/*- * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $ */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define L3_ADDR_SIN6(le) ((struct sockaddr_in6 *) L3_ADDR(le)) #include #include #include #include #include #include #include #include #include #include #include #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ #define SIN6(s) ((const struct sockaddr_in6 *)(s)) /* timer values */ VNET_DEFINE(int, nd6_prune) = 1; /* walk list every 1 seconds */ VNET_DEFINE(int, nd6_delay) = 5; /* delay first probe time 5 second */ VNET_DEFINE(int, nd6_umaxtries) = 3; /* maximum unicast query */ VNET_DEFINE(int, nd6_mmaxtries) = 3; /* maximum multicast query */ VNET_DEFINE(int, nd6_useloopback) = 1; /* use loopback interface for * local traffic */ VNET_DEFINE(int, nd6_gctimer) = (60 * 60 * 24); /* 1 day: garbage * collection timer */ /* preventing too many loops in ND option parsing */ static VNET_DEFINE(int, nd6_maxndopt) = 10; /* max # of ND options allowed */ VNET_DEFINE(int, nd6_maxnudhint) = 0; /* max # of subsequent upper * layer hints */ static VNET_DEFINE(int, nd6_maxqueuelen) = 1; /* max pkts cached in unresolved * ND entries */ #define V_nd6_maxndopt VNET(nd6_maxndopt) #define V_nd6_maxqueuelen VNET(nd6_maxqueuelen) #ifdef ND6_DEBUG VNET_DEFINE(int, nd6_debug) = 1; #else VNET_DEFINE(int, nd6_debug) = 0; #endif /* for debugging? */ #if 0 static int nd6_inuse, nd6_allocated; #endif VNET_DEFINE(struct nd_drhead, nd_defrouter); VNET_DEFINE(struct nd_prhead, nd_prefix); VNET_DEFINE(int, nd6_recalc_reachtm_interval) = ND6_RECALC_REACHTM_INTERVAL; #define V_nd6_recalc_reachtm_interval VNET(nd6_recalc_reachtm_interval) int (*send_sendso_input_hook)(struct mbuf *, struct ifnet *, int, int); static int nd6_is_new_addr_neighbor(struct sockaddr_in6 *, struct ifnet *); static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *); static void nd6_slowtimo(void *); static int regen_tmpaddr(struct in6_ifaddr *); static struct llentry *nd6_free(struct llentry *, int); static void nd6_llinfo_timer(void *); static void clear_llinfo_pqueue(struct llentry *); static void nd6_rtrequest(int, struct rtentry *, struct rt_addrinfo *); static int nd6_output_lle(struct ifnet *, struct ifnet *, struct mbuf *, struct sockaddr_in6 *); static int nd6_output_ifp(struct ifnet *, struct ifnet *, struct mbuf *, struct sockaddr_in6 *); static VNET_DEFINE(struct callout, nd6_slowtimo_ch); #define V_nd6_slowtimo_ch VNET(nd6_slowtimo_ch) VNET_DEFINE(struct callout, nd6_timer_ch); void nd6_init(void) { LIST_INIT(&V_nd_prefix); /* initialization of the default router list */ TAILQ_INIT(&V_nd_defrouter); /* start timer */ callout_init(&V_nd6_slowtimo_ch, 0); callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, nd6_slowtimo, curvnet); nd6_dad_init(); } #ifdef VIMAGE void nd6_destroy() { callout_drain(&V_nd6_slowtimo_ch); callout_drain(&V_nd6_timer_ch); } #endif struct nd_ifinfo * nd6_ifattach(struct ifnet *ifp) { struct nd_ifinfo *nd; nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK|M_ZERO); nd->initialized = 1; nd->chlim = IPV6_DEFHLIM; nd->basereachable = REACHABLE_TIME; nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); nd->retrans = RETRANS_TIMER; nd->flags = ND6_IFF_PERFORMNUD; /* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL. * XXXHRS: Clear ND6_IFF_AUTO_LINKLOCAL on an IFT_BRIDGE interface by * default regardless of the V_ip6_auto_linklocal configuration to * give a reasonable default behavior. */ if ((V_ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) || (ifp->if_flags & IFF_LOOPBACK)) nd->flags |= ND6_IFF_AUTO_LINKLOCAL; /* * A loopback interface does not need to accept RTADV. * XXXHRS: Clear ND6_IFF_ACCEPT_RTADV on an IFT_BRIDGE interface by * default regardless of the V_ip6_accept_rtadv configuration to * prevent the interface from accepting RA messages arrived * on one of the member interfaces with ND6_IFF_ACCEPT_RTADV. */ if (V_ip6_accept_rtadv && !