/* * Copyright (c) 2003, Jeffrey Roberson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern int max_threads_per_proc; extern int max_groups_per_proc; SYSCTL_DECL(_kern_threads); static int thr_scope_sys = 0; SYSCTL_INT(_kern_threads, OID_AUTO, thr_scope_sys, CTLFLAG_RW, &thr_scope_sys, 0, "sys or proc scope scheduling"); static int thr_concurrency = 0; SYSCTL_INT(_kern_threads, OID_AUTO, thr_concurrency, CTLFLAG_RW, &thr_concurrency, 0, "a concurrency value if not default"); /* * System call interface. */ int thr_create(struct thread *td, struct thr_create_args *uap) /* ucontext_t *ctx, long *id, int flags */ { struct thread *newtd; ucontext_t ctx; long id; int error; struct ksegrp *kg, *newkg; struct proc *p; int scope_sys; p = td->td_proc; kg = td->td_ksegrp; if ((error = copyin(uap->ctx, &ctx, sizeof(ctx)))) return (error); /* Have race condition but it is cheap */ if ((p->p_numksegrps >= max_groups_per_proc) || (p->p_numthreads >= max_threads_per_proc)) { return (EPROCLIM); } scope_sys = thr_scope_sys; /* Initialize our td and new ksegrp.. */ newtd = thread_alloc(); if (scope_sys) newkg = ksegrp_alloc(); else newkg = kg; /* * Try the copyout as soon as we allocate the td so we don't have to * tear things down in a failure case below. */ id = newtd->td_tid; if ((error = copyout(&id, uap->id, sizeof(long)))) { if (scope_sys) ksegrp_free(newkg); thread_free(newtd); return (error); } bzero(&newtd->td_startzero, __rangeof(struct thread, td_startzero, td_endzero)); bcopy(&td->td_startcopy, &newtd->td_startcopy, __rangeof(struct thread, td_startcopy, td_endcopy)); if (scope_sys) { bzero(&newkg->kg_startzero, __rangeof(struct ksegrp, kg_startzero, kg_endzero)); bcopy(&kg->kg_startcopy, &newkg->kg_startcopy, __rangeof(struct ksegrp, kg_startcopy, kg_endcopy)); } newtd->td_proc = td->td_proc; newtd->td_ucred = crhold(td->td_ucred); /* Set up our machine context. */ cpu_set_upcall(newtd, td); error = set_mcontext(newtd, &ctx.uc_mcontext); if (error != 0) { if (scope_sys) ksegrp_free(newkg); thread_free(newtd); crfree(td->td_ucred); goto out; } /* Link the thread and kse into the ksegrp and make it runnable. */ PROC_LOCK(td->td_proc); if (scope_sys) { sched_init_concurrency(newkg); } else { if ((td->td_proc->p_flag & P_HADTHREADS) == 0) { sched_set_concurrency(kg, thr_concurrency ? thr_concurrency : (2*mp_ncpus)); } } td->td_proc->p_flag |= P_HADTHREADS; newtd->td_sigmask = td->td_sigmask; mtx_lock_spin(&sched_lock); if (scope_sys) ksegrp_link(newkg, p); thread_link(newtd, newkg); mtx_unlock_spin(&sched_lock); PROC_UNLOCK(p); /* let the scheduler know about these things. */ mtx_lock_spin(&sched_lock); if (scope_sys) sched_fork_ksegrp(td, newkg); sched_fork_thread(td, newtd); TD_SET_CAN_RUN(newtd); if ((uap->flags & THR_SUSPENDED) == 0) setrunqueue(newtd, SRQ_BORING); mtx_unlock_spin(&sched_lock); out: return (error); } int thr_self(struct thread *td, struct thr_self_args *uap) /* long *id */ { long id; int error; id = td->td_tid; if ((error = copyout(&id, uap->id, sizeof(long)))) return (error); return (0); } int thr_exit(struct thread *td, struct thr_exit_args *uap) /* long *state */ { struct proc *p; p = td->td_proc; /* Signal userland that it can free the stack. */ if ((void *)uap->state != NULL) suword((void *)uap->state, 1); PROC_LOCK(p); mtx_lock_spin(&sched_lock); /* * Shutting down last thread in the proc. This will actually * call exit() in the trampoline when it returns. */ if (p->p_numthreads != 1) { thread_exit(); /* NOTREACHED */ } mtx_unlock_spin(&sched_lock); PROC_UNLOCK(p); return (0); } int thr_kill(struct thread *td, struct thr_kill_args *uap) /* long id, int sig */ { struct thread *ttd; struct proc *p; int error; p = td->td_proc; error = 0; PROC_LOCK(p); FOREACH_THREAD_IN_PROC(p, ttd) { if (ttd->td_tid == uap->id) break; } if (ttd == NULL) { error = ESRCH; goto out; } if (uap->sig == 0) goto out; if (!_SIG_VALID(uap->sig)) { error = EINVAL; goto out; } tdsignal(ttd, uap->sig, SIGTARGET_TD); out: PROC_UNLOCK(p); return (error); } int thr_suspend(struct thread *td, struct thr_suspend_args *uap) /* const struct timespec *timeout */ { struct timespec ts; struct timeval tv; int error; int hz; hz = 0; error = 0; if (uap->timeout != NULL) { error = copyin((const void *)uap->timeout, (void *)&ts, sizeof(struct timespec)); if (error != 0) return (error); if (ts.tv_nsec < 0 || ts.tv_nsec > 1000000000) return (EINVAL); if (ts.tv_sec == 0 && ts.tv_nsec == 0) return (ETIMEDOUT); TIMESPEC_TO_TIMEVAL(&tv, &ts); hz = tvtohz(&tv); } PROC_LOCK(td->td_proc); if ((td->td_flags & TDF_THRWAKEUP) == 0) error = msleep((void *)td, &td->td_proc->p_mtx, td->td_priority | PCATCH, "lthr", hz); mtx_lock_spin(&sched_lock); td->td_flags &= ~TDF_THRWAKEUP; mtx_unlock_spin(&sched_lock); PROC_UNLOCK(td->td_proc); return (error == EWOULDBLOCK ? ETIMEDOUT : error); } int thr_wake(struct thread *td, struct thr_wake_args *uap) /* long id */ { struct thread *ttd; PROC_LOCK(td->td_proc); FOREACH_THREAD_IN_PROC(td->td_proc, ttd) { if (ttd->td_tid == uap->id) break; } if (ttd == NULL) { PROC_UNLOCK(td->td_proc); return (ESRCH); } mtx_lock_spin(&sched_lock); ttd->td_flags |= TDF_THRWAKEUP; mtx_unlock_spin(&sched_lock); wakeup_one((void *)ttd); PROC_UNLOCK(td->td_proc); return (0); }