN. */ wi_init(sc); return; } static int wi_ioctl(ifp, command, data) struct ifnet *ifp; u_long command; caddr_t data; { int error = 0; int len; u_int8_t tmpkey[14]; char tmpssid[IEEE80211_NWID_LEN]; struct wi_softc *sc; struct wi_req wreq; struct ifreq *ifr; struct ieee80211req *ireq; struct proc *p = curproc; sc = ifp->if_softc; WI_LOCK(sc); ifr = (struct ifreq *)data; ireq = (struct ieee80211req *)data; if (sc->wi_gone) { error = ENODEV; goto out; } switch(command) { case SIOCSIFADDR: case SIOCGIFADDR: case SIOCSIFMTU: error = ether_ioctl(ifp, command, data); break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING && ifp->if_flags & IFF_PROMISC && !(sc->wi_if_flags & IFF_PROMISC)) { WI_SETVAL(WI_RID_PROMISC, 1); } else if (ifp->if_flags & IFF_RUNNING && !(ifp->if_flags & IFF_PROMISC) && sc->wi_if_flags & IFF_PROMISC) { WI_SETVAL(WI_RID_PROMISC, 0); } else wi_init(sc); } else { if (ifp->if_flags & IFF_RUNNING) { wi_stop(sc); } } sc->wi_if_flags = ifp->if_flags; error = 0; break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command); break; case SIOCADDMULTI: case SIOCDELMULTI: wi_setmulti(sc); error = 0; break; case SIOCGWAVELAN: error = copyin(ifr->ifr_data, &wreq, sizeof(wreq)); if (error) break; /* Don't show WEP keys to non-root users. */ if (wreq.wi_type == WI_RID_DEFLT_CRYPT_KEYS && suser(p)) break; if (wreq.wi_type == WI_RID_IFACE_STATS) { bcopy((char *)&sc->wi_stats, (char *)&wreq.wi_val, sizeof(sc->wi_stats)); wreq.wi_len = (sizeof(sc->wi_stats) / 2) + 1; } else if (wreq.wi_type == WI_RID_DEFLT_CRYPT_KEYS) { bcopy((char *)&sc->wi_keys, (char *)&wreq, sizeof(struct wi_ltv_keys)); } #ifdef WICACHE else if (wreq.wi_type == WI_RID_ZERO_CACHE) { sc->wi_sigitems = sc->wi_nextitem = 0; } else if (wreq.wi_type == WI_RID_READ_CACHE) { char *pt = (char *)&wreq.wi_val; bcopy((char *)&sc->wi_sigitems, (char *)pt, sizeof(int)); pt += (sizeof (int)); wreq.wi_len = sizeof(int) / 2; bcopy((char *)&sc->wi_sigcache, (char *)pt, sizeof(struct wi_sigcache) * sc->wi_sigitems); wreq.wi_len += ((sizeof(struct wi_sigcache) * sc->wi_sigitems) / 2) + 1; } #endif else { if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq)) { error = EINVAL; break; } } error = copyout(&wreq, ifr->ifr_data, sizeof(wreq)); break; case SIOCSWAVELAN: if ((error = suser(p))) goto out; error = copyin(ifr->ifr_data, &wreq, sizeof(wreq)); if (error) break; if (wreq.wi_type == WI_RID_IFACE_STATS) { error = EINVAL; break; } else if (wreq.wi_type == WI_RID_MGMT_XMIT) { error = wi_mgmt_xmit(sc, (caddr_t)&wreq.wi_val, wreq.wi_len); } else { error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq); if (!error) wi_setdef(sc, &wreq); } break; case SIOCG80211: switch(ireq->i_type) { case IEEE80211_IOC_SSID: if(ireq->i_val == -1) { bzero(tmpssid, IEEE80211_NWID_LEN); error = wi_get_cur_ssid(sc, tmpssid, &len); if (error != 0) break; error = copyout(tmpssid, ireq->i_data, IEEE80211_NWID_LEN); ireq->i_len = len; } else if (ireq->i_val == 0) { error = copyout(sc->wi_net_name, ireq->i_data, IEEE80211_NWID_LEN); ireq->i_len = IEEE80211_NWID_LEN; } else error = EINVAL; break; case IEEE80211_IOC_NUMSSIDS: ireq->i_val = 1; break; case IEEE80211_IOC_WEP: if(!sc->wi_has_wep) { ireq->i_val = IEEE80211_WEP_NOSUP; } else { if(sc->wi_use_wep) { ireq->i_val = IEEE80211_WEP_MIXED; } else { ireq->i_val = IEEE80211_WEP_OFF; } } break; case IEEE80211_IOC_WEPKEY: if(!sc->wi_has_wep || ireq->i_val < 0 || ireq->i_val > 3) { error = EINVAL; break; } len = sc->wi_keys.wi_keys[ireq->i_val].wi_keylen; if (suser(p)) bcopy(sc->wi_keys.wi_keys[ireq->i_val].wi_keydat, tmpkey, len); else bzero(tmpkey, len); ireq->i_len = len; error = copyout(tmpkey, ireq->i_data, len); break; case IEEE80211_IOC_NUMWEPKEYS: if(!sc->wi_has_wep) error = EINVAL; else ireq->i_val = 4; break; case IEEE80211_IOC_WEPTXKEY: if(!sc->wi_has_wep) error = EINVAL; else ireq->i_val = sc->wi_tx_key; break; case IEEE80211_IOC_AUTHMODE: ireq->i_val = IEEE80211_AUTH_NONE; break; case IEEE80211_IOC_STATIONNAME: error = copyout(sc->wi_node_name, ireq->i_data, IEEE80211_NWID_LEN); ireq->i_len = IEEE80211_NWID_LEN; break; case IEEE80211_IOC_CHANNEL: wreq.wi_type = WI_RID_CURRENT_CHAN; wreq.wi_len = WI_MAX_DATALEN; if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq)) error = EINVAL; else { ireq->i_val = wreq.wi_val[0]; } break; case IEEE80211_IOC_POWERSAVE: if(sc->wi_pm_enabled) ireq->i_val = IEEE80211_POWERSAVE_ON; else ireq->i_val = IEEE80211_POWERSAVE_OFF; break; case IEEE80211_IOC_POWERSAVESLEEP: ireq->i_val = sc->wi_max_sleep; break; default: error = EINVAL; } break; case SIOCS80211: if ((error = suser(p))) goto out; switch(ireq->i_type) { case IEEE80211_IOC_SSID: if (ireq->i_val != 0 || ireq->i_len > IEEE80211_NWID_LEN) { error = EINVAL; break; } /* We set both of them */ bzero(sc->wi_net_name, IEEE80211_NWID_LEN); error = copyin(ireq->i_data, sc->wi_net_name, ireq->i_len); bcopy(sc->wi_net_name, sc->wi_ibss_name, IEEE80211_NWID_LEN); break; case IEEE80211_IOC_WEP: /* * These cards only support one mode so * we just turn wep on what ever is * passed in if it's not OFF. */ if (ireq->i_val == IEEE80211_WEP_OFF) { sc->wi_use_wep = 0; } else { sc->wi_use_wep = 1; } break; case IEEE80211_IOC_WEPKEY: if (ireq->i_val < 0 || ireq->i_val > 3 || ireq->i_len > 13) { error = EINVAL; break; } bzero(sc->wi_keys.wi_keys[ireq->i_val].wi_keydat, 13); error = copyin(ireq->i_data, sc->wi_keys.wi_keys[ireq->i_val].wi_keydat, ireq->i_len); if(error) break; sc->wi_keys.wi_keys[ireq->i_val].wi_keylen = ireq->i_len; break; case IEEE80211_IOC_WEPTXKEY: if (ireq->i_val < 0 || ireq->i_val > 3) { error = EINVAL; break; } sc->wi_tx_key = ireq->i_val; break; case IEEE80211_IOC_AUTHMODE: error = EINVAL; break; case IEEE80211_IOC_STATIONNAME: if (ireq->i_len > 32) { error = EINVAL; break; } bzero(sc->wi_node_name, 32); error = copyin(ireq->i_data, sc->wi_node_name, ireq->i_len); break; case IEEE80211_IOC_CHANNEL: /* * The actual range is 1-14, but if you * set it to 0 you get the default. So * we let that work too. */ if (ireq->i_val < 0 || ireq->i_val > 14) { error = EINVAL; break; } sc->wi_channel = ireq->i_val; break; case IEEE80211_IOC_POWERSAVE: switch (ireq->i_val) { case IEEE80211_POWERSAVE_OFF: sc->wi_pm_enabled = 0; break; case IEEE80211_POWERSAVE_ON: sc->wi_pm_enabled = 1; break; default: error = EINVAL; break; } break; case IEEE80211_IOC_POWERSAVESLEEP: if (ireq->i_val < 0) { error = EINVAL; break; } sc->wi_max_sleep = ireq->i_val; break; default: error = EINVAL; break; } /* Reinitialize WaveLAN. */ wi_init(sc); break; default: error = EINVAL; break; } out: WI_UNLOCK(sc); return(error); } static void wi_init(xsc) void *xsc; { struct wi_softc *sc = xsc; struct ifnet *ifp = &sc->arpcom.ac_if; struct wi_ltv_macaddr mac; int id = 0; WI_LOCK(sc); if (sc->wi_gone) { WI_UNLOCK(sc); return; } if (ifp->if_flags & IFF_RUNNING) wi_stop(sc); wi_reset(sc); /* Program max data length. */ WI_SETVAL(WI_RID_MAX_DATALEN, sc->wi_max_data_len); /* Enable/disable IBSS creation. */ WI_SETVAL(WI_RID_CREATE_IBSS, sc->wi_create_ibss); /* Set the port type. */ WI_SETVAL(WI_RID_PORTTYPE, sc->wi_ptype); /* Program the RTS/CTS threshold. */ WI_SETVAL(WI_RID_RTS_THRESH, sc->wi_rts_thresh); /* Program the TX rate */ WI_SETVAL(WI_RID_TX_RATE, sc->wi_tx_rate); /* Access point density */ WI_SETVAL(WI_RID_SYSTEM_SCALE, sc->wi_ap_density); /* Power Management Enabled */ WI_SETVAL(WI_RID_PM_ENABLED, sc->wi_pm_enabled); /* Power Managment Max Sleep */ WI_SETVAL(WI_RID_MAX_SLEEP, sc->wi_max_sleep); /* Specify the IBSS name */ WI_SETSTR(WI_RID_OWN_SSID, sc->wi_ibss_name); /* Specify the network name */ WI_SETSTR(WI_RID_DESIRED_SSID, sc->wi_net_name); /* Specify the frequency to use */ WI_SETVAL(WI_RID_OWN_CHNL, sc->wi_channel); /* Program the nodename. */ WI_SETSTR(WI_RID_NODENAME, sc->wi_node_name); /* Set our MAC address. */ mac.wi_len = 4; mac.wi_type = WI_RID_MAC_NODE; bcopy((char *)&sc->arpcom.ac_enaddr, (char *)&mac.wi_mac_addr, ETHER_ADDR_LEN); wi_write_record(sc, (struct wi_ltv_gen *)&mac); /* Configure WEP. */ if (sc->wi_has_wep) { WI_SETVAL(WI_RID_ENCRYPTION, sc->wi_use_wep); WI_SETVAL(WI_RID_TX_CRYPT_KEY, sc->wi_tx_key); sc->wi_keys.wi_len = (sizeof(struct wi_ltv_keys) / 2) + 1; sc->wi_keys.wi_type = WI_RID_DEFLT_CRYPT_KEYS; wi_write_record(sc, (struct wi_ltv_gen *)&sc->wi_keys); } /* Initialize promisc mode. */ if (ifp->if_flags & IFF_PROMISC) { WI_SETVAL(WI_RID_PROMISC, 1); } else { WI_SETVAL(WI_RID_PROMISC, 0); } /* Set multicast filter. */ wi_setmulti(sc); /* Enable desired port */ wi_cmd(sc, WI_CMD_ENABLE|sc->wi_portnum, 0); if (wi_alloc_nicmem(sc, ETHER_MAX_LEN + sizeof(struct wi_frame) + 8, &id)) device_printf(sc->dev, "tx buffer allocation failed\n"); sc->wi_tx_data_id = id; if (wi_alloc_nicmem(sc, ETHER_MAX_LEN + sizeof(struct wi_frame) + 8, &id)) device_printf(sc->dev, "mgmt. buffer allocation failed\n"); sc->wi_tx_mgmt_id = id; /* enable interrupts */ CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; sc->wi_stat_ch = timeout(wi_inquire, sc, hz * 60); WI_UNLOCK(sc); return; } static void wi_start(ifp) struct ifnet *ifp; { struct wi_softc *sc; struct mbuf *m0; struct wi_frame tx_frame; struct ether_header *eh; int id; sc = ifp->if_softc; WI_LOCK(sc); if (sc->wi_gone) { WI_UNLOCK(sc); return; } if (ifp->if_flags & IFF_OACTIVE) { WI_UNLOCK(sc); return; } IF_DEQUEUE(&ifp->if_snd, m0); if (m0 == NULL) { WI_UNLOCK(sc); return; } bzero((char *)&tx_frame, sizeof(tx_frame)); id = sc->wi_tx_data_id; eh = mtod(m0, struct ether_header *); /* * Use RFC1042 encoding for IP and ARP datagrams, * 802.3 for anything else. */ if (ntohs(eh->ether_type) > ETHER_MAX_LEN) { bcopy((char *)&eh->ether_dhost, (char *)&tx_frame.wi_addr1, ETHER_ADDR_LEN); bcopy((char *)&eh->ether_shost, (char *)&tx_frame.wi_addr2, ETHER_ADDR_LEN); bcopy((char *)&eh->ether_dhost, (char *)&tx_frame.wi_dst_addr, ETHER_ADDR_LEN); bcopy((char *)&eh->ether_shost, (char *)&tx_frame.wi_src_addr, ETHER_ADDR_LEN); tx_frame.wi_dat_len = m0->m_pkthdr.len - WI_SNAPHDR_LEN; tx_frame.wi_frame_ctl = WI_FTYPE_DATA; tx_frame.wi_dat[0] = htons(WI_SNAP_WORD0); tx_frame.wi_dat[1] = htons(WI_SNAP_WORD1); tx_frame.wi_len = htons(m0->m_pkthdr.len - WI_SNAPHDR_LEN); tx_frame.wi_type = eh->ether_type; m_copydata(m0, sizeof(struct ether_header), m0->m_pkthdr.len - sizeof(struct ether_header), (caddr_t)&sc->wi_txbuf); wi_write_data(sc, id, 0, (caddr_t)&tx_frame, sizeof(struct wi_frame)); wi_write_data(sc, id, WI_802_11_OFFSET, (caddr_t)&sc->wi_txbuf, (m0->m_pkthdr.len - sizeof(struct ether_header)) + 2); } else { tx_frame.wi_dat_len = m0->m_pkthdr.len; eh->ether_type = htons(m0->m_pkthdr.len - WI_SNAPHDR_LEN); m_copydata(m0, 0, m0->m_pkthdr.len, (caddr_t)&sc->wi_txbuf); wi_write_data(sc, id, 0, (caddr_t)&tx_frame, sizeof(struct wi_frame)); wi_write_data(sc, id, WI_802_3_OFFSET, (caddr_t)&sc->wi_txbuf, m0->m_pkthdr.len + 2); } /* * If there's a BPF listner, bounce a copy of * this frame to him. */ if (ifp->if_bpf) bpf_mtap(ifp, m0); m_freem(m0); if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id)) device_printf(sc->dev, "xmit failed\n"); ifp->if_flags |= IFF_OACTIVE; /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; WI_UNLOCK(sc); return; } static int wi_mgmt_xmit(sc, data, len) struct wi_softc *sc; caddr_t data; int len; { struct wi_frame tx_frame; int id; struct wi_80211_hdr *hdr; caddr_t dptr; if (sc->wi_gone) return(ENODEV); hdr = (struct wi_80211_hdr *)data; dptr = data + sizeof(struct wi_80211_hdr); bzero((char *)&tx_frame, sizeof(tx_frame)); id = sc->wi_tx_mgmt_id; bcopy((char *)hdr, (char *)&tx_frame.wi_frame_ctl, sizeof(struct wi_80211_hdr)); tx_frame.wi_dat_len = len - WI_SNAPHDR_LEN; tx_frame.wi_len = htons(len - WI_SNAPHDR_LEN); wi_write_data(sc, id, 0, (caddr_t)&tx_frame, sizeof(struct wi_frame)); wi_write_data(sc, id, WI_802_11_OFFSET_RAW, dptr, (len - sizeof(struct wi_80211_hdr)) + 2); if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id)) { device_printf(sc->dev, "xmit failed\n"); return(EIO); } return(0); } static void wi_stop(sc) struct wi_softc *sc; { struct ifnet *ifp; WI_LOCK(sc); if (sc->wi_gone) { WI_UNLOCK(sc); return; } ifp = &sc->arpcom.ac_if; /* * If the card is gone and the memory port isn't mapped, we will * (hopefully) get 0xffff back from the status read, which is not * a valid status value. */ if (CSR_READ_2(sc, WI_STATUS) != 0xffff) { CSR_WRITE_2(sc, WI_INT_EN, 0); wi_cmd(sc, WI_CMD_DISABLE|sc->wi_portnum, 0); } untimeout(wi_inquire, sc, sc->wi_stat_ch); ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE); WI_UNLOCK(sc); return; } static void wi_watchdog(ifp) struct ifnet *ifp; { struct wi_softc *sc; sc = ifp->if_softc; device_printf(sc->dev, "watchdog timeout\n"); wi_init(sc); ifp->if_oerrors++; return; } static int wi_alloc(dev, rid) device_t dev; int rid; { struct wi_softc *sc = device_get_softc(dev); if (sc->wi_bus_type != WI_BUS_PCI_NATIVE) { sc->iobase_rid = rid; sc->iobase = bus_alloc_resource(dev, SYS_RES_IOPORT, &sc->iobase_rid, 0, ~0, (1 << 6), rman_make_alignment_flags(1 << 6) | RF_ACTIVE); if (!sc->iobase) { device_printf(dev, "No I/O space?!\n"); return (ENXIO); } sc->wi_io_addr = rman_get_start(sc->iobase); sc->wi_btag = rman_get_bustag(sc->iobase); sc->wi_bhandle = rman_get_bushandle(sc->iobase); } else { sc->mem_rid = rid; sc->mem = bus_alloc_resource(dev, SYS_RES_MEMORY, &sc->mem_rid, 0, ~0, 1, RF_ACTIVE); if (!sc->mem) { device_printf(dev, "No Mem space on prism2.5?\n"); return (ENXIO); } sc->wi_btag = rman_get_bustag(sc->mem); sc->wi_bhandle = rman_get_bushandle(sc->mem); } sc->irq_rid = 0; sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &sc->irq_rid, 0, ~0, 1, RF_ACTIVE | ((sc->wi_bus_type == WI_BUS_PCCARD) ? 0 : RF_SHAREABLE)); if (!sc->irq) { wi_free(dev); device_printf(dev, "No irq?!\n"); return (ENXIO); } sc->dev = dev; sc->wi_unit = device_get_unit(dev); return (0); } static void wi_free(dev) device_t dev; { struct wi_softc *sc = device_get_softc(dev); if (sc->iobase != NULL) { bus_release_resource(dev, SYS_RES_IOPORT, sc->iobase_rid, sc->iobase); sc->iobase = NULL; } if (sc->irq != NULL) { bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq); sc->irq = NULL; } if (sc->mem != NULL) { bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem); sc->mem = NULL; } return; } static void wi_shutdown(dev) device_t dev; { struct wi_softc *sc; sc = device_get_softc(dev); wi_stop(sc); return; } #ifdef WICACHE /* wavelan signal strength cache code. * store signal/noise/quality on per MAC src basis in * a small fixed cache. The cache wraps if > MAX slots * used. The cache may be zeroed out to start over. * Two simple filters exist to reduce computation: * 1. ip only (literally 0x800) which may be used * to ignore some packets. It defaults to ip only. * it could be used to focus on broadcast, non-IP 802.11 beacons. * 2. multicast/broadcast only. This may be used to * ignore unicast packets and only cache signal strength * for multicast/broadcast packets (beacons); e.g., Mobile-IP * beacons and not unicast traffic. * * The cache stores (MAC src(index), IP src (major clue), signal, * quality, noise) * * No apologies for storing IP src here. It's easy and saves much * trouble elsewhere. The cache is assumed to be INET dependent, * although it need not be. */ #ifdef documentation int wi_sigitems; /* number of cached entries */ struct wi_sigcache wi_sigcache[MAXWICACHE]; /* array of cache entries */ int wi_nextitem; /* index/# of entries */ #endif /* control variables for cache filtering. Basic idea is * to reduce cost (e.g., to only Mobile-IP agent beacons * which are broadcast or multicast). Still you might * want to measure signal strength with unicast ping packets * on a pt. to pt. ant. setup. */ /* set true if you want to limit cache items to broadcast/mcast * only packets (not unicast). Useful for mobile-ip beacons which * are broadcast/multicast at network layer. Default is all packets * so ping/unicast will work say with pt. to pt. antennae setup. */ static int wi_cache_mcastonly = 0; SYSCTL_INT(_machdep, OID_AUTO, wi_cache_mcastonly, CTLFLAG_RW, &wi_cache_mcastonly, 0, ""); /* set true if you want to limit cache items to IP packets only */ static int wi_cache_iponly = 1; SYSCTL_INT(_machdep, OID_AUTO, wi_cache_iponly, CTLFLAG_RW, &wi_cache_iponly, 0, ""); /* * Original comments: * ----------------- * wi_cache_store, per rx packet store signal * strength in MAC (src) indexed cache. * * follows linux driver in how signal strength is computed. * In ad hoc mode, we use the rx_quality field. * signal and noise are trimmed to fit in the range from 47..138. * rx_quality field MSB is signal strength. * rx_quality field LSB is noise. * "quality" is (signal - noise) as is log value. * note: quality CAN be negative. * * In BSS mode, we use the RID for communication quality. * TBD: BSS mode is currently untested. * * Bill's comments: * --------------- * Actually, we use the rx_quality field all the time for both "ad-hoc" * and BSS modes. Why? Because reading an RID is really, really expensive: * there's a bunch of PIO operations that have to be done to read a record * from the NIC, and reading the comms quality RID each time a packet is * received can really hurt performance. We don't have to do this anyway: * the comms quality field only reflects the values in the rx_quality field * anyway. The comms quality RID is only meaningful in infrastructure mode, * but the values it contains are updated based on the rx_quality from * frames received from the access point. * * Also, according to Lucent, the signal strength and noise level values * can be converted to dBms by subtracting 149, so I've modified the code * to do that instead of the scaling it did originally. */ static void wi_cache_store(struct wi_softc *sc, struct ether_header *eh, struct mbuf *m, unsigned short rx_quality) { struct ip *ip = 0; int i; static int cache_slot = 0; /* use this cache entry */ static int wrapindex = 0; /* next "free" cache entry */ int sig, noise; int sawip=0; /* filters: * 1. ip only * 2. configurable filter to throw out unicast packets, * keep multicast only. */ if ((ntohs(eh->ether_type) == ETHERTYPE_IP)) { sawip = 1; } /* filter for ip packets only */ if (wi_cache_iponly && !sawip) { return; } /* filter for broadcast/multicast only */ if (wi_cache_mcastonly && ((eh->ether_dhost[0] & 1) == 0)) { return; } #ifdef SIGDEBUG printf("wi%d: q value %x (MSB=0x%x, LSB=0x%x) \n", sc->wi_unit, rx_quality & 0xffff, rx_quality >> 8, rx_quality & 0xff); #endif /* find the ip header. we want to store the ip_src * address. */ if (sawip) { ip = mtod(m, struct ip *); } /* do a linear search for a matching MAC address * in the cache table * . MAC address is 6 bytes, * . var w_nextitem holds total number of entries already cached */ for(i = 0; i < sc->wi_nextitem; i++) { if (! bcmp(eh->ether_shost , sc->wi_sigcache[i].macsrc, 6 )) { /* Match!, * so we already have this entry, * update the data */ break; } } /* did we find a matching mac address? * if yes, then overwrite a previously existing cache entry */ if (i < sc->wi_nextitem ) { cache_slot = i; } /* else, have a new address entry,so * add this new entry, * if table full, then we need to replace LRU entry */ else { /* check for space in cache table * note: wi_nextitem also holds number of entries * added in the cache table */ if ( sc->wi_nextitem < MAXWICACHE ) { cache_slot = sc->wi_nextitem; sc->wi_nextitem++; sc->wi_sigitems = sc->wi_nextitem; } /* no space found, so simply wrap with wrap index * and "zap" the next entry */ else { if (wrapindex == MAXWICACHE) { wrapindex = 0; } cache_slot = wrapindex++; } } /* invariant: cache_slot now points at some slot * in cache. */ if (cache_slot < 0 || cache_slot >= MAXWICACHE) { log(LOG_ERR, "wi_cache_store, bad index: %d of " "[0..%d], gross cache error\n", cache_slot, MAXWICACHE); return; } /* store items in cache * .ip source address * .mac src * .signal, etc. */ if (sawip) { sc->wi_sigcache[cache_slot].ipsrc = ip->ip_src.s_addr; } bcopy( eh->ether_shost, sc->wi_sigcache[cache_slot].macsrc, 6); sig = (rx_quality >> 8) & 0xFF; noise = rx_quality & 0xFF; sc->wi_sigcache[cache_slot].signal = sig - 149; sc->wi_sigcache[cache_slot].noise = noise - 149; sc->wi_sigcache[cache_slot].quality = sig - noise; return; } #endif static int wi_get_cur_ssid(sc, ssid, len) struct wi_softc *sc; char *ssid; int *len; { int error = 0; struct wi_req wreq; wreq.wi_len = WI_MAX_DATALEN; switch (sc->wi_ptype) { case WI_PORTTYPE_ADHOC: wreq.wi_type = WI_RID_CURRENT_SSID; error = wi_read_record(sc, (struct wi_ltv_gen *)&wreq); if (error != 0) break; if (wreq.wi_val[0] > IEEE80211_NWID_LEN) { error = EINVAL; break; } *len = wreq.wi_val[0]; bcopy(&wreq.wi_val[1], ssid, IEEE80211_NWID_LEN); break; case WI_PORTTYPE_BSS: wreq.wi_type = WI_RID_COMMQUAL; error = wi_read_record(sc, (struct wi_ltv_gen *)&wreq); if (error != 0) break; if (wreq.wi_val[0] != 0) /* associated */ { wreq.wi_type = WI_RID_CURRENT_SSID; wreq.wi_len = WI_MAX_DATALEN; error = wi_read_record(sc, (struct wi_ltv_gen *)&wreq); if (error != 0) break; if (wreq.wi_val[0] > IEEE80211_NWID_LEN) { error = EINVAL; break; } *len = wreq.wi_val[0]; bcopy(&wreq.wi_val[1], ssid, IEEE80211_NWID_LEN); } else { *len = IEEE80211_NWID_LEN; bcopy(sc->wi_net_name, ssid, IEEE80211_NWID_LEN); } break; default: error = EINVAL; break; } return error; } static int wi_media_change(ifp) struct ifnet *ifp; { struct wi_softc *sc = ifp->if_softc; int otype = sc->wi_ptype; int orate = sc->wi_tx_rate; if ((sc->ifmedia.ifm_cur->ifm_media & IFM_IEEE80211_ADHOC) != 0) sc->wi_ptype = WI_PORTTYPE_ADHOC; else sc->wi_ptype = WI_PORTTYPE_BSS; switch (IFM_SUBTYPE(sc->ifmedia.ifm_cur->ifm_media)) { case IFM_IEEE80211_DS1: sc->wi_tx_rate = 1; break; case IFM_IEEE80211_DS2: sc->wi_tx_rate = 2; break; case IFM_IEEE80211_DS5: sc->wi_tx_rate = 5; break; case IFM_IEEE80211_DS11: sc->wi_tx_rate = 11; break; case IFM_AUTO: sc->wi_tx_rate = 3; break; } if (otype != sc->wi_ptype || orate != sc->wi_tx_rate) wi_init(sc); return(0); } static void wi_media_status(ifp, imr) struct ifnet *ifp; struct ifmediareq *imr; { struct wi_req wreq; struct wi_softc *sc = ifp->if_softc; if (sc->wi_tx_rate == 3) { imr->ifm_active = IFM_IEEE80211|IFM_AUTO; if (sc->wi_ptype == WI_PORTTYPE_ADHOC) imr->ifm_active |= IFM_IEEE80211_ADHOC; wreq.wi_type = WI_RID_CUR_TX_RATE; wreq.wi_len = WI_MAX_DATALEN; if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq) == 0) { switch(wreq.wi_val[0]) { case 1: imr->ifm_active |= IFM_IEEE80211_DS1; break; case 2: imr->ifm_active |= IFM_IEEE80211_DS2; break; case 6: imr->ifm_active |= IFM_IEEE80211_DS5; break; case 11: imr->ifm_active |= IFM_IEEE80211_DS11; break; } } } else { imr->ifm_active = sc->ifmedia.ifm_cur->ifm_media; } imr->ifm_status = IFM_AVALID; if (sc->wi_ptype == WI_PORTTYPE_ADHOC) /* * XXX: It would be nice if we could give some actually * useful status like whether we joined another IBSS or * created one ourselves. */ imr->ifm_status |= IFM_ACTIVE; else { wreq.wi_type = WI_RID_COMMQUAL; wreq.wi_len = WI_MAX_DATALEN; if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq) == 0 && wreq.wi_val[0] != 0) imr->ifm_status |= IFM_ACTIVE; } }