(ifp->if_flags & IFF_LOOPBACK) && (ifp->if_type != IFT_BRIDGE)) nd->flags |= ND6_IFF_ACCEPT_RTADV; if (V_ip6_no_radr && !(ifp->if_flags & IFF_LOOPBACK)) nd->flags |= ND6_IFF_NO_RADR; /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ nd6_setmtu0(ifp, nd); return nd; } void nd6_ifdetach(struct nd_ifinfo *nd) { free(nd, M_IP6NDP); } /* * Reset ND level link MTU. This function is called when the physical MTU * changes, which means we might have to adjust the ND level MTU. */ void nd6_setmtu(struct ifnet *ifp) { nd6_setmtu0(ifp, ND_IFINFO(ifp)); } /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */ void nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi) { u_int32_t omaxmtu; omaxmtu = ndi->maxmtu; switch (ifp->if_type) { case IFT_ARCNET: ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */ break; case IFT_FDDI: ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); /* RFC2467 */ break; case IFT_ISO88025: ndi->maxmtu = MIN(ISO88025_MAX_MTU, ifp->if_mtu); break; default: ndi->maxmtu = ifp->if_mtu; break; } /* * Decreasing the interface MTU under IPV6 minimum MTU may cause * undesirable situation. We thus notify the operator of the change * explicitly. The check for omaxmtu is necessary to restrict the * log to the case of changing the MTU, not initializing it. */ if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { log(LOG_NOTICE, "nd6_setmtu0: " "new link MTU on %s (%lu) is too small for IPv6\n", if_name(ifp), (unsigned long)ndi->maxmtu); } if (ndi->maxmtu > V_in6_maxmtu) in6_setmaxmtu(); /* check all interfaces just in case */ } void nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts) { bzero(ndopts, sizeof(*ndopts)); ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; ndopts->nd_opts_last = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); if (icmp6len == 0) { ndopts->nd_opts_done = 1; ndopts->nd_opts_search = NULL; } } /* * Take one ND option. */ struct nd_opt_hdr * nd6_option(union nd_opts *ndopts) { struct nd_opt_hdr *nd_opt; int olen; KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", __func__)); if (ndopts->nd_opts_search == NULL) return NULL; if (ndopts->nd_opts_done) return NULL; nd_opt = ndopts->nd_opts_search; /* make sure nd_opt_len is inside the buffer */ if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { bzero(ndopts, sizeof(*ndopts)); return NULL; } olen = nd_opt->nd_opt_len << 3; if (olen == 0) { /* * Message validation requires that all included * options have a length that is greater than zero. */ bzero(ndopts, sizeof(*ndopts)); return NULL; } ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); if (ndopts->nd_opts_search > ndopts->nd_opts_last) { /* option overruns the end of buffer, invalid */ bzero(ndopts, sizeof(*ndopts)); return NULL; } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { /* reached the end of options chain */ ndopts->nd_opts_done = 1; ndopts->nd_opts_search = NULL; } return nd_opt; } /* * Parse multiple ND options. * This function is much easier to use, for ND routines that do not need * multiple options of the same type. */ int nd6_options(union nd_opts *ndopts) { struct nd_opt_hdr *nd_opt; int i = 0; KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", __func__)); if (ndopts->nd_opts_search == NULL) return 0; while (1) