/* * Written by Julian Elischer (julian@tfs.com) * for TRW Financial Systems for use under the MACH(2.5) operating system. * * TRW Financial Systems, in accordance with their agreement with Carnegie * Mellon University, makes this software available to CMU to distribute * or use in any manner that they see fit as long as this message is kept with * the software. For this reason TFS also grants any other persons or * organisations permission to use or modify this software. * * TFS supplies this software to be publicly redistributed * on the understanding that TFS is not responsible for the correct * functioning of this software in any circumstances. * * commenced: Sun Sep 27 18:14:01 PDT 1992 * * $Id: aha1742.c,v 1.59 1997/07/20 06:31:08 bde Exp $ */ #ifdef KERNEL /* don't laugh, it compiles as a program too.. look */ #include "opt_ddb.h" #include #include #include #include #include #include #include #include #include #include #include #include #endif /*KERNEL */ /* */ #ifdef KERNEL # ifdef DDB #define fatal_if_no_DDB() # else #define fatal_if_no_DDB() panic("panic for historical reasons") # endif #endif typedef unsigned long int physaddr; #define KVTOPHYS(x) vtophys(x) #define AHB_ECB_MAX 32 /* store up to 32ECBs at any one time */ /* in aha1742 H/W ( Not MAX ? ) */ #define ECB_HASH_SIZE 32 /* when we have a physical addr. for */ /* a ecb and need to find the ecb in */ /* space, look it up in the hash table */ #define ECB_HASH_SHIFT 9 /* only hash on multiples of 512 */ #define ECB_HASH(x) ((((long int)(x))>>ECB_HASH_SHIFT) % ECB_HASH_SIZE) #define AHB_NSEG 33 /* number of dma segments supported */ #define EISA_DEVICE_ID_ADAPTEC_1740 0x04900000 #define AHB_EISA_IOSIZE 0x100 #define AHB_EISA_SLOT_OFFSET 0xc00 /* AHA1740 EISA board control registers (Offset from slot base) */ #define EBCTRL 0x084 #define CDEN 0x01 /* * AHA1740 EISA board mode registers (Offset from slot base) */ #define PORTADDR 0x0C0 #define PORTADDR_ENHANCED 0x80 #define BIOSADDR 0x0C1 #define INTDEF 0x0C2 #define SCSIDEF 0x0C3 #define BUSDEF 0x0C4 #define RESV0 0x0C5 #define RESV1 0x0C6 #define RESV2 0x0C7 /**** bit definitions for INTDEF ****/ #define INT9 0x00 #define INT10 0x01 #define INT11 0x02 #define INT12 0x03 #define INT14 0x05 #define INT15 0x06 #define INTHIGH 0x08 /* int high=ACTIVE (else edge) */ #define INTEN 0x10 /**** bit definitions for SCSIDEF ****/ #define HSCSIID 0x0F /* our SCSI ID */ #define RSTPWR 0x10 /* reset scsi bus on power up or reset */ /**** bit definitions for BUSDEF ****/ #define B0uS 0x00 /* give up bus immediatly */ #define B4uS 0x01 /* delay 4uSec. */ #define B8uS 0x02 /* * AHA1740 ENHANCED mode mailbox control regs (Offset from slot base) */ #define MBOXOUT0 0x0D0 #define MBOXOUT1 0x0D1 #define MBOXOUT2 0x0D2 #define MBOXOUT3 0x0D3 #define ATTN 0x0D4 #define G2CNTRL 0x0D5 #define G2INTST 0x0D6 #define G2STAT 0x0D7 #define MBOXIN0 0x0D8 #define MBOXIN1 0x0D9 #define MBOXIN2 0x0DA #define MBOXIN3 0x0DB #define G2STAT2 0x0DC /* * Bit definitions for the 5 control/status registers */ #define ATTN_TARGET 0x0F #define ATTN_OPCODE 0xF0 #define OP_IMMED 0x10 #define AHB_TARG_RESET 0x80 #define OP_START_ECB 0x40 #define OP_ABORT_ECB 0x50 #define G2CNTRL_SET_HOST_READY 0x20 #define G2CNTRL_CLEAR_EISA_INT 0x40 #define G2CNTRL_HARD_RESET 0x80 #define G2INTST_TARGET 0x0F #define G2INTST_INT_STAT 0xF0 #define AHB_ECB_OK 0x10 #define AHB_ECB_RECOVERED 0x50 #define AHB_HW_ERR 0x70 #define AHB_IMMED_OK 0xA0 #define AHB_ECB_ERR 0xC0 #define AHB_ASN 0xD0 /* for target mode */ #define AHB_IMMED_ERR 0xE0 #define G2STAT_BUSY 0x01 #define G2STAT_INT_PEND 0x02 #define G2STAT_MBOX_EMPTY 0x04 #define G2STAT2_HOST_READY 0x01 struct ahb_dma_seg { physaddr addr; long len; }; struct ahb_ecb_status { u_short status; #define ST_DON 0x0001 #define ST_DU 0x0002 #define ST_QF 0x0008 #define ST_SC 0x0010 #define ST_DO 0x0020 #define ST_CH 0x0040 #define ST_INT 0x0080 #define ST_ASA 0x0100 #define ST_SNS 0x0200 #define ST_INI 0x0800 #define ST_ME 0x1000 #define ST_ECA 0x4000 u_char ha_status; #define HS_OK 0x00 #define HS_CMD_ABORTED_HOST 0x04 #define HS_CMD_ABORTED_ADAPTER 0x05 #define HS_TIMED_OUT 0x11 #define HS_HARDWARE_ERR 0x20 #define HS_SCSI_RESET_ADAPTER 0x22 #define HS_SCSI_RESET_INCOMING 0x23 u_char targ_status; #define TS_OK 0x00 #define TS_CHECK_CONDITION 0x02 #define TS_BUSY 0x08 u_long resid_count; u_long resid_addr; u_short addit_status; u_char sense_len; u_char unused[9]; u_char cdb[6]; }; struct ecb { u_char opcode; #define ECB_SCSI_OP 0x01 u_char:4; u_char options:3; u_char:1; short opt1; #define ECB_CNE 0x0001 #define ECB_DI 0x0080 #define ECB_SES 0x0400 #define ECB_S_G 0x1000 #define ECB_DSB 0x4000 #define ECB_ARS 0x8000 short opt2; #define ECB_LUN 0x0007 #define ECB_TAG 0x0008 #define ECB_TT 0x0030 #define ECB_ND 0x0040 #define ECB_DAT 0x0100 #define ECB_DIR 0x0200 #define ECB_ST 0x0400 #define ECB_CHK 0x0800 #define ECB_REC 0x4000 #define ECB_NRB 0x8000 u_short unused1; physaddr data; u_long datalen; physaddr status; physaddr chain; short unused2; short unused3; physaddr sense; u_char senselen; u_char cdblen; short cksum; u_char cdb[12]; /*-----------------end of hardware supported fields----------------*/ struct ecb *next; /* in free list */ struct scsi_xfer *xs; /* the scsi_xfer for this cmd */ int flags; #define ECB_FREE 0 #define ECB_ACTIVE 1 #define ECB_ABORTED 2 #define ECB_IMMED 4 #define ECB_IMMED_FAIL 8 struct ahb_dma_seg ahb_dma[AHB_NSEG]; struct ahb_ecb_status ecb_status; struct scsi_sense_data ecb_sense; struct ecb *nexthash; physaddr hashkey; /* physaddr of this struct */ }; struct ahb_data { int unit; int flags; #define AHB_INIT 0x01; int baseport; struct ecb *ecbhash[ECB_HASH_SIZE]; struct ecb *free_ecb; int our_id; /* our scsi id */ int vect; struct ecb *immed_ecb; /* an outstanding immediete command */ struct scsi_link sc_link; int numecbs; }; static u_int32_t ahb_adapter_info __P((int unit)); static struct ahb_data * ahb_alloc __P((int unit, u_long iobase, int irq)); static int ahb_attach __P((struct eisa_device *dev)); static int ahb_bus_attach __P((struct ahb_data *ahb)); static void ahb_done __P((struct ahb_data *ahb, struct ecb *ecb, int state)); static void ahb_free __P((struct ahb_data *ahb)); static void ahb_free_ecb __P((struct ahb_data* ahb, struct ecb *ecb, int flags)); static struct ecb * ahb_get_ecb __P((struct ahb_data* ahb, int flags)); static struct ecb * ahb_ecb_phys_kv __P((struct ahb_data *ahb, physaddr ecb_phys)); static int ahb_init __P((struct ahb_data *ahb)); static void ahbintr __P((void *arg)); static char *ahbmatch __P((eisa_id_t type)); static void ahbminphys __P((struct buf *bp)); static int ahb_poll __P((struct ahb_data *ahb, int wait)); #ifdef AHBDEBUG static void ahb_print_active_ecb __P((struct ahb_data *ahb)); static void ahb_print_ecb __P((struct ecb *ecb)); #endif static int ahbprobe __P((void)); static int ahb_reset __P((u_long port)); static int32_t ahb_scsi_cmd __P((struct scsi_xfer *xs)); static void ahb_send_immed __P((struct ahb_data *ahb, int target, u_long cmd)); static void ahb_send_mbox __P((struct ahb_data *ahb, int opcode, int target, struct ecb *ecb)); static timeout_t ahb_timeout; static struct ecb *cheat; static u_long ahb_unit = 0; static int ahb_debug = 0; SYSCTL_INT(_debug, OID_AUTO, ahb_debug, CTLFLAG_RW, &ahb_debug, 0, ""); #define AHB_SHOWECBS 0x01 #define AHB_SHOWINTS 0x02 #define AHB_SHOWCMDS 0x04 #define AHB_SHOWMISC 0x08 #define FAIL 1 #define SUCCESS 0 #define PAGESIZ 4096 #ifdef KERNEL static struct eisa_driver ahb_eisa_driver = { "ahb", ahbprobe, ahb_attach, /*shutdown*/NULL, &ahb_unit }; DATA_SET (eisadriver_set, ahb_eisa_driver); static struct scsi_adapter ahb_switch = { ahb_scsi_cmd, ahbminphys, 0, 0, ahb_adapter_info, "ahb", { 0, 0 } }; /* the below structure is so we have a default dev struct for our link struct */ static struct scsi_device ahb_dev = { NULL, /* Use default error handler */ NULL, /* have a queue, served by this */ NULL, /* have no async handler */ NULL, /* Use default 'done' routine */ "ahb", 0, { 0, 0 } }; #endif /*KERNEL */ #ifndef KERNEL main() { printf("ahb_data size is %d\n", sizeof(struct ahb_data)); printf("ecb size is %d\n", sizeof(struct ecb)); } #else /*KERNEL */ /* * Function to send a command out through a mailbox */ static void ahb_send_mbox(struct ahb_data* ahb, int opcode, int target, struct ecb *ecb) { int port = ahb->baseport; int wait = 300; /* 3ms should be enough */ int stport = port + G2STAT; int s = splbio(); while (--wait) { if ((inb(stport) & (G2STAT_BUSY | G2STAT_MBOX_EMPTY)) == (G2STAT_MBOX_EMPTY)) break; DELAY(10); } if (wait == 0) { printf("ahb%d: board is not responding\n", ahb->unit); Debugger("aha1742"); fatal_if_no_DDB(); } outl(port + MBOXOUT0, KVTOPHYS(ecb)); /* don't know this will work */ outb(port + ATTN, opcode | target); splx(s); } /* * Function to poll for command completion when in poll mode */ static int ahb_poll(struct ahb_data *ahb, int wait) { /* in msec */ int port = ahb->baseport; int stport = port + G2STAT; retry: while (--wait) { if (inb(stport) & G2STAT_INT_PEND) break; DELAY(1000); } if (wait == 0) { printf("ahb%d: board is not responding\n", ahb->unit); return (EIO); } if (cheat != ahb_ecb_phys_kv(ahb, inl(port + MBOXIN0))) { printf("discarding 0x%lx ", inl(port + MBOXIN0)); outb(port + G2CNTRL, G2CNTRL_CLEAR_EISA_INT); DELAY(50000); goto retry; } /* don't know this will work */ ahbintr((void *)ahb); return (0); } /* * Function to send an immediate type command to the adapter */ static void ahb_send_immed(struct ahb_data *ahb, int target, u_long cmd) { int port = ahb->baseport; int s = splbio(); int stport = port + G2STAT; int wait = 100; /* 1 ms enough? */ while (--wait) { if ((inb(stport) & (G2STAT_BUSY | G2STAT_MBOX_EMPTY)) == (G2STAT_MBOX_EMPTY)) break; DELAY(10); } if (wait == 0) { printf("ahb%d: board is not responding\n", ahb->unit); Debugger("aha1742"); fatal_if_no_DDB(); } outl(port + MBOXOUT0, cmd); /* don't know this will work */ outb(port + G2CNTRL, G2CNTRL_SET_HOST_READY); outb(port + ATTN, OP_IMMED | target); splx(s); } static char * ahbmatch(type) eisa_id_t type; { switch(type & 0xfffffe00) { case EISA_DEVICE_ID_ADAPTEC_1740: return ("Adaptec 174x SCSI host adapter"); break; default: break; } return (NULL); } int ahbprobe(void) { u_long iobase; char intdef; u_long irq; struct eisa_device *e_dev = NULL; int count; count = 0; while ((e_dev = eisa_match_dev(e_dev, ahbmatch))) { iobase = (e_dev->ioconf.slot * EISA_SLOT_SIZE) + AHB_EISA_SLOT_OFFSET; eisa_add_iospace(e_dev, iobase, AHB_EISA_IOSIZE, RESVADDR_NONE); intdef = inb(INTDEF + iobase); switch (intdef & 0x7) { case INT9: irq = 9; break; case INT10: irq = 10; break; case INT11: irq = 11; break; case INT12: irq = 12; break; case INT14: irq = 14; break; case INT15: irq = 15; break; default: printf("aha174X at slot %d: illegal " "irq setting %d\n", e_dev->ioconf.slot, (intdef & 0x7)); continue; } eisa_add_intr(e_dev, irq); eisa_registerdev(e_dev, &ahb_eisa_driver); count++; } return count; } static struct ahb_data * ahb_alloc(unit, iobase, irq) int unit; u_long iobase; int irq; { struct ahb_data *ahb; /* * Allocate a storage area for us */ ahb = malloc(sizeof(struct ahb_data), M_TEMP, M_NOWAIT); if (!ahb) { printf("ahb%d: cannot malloc!\n", unit); return NULL; } bzero(ahb, sizeof(struct ahb_data)); ahb->unit = unit; ahb->baseport = iobase; ahb->vect = irq; return(ahb); } static void ahb_free(ahb) struct ahb_data *ahb; { free(ahb, M_DEVBUF); return; } /* * reset board, If it doesn't respond, return failure */ static int ahb_reset(port) u_long port; { u_char i; int wait = 1000; /* 1 sec enough? */ int stport = port + G2STAT; outb(port + EBCTRL, CDEN); /* enable full card */ outb(port + PORTADDR, PORTADDR_ENHANCED); outb(port + G2CNTRL, G2CNTRL_HARD_RESET); DELAY(1000); outb(port + G2CNTRL, 0); DELAY(10000); while (--wait) { if ((inb(stport) & G2STAT_BUSY) == 0) break; DELAY(1000); } if (wait == 0) { printf("ahb_reset: No answer from aha1742 board\n"); return (0); } i = inb(port + MBOXIN0) & 0xff; if (i) { printf("ahb_reset: self test failed, val = 0x%x\n", i); return (0); } while (inb(stport) & G2STAT_INT_PEND) { printf("."); outb(port + G2CNTRL, G2CNTRL_CLEAR_EISA_INT); DELAY(10000); } outb(port + EBCTRL, CDEN); /* enable full card */ outb(port + PORTADDR, PORTADDR_ENHANCED); return (1); } /* * Attach ourselves and the devices on our bus */ static int ahb_attach(e_dev) struct eisa_device *e_dev; { /* * find unit and check we have that many defined */ int unit = e_dev->unit; struct ahb_data *ahb; resvaddr_t *iospace; int irq = ffs(e_dev->ioconf.irq) - 1; iospace = e_dev->ioconf.ioaddrs.lh_first; if(!iospace) return -1; if(!(ahb_reset(iospace->addr))) return -1; eisa_reg_start(e_dev); if(eisa_reg_iospace(e_dev, iospace)) { eisa_reg_end(e_dev); return -1; } if(!(ahb = ahb_alloc(unit, iospace->addr, irq))) { ahb_free(ahb); eisa_reg_end(e_dev); return -1; } if(eisa_reg_intr(e_dev, irq, ahbintr, (void *)ahb, &bio_imask, /*shared ==*/TRUE)) { ahb_free(ahb); eisa_reg_end(e_dev); return -1; } eisa_reg_end(e_dev); /* * Now that we know we own the resources we need, do the full * card initialization. */ if(ahb_init(ahb)){ ahb_free(ahb); /* * The board's IRQ line will not be left enabled * if we can't intialize correctly, so its safe * to release the irq. */ eisa_release_intr(e_dev, irq, ahbintr); return -1; } /* Attach sub-devices - always succeeds */ ahb_bus_attach(ahb); return(eisa_enable_intr(e_dev, irq)); } /* * Attach all the sub-devices we can find */ static int ahb_bus_attach(ahb) struct ahb_data *ahb; { struct scsibus_data *scbus; /* * fill in the prototype scsi_link. */ ahb->sc_link.adapter_unit = ahb->unit; ahb->sc_link.adapter_targ = ahb->our_id; ahb->sc_link.adapter_softc = ahb; ahb->sc_link.adapter = &ahb_switch; ahb->sc_link.device = &ahb_dev; /* * Prepare the scsibus_data area for the upperlevel * scsi code. */ scbus = scsi_alloc_bus(); if(!scbus) return 0; scbus->adapter_link = &ahb->sc_link; /* * ask the adapter what subunits are present */ scsi_attachdevs(scbus); return 1; } /* * Return some information to the caller about * the adapter and it's capabilities */ static u_int32_t ahb_adapter_info(unit) int unit; { return (2); /* 2 outstanding requests at a time per device */ } /* * Catch an interrupt from the adaptor */ static void ahbintr(arg) void *arg; { struct ahb_data *ahb; struct ecb *ecb; unsigned char stat; u_char ahbstat; int target; long int mboxval; int port; ahb = (struct ahb_data *)arg; port = ahb->baseport; #ifdef AHBDEBUG printf("ahbintr "); #endif /*AHBDEBUG */ while (inb(port + G2STAT) & G2STAT_INT_PEND) { /* * First get all the information and then * acknowlege the interrupt */ ahbstat = inb(port + G2INTST); target = ahbstat & G2INTST_TARGET; stat = ahbstat & G2INTST_INT_STAT; mboxval = inl(port + MBOXIN0); /* don't know this will work */ outb(port + G2CNTRL, G2CNTRL_CLEAR_EISA_INT); #ifdef AHBDEBUG printf("status = 0x%x ", stat); #endif /*AHBDEBUG */ /* * Process the completed operation */ if (stat == AHB_ECB_OK) { /* common case is fast */ ecb = ahb_ecb_phys_kv(ahb, mboxval); } else { switch (stat) { case AHB_IMMED_OK: ecb = ahb->immed_ecb; ahb->immed_ecb = 0; break; case AHB_IMMED_ERR: ecb = ahb->immed_ecb; ecb->flags |= ECB_IMMED_FAIL; ahb->immed_ecb = 0; break; case AHB_ASN: /* for target mode */ printf("ahb%d: " "Unexpected ASN interrupt(0x%lx)\n", ahb->unit, mboxval); ecb = 0; break; case AHB_HW_ERR: printf("ahb%d: " "Hardware error interrupt(0x%lx)\n", ahb->unit, mboxval); ecb = 0; break; case AHB_ECB_RECOVERED: ecb = ahb_ecb_phys_kv(ahb, mboxval); break; case AHB_ECB_ERR: ecb = ahb_ecb_phys_kv(ahb, mboxval); break; default: printf(" Unknown return from ahb%d(%x)\n", ahb->unit, ahbstat); ecb = 0; } } if (ecb) { #ifdef AHBDEBUG if (ahb_debug & AHB_SHOWCMDS) { show_scsi_cmd(ecb->xs); } if ((ahb_debug & AHB_SHOWECBS) && ecb) printf("", ecb); #endif /*AHBDEBUG */ untimeout(ahb_timeout, (caddr_t)ecb); ahb_done(ahb, ecb, ((stat == AHB_ECB_OK) ? SUCCESS : FAIL)); } } } /* * We have a ecb which has been processed by the * adaptor, now we look to see how the operation * went. */ static void ahb_done(ahb, ecb, state) struct ahb_data *ahb; int state; struct ecb *ecb; { struct ahb_ecb_status *stat = &ecb->ecb_status; struct scsi_sense_data *s1, *s2; struct scsi_xfer *xs = ecb->xs; SC_DEBUG(xs->sc_link, SDEV_DB2, ("ahb_done\n")); /* * Otherwise, put the results of the operation * into the xfer and call whoever started it */ if (ecb->flags & ECB_IMMED) { if (ecb->flags & ECB_IMMED_FAIL) { xs->error = XS_DRIVER_STUFFUP; } goto done; } if ((state == SUCCESS) || (xs->flags & SCSI_ERR_OK)) { /* All went correctly OR errors expected */ xs->resid = 0; xs->error = 0; } else { s1 = &(ecb->ecb_sense); s2 = &(xs->sense); if (stat->ha_status) { switch (stat->ha_status) { case HS_SCSI_RESET_ADAPTER: break; case HS_SCSI_RESET_INCOMING: break; case HS_CMD_ABORTED_HOST: /* No response */ case HS_CMD_ABORTED_ADAPTER: /* No response */ break; case HS_TIMED_OUT: /* No response */ #ifdef AHBDEBUG if (ahb_debug & AHB_SHOWMISC) { printf("timeout reported back\n"); } #endif /*AHBDEBUG */ xs->error = XS_TIMEOUT; break; default: /* Other scsi protocol messes */ xs->error = XS_DRIVER_STUFFUP; #ifdef AHBDEBUG if (ahb_debug & AHB_SHOWMISC) { printf("unexpected ha_status: %x\n", stat->ha_status); } #endif /*AHBDEBUG */ } } else { switch (stat->targ_status) { case TS_CHECK_CONDITION: /* structure copy!!!!! */ *s2 = *s1; xs->error = XS_SENSE; break; case TS_BUSY: xs->error = XS_BUSY; break; default: #ifdef AHBDEBUG if (ahb_debug & AHB_SHOWMISC) { printf("unexpected targ_status: %x\n", stat->targ_status); } #endif /*AHBDEBUG */ xs->error = XS_DRIVER_STUFFUP; } } } done: xs->flags |= ITSDONE; ahb_free_ecb(ahb, ecb, xs->flags); scsi_done(xs); } /* * A ecb (and hence a mbx-out is put onto the * free list. */ static void ahb_free_ecb(ahb, ecb, flags) struct ahb_data *ahb; int flags; struct ecb *ecb; { unsigned int opri = 0; if (!(flags & SCSI_NOMASK)) opri = splbio(); ecb->next = ahb->free_ecb; ahb->free_ecb = ecb; ecb->flags = ECB_FREE; /* * If there were none, wake abybody waiting for * one to come free, starting with queued entries */ if (!ecb->next) { wakeup((caddr_t)&ahb->free_ecb); } if (!(flags & SCSI_NOMASK)) splx(opri); } /* * Get a free ecb * If there are none, see if we can allocate a * new one. If so, put it in the hash table too * otherwise either return an error or sleep */ static struct ecb * ahb_get_ecb(ahb, flags) struct ahb_data *ahb; int flags; { unsigned opri = 0; struct ecb *ecbp; int hashnum; opri = splbio(); /* * If we can and have to, sleep waiting for one to come free * but only if we can't allocate a new one. */ while (!(ecbp = ahb->free_ecb)) { if (ahb->numecbs < AHB_ECB_MAX) { ecbp = (struct ecb *) malloc(sizeof(struct ecb), M_TEMP, M_NOWAIT); if (ecbp) { bzero(ecbp, sizeof(struct ecb)); ahb->numecbs++; ecbp->flags = ECB_ACTIVE; /* * put in the phystokv hash table * Never gets taken out. */ ecbp->hashkey = KVTOPHYS(ecbp); hashnum = ECB_HASH(ecbp->hashkey); ecbp->nexthash = ahb->ecbhash[hashnum]; ahb->ecbhash[hashnum] = ecbp; } else { printf("ahb%d: Can't malloc ECB\n", ahb->unit); } break; } else { if (!(flags & SCSI_NOSLEEP)) { tsleep((caddr_t)&ahb->free_ecb, PRIBIO, "ahbecb", 0); continue; } break; } } if (ecbp) { /* Get ECB from from free list */ ahb->free_ecb = ecbp->next; ecbp->flags = ECB_ACTIVE; } splx(opri); return (ecbp); } /* * given a physical address, find the ecb that * it corresponds to: */ static struct ecb * ahb_ecb_phys_kv(ahb, ecb_phys) struct ahb_data *ahb; physaddr ecb_phys; { int hashnum = ECB_HASH(ecb_phys); struct ecb *ecbp = ahb->ecbhash[hashnum]; while (ecbp) { if (ecbp->hashkey == ecb_phys) break; ecbp = ecbp->nexthash; } return ecbp; } /* * Start the board, ready for normal operation */ static int ahb_init(ahb) struct ahb_data *ahb; { u_char intdef; int port = ahb->baseport; /* * Assume we have a board at this stage * setup dma channel from jumpers and save int * level */ intdef = inb(port + INTDEF); outb(port + INTDEF, (intdef | INTEN)); /* make sure we can interrupt */ /* who are we on the scsi bus? */ ahb->our_id = (inb(port + SCSIDEF) & HSCSIID); /* * Note that we are going and return (to probe) */ ahb->flags |= AHB_INIT; return (0); } #ifndef min #define min(x,y) (x < y ? x : y) #endif /* min */ static void ahbminphys(bp) struct buf *bp; { if (bp->b_bcount > ((AHB_NSEG - 1) * PAGESIZ)) { bp->b_bcount = ((AHB_NSEG - 1) * PAGESIZ); } } /* * start a scsi operation given the command and * the data address. Also needs the unit, target * and lu */ static int32_t ahb_scsi_cmd(xs) struct scsi_xfer *xs; { struct ecb *ecb; struct ahb_dma_seg *sg; int seg; /* scatter gather seg being worked on */ int thiskv; physaddr thisphys, nextphys; int bytes_this_seg, bytes_this_page, datalen, flags; struct ahb_data *ahb; int s; ahb = (struct ahb_data *)xs->sc_link->adapter_softc; SC_DEBUG(xs->sc_link, SDEV_DB2, ("ahb_scsi_cmd\n")); /* * get a ecb (mbox-out) to use. If the transfer * is from a buf (possibly from interrupt time) * then we can't allow it to sleep */ flags = xs->flags; if (xs->bp) flags |= (SCSI_NOSLEEP); /* just to be sure */ if (flags & ITSDONE) { printf("ahb%d: Already done?", ahb->unit); xs->flags &= ~ITSDONE; } if (!(flags & INUSE)) { printf("ahb%d: Not in use?", ahb->unit); xs->flags |= INUSE; } if (!(ecb = ahb_get_ecb(ahb, flags))) { xs->error = XS_DRIVER_STUFFUP; return (TRY_AGAIN_LATER); } cheat = ecb; SC_DEBUG(xs->sc_link, SDEV_DB3, ("start ecb(%p)\n", ecb)); ecb->xs = xs; /* * If it's a reset, we need to do an 'immediate' * command, and store it's ecb for later * if there is already an immediate waiting, * then WE must wait */ if (flags & SCSI_RESET) { ecb->flags |= ECB_IMMED; if (ahb->immed_ecb) { return (TRY_AGAIN_LATER); } ahb->immed_ecb = ecb; if (!(flags & SCSI_NOMASK)) { s = splbio(); ahb_send_immed(ahb, xs->sc_link->target, AHB_TARG_RESET); timeout(ahb_timeout, (caddr_t)ecb, (xs->timeout * hz) / 1000); splx(s); return (SUCCESSFULLY_QUEUED); } else { ahb_send_immed(ahb, xs->sc_link->target, AHB_TARG_RESET); /* * If we can't use interrupts, poll on completion */ SC_DEBUG(xs->sc_link, SDEV_DB3, ("wait\n")); if (ahb_poll(ahb, xs->timeout)) { ahb_free_ecb(ahb, ecb, flags); xs->error = XS_TIMEOUT; return (HAD_ERROR); } return (COMPLETE); } } /* * Put all the arguments for the xfer in the ecb */ ecb->opcode = ECB_SCSI_OP; ecb->opt1 = ECB_SES | ECB_DSB | ECB_ARS; if (xs->datalen) { ecb->opt1 |= ECB_S_G; } ecb->opt2 = xs->sc_link->lun | ECB_NRB; ecb->cdblen = xs->cmdlen; ecb->sense = KVTOPHYS(&(ecb->ecb_sense)); ecb->senselen = sizeof(ecb->ecb_sense); ecb->status = KVTOPHYS(&(ecb->ecb_status)); if (xs->datalen) { /* should use S/G only if not zero length */ ecb->data = KVTOPHYS(ecb->ahb_dma); sg = ecb->ahb_dma; seg = 0; #ifdef TFS if (flags & SCSI_DATA_UIO) { iovp = ((struct uio *) xs->data)->uio_iov; datalen = ((struct uio *) xs->data)->uio_iovcnt; xs->datalen = 0; while ((datalen) && (seg < AHB_NSEG)) { sg->addr = (physaddr) iovp->iov_base; xs->datalen += sg->len = iovp->iov_len; SC_DEBUGN(xs->sc_link, SDEV_DB4, ("(0x%x@0x%x)", iovp->iov_len ,iovp->iov_base)); sg++; iovp++; seg++; datalen--; } } else #endif /*TFS */ { /* * Set up the scatter gather block */ SC_DEBUG(xs->sc_link, SDEV_DB4, ("%ld @%p:- ", xs->datalen, xs->data)); datalen = xs->datalen; thiskv = (int) xs->data; thisphys = KVTOPHYS(thiskv); while ((datalen) && (seg < AHB_NSEG)) { bytes_this_seg = 0; /* put in the base address */ sg->addr = thisphys; SC_DEBUGN(xs->sc_link, SDEV_DB4, ("0x%lx", thisphys)); /* do it at least once */ nextphys = thisphys; while ((datalen) && (thisphys == nextphys)) { /* * This page is contiguous (physically) with * the the last, just extend the length */ /* how far to the end of the page */ nextphys = (thisphys & (~(PAGESIZ - 1))) + PAGESIZ; bytes_this_page = nextphys - thisphys; /**** or the data ****/ bytes_this_page = min(bytes_this_page ,datalen); bytes_this_seg += bytes_this_page; datalen -= bytes_this_page; /* get more ready for the next page */ thiskv = (thiskv & (~(PAGESIZ - 1))) + PAGESIZ; if (datalen) thisphys = KVTOPHYS(thiskv); } /* * next page isn't contiguous, finish the seg */ SC_DEBUGN(xs->sc_link, SDEV_DB4, ("(0x%x)", bytes_this_seg)); sg->len = bytes_this_seg; sg++; seg++; } } /*end of iov/kv decision */ ecb->datalen = seg * sizeof(struct ahb_dma_seg); SC_DEBUGN(xs->sc_link, SDEV_DB4, ("\n")); if (datalen) { /* there's still data, must have run out of segs! */ printf("ahb_scsi_cmd%d: more than %d DMA segs\n", ahb->unit, AHB_NSEG); xs->error = XS_DRIVER_STUFFUP; ahb_free_ecb(ahb, ecb, flags); return (HAD_ERROR); } } else { /* No data xfer, use non S/G values */ ecb->data = (physaddr) 0; ecb->datalen = 0; } ecb->chain = (physaddr) 0; /* * Put the scsi command in the ecb and start it */ bcopy(xs->cmd, ecb->cdb, xs->cmdlen); /* * Usually return SUCCESSFULLY QUEUED */ if (!(flags & SCSI_NOMASK)) { s = splbio(); ahb_send_mbox(ahb, OP_START_ECB, xs->sc_link->target, ecb); timeout(ahb_timeout, (caddr_t)ecb, (xs->timeout * hz) / 1000); splx(s); SC_DEBUG(xs->sc_link, SDEV_DB3, ("cmd_sent\n")); return (SUCCESSFULLY_QUEUED); } /* * If we can't use interrupts, poll on completion */ ahb_send_mbox(ahb, OP_START_ECB, xs->sc_link->target, ecb); SC_DEBUG(xs->sc_link, SDEV_DB3, ("cmd_wait\n")); do { if (ahb_poll(ahb, xs->timeout)) { if (!(xs->flags & SCSI_SILENT)) printf("cmd fail\n"); ahb_send_mbox(ahb, OP_ABORT_ECB, xs->sc_link->target, ecb); if (ahb_poll(ahb, 2000)) { printf("abort failed in wait\n"); ahb_free_ecb(ahb, ecb, flags); } xs->error = XS_DRIVER_STUFFUP; return (HAD_ERROR); } } while (!(xs->flags & ITSDONE)); /* something (?) else finished */ if (xs->error) { return (HAD_ERROR); } return (COMPLETE); } static void ahb_timeout(void *arg1) { struct ecb * ecb = (struct ecb *)arg1; struct ahb_data *ahb; int s = splbio(); ahb = ecb->xs->sc_link->adapter_softc; printf("ahb%d:%d:%d (%s%d) timed out ", ahb->unit ,ecb->xs->sc_link->target ,ecb->xs->sc_link->lun ,ecb->xs->sc_link->device->name ,ecb->xs->sc_link->dev_unit); #ifdef AHBDEBUG if (ahb_debug & AHB_SHOWECBS) ahb_print_active_ecb(ahb); #endif /*AHBDEBUG */ /* * If it's immediate, don't try abort it */ if (ecb->flags & ECB_IMMED) { ecb->xs->retries = 0; /* I MEAN IT ! */ ecb->flags |= ECB_IMMED_FAIL; ahb_done(ahb, ecb, FAIL); splx(s); return; } /* * If it has been through before, then * a previous abort has failed, don't * try abort again */ if (ecb->flags == ECB_ABORTED) { /* * abort timed out */ printf("AGAIN"); ecb->xs->retries = 0; /* I MEAN IT ! */ ecb->ecb_status.ha_status = HS_CMD_ABORTED_HOST; ahb_done(ahb, ecb, FAIL); } else { /* abort the operation that has timed out */ printf("\n"); ahb_send_mbox(ahb, OP_ABORT_ECB, ecb->xs->sc_link->target, ecb); /* 2 secs for the abort */ timeout(ahb_timeout, (caddr_t)ecb, 2 * hz); ecb->flags = ECB_ABORTED; } splx(s); } #ifdef AHBDEBUG static void ahb_print_ecb(ecb) struct ecb *ecb; { printf("ecb:%x op:%x cmdlen:%d senlen:%d\n" ,ecb ,ecb->opcode ,ecb->cdblen ,ecb->senselen); printf(" datlen:%d hstat:%x tstat:%x flags:%x\n" ,ecb->datalen ,ecb->ecb_status.ha_status ,ecb->ecb_status.targ_status ,ecb->flags); show_scsi_cmd(ecb->xs); } static void ahb_print_active_ecb(ahb) struct ahb_data *ahb; { struct ecb *ecb; int i = 0; while (i < ECB_HASH_SIZE) { ecb = ahb->ecbhash[i]; while (ecb) { if (ecb->flags != ECB_FREE) { ahb_print_ecb(ecb); } ecb = ecb->nexthash; } i++; } } #endif /*AHBDEBUG */ #endif /*KERNEL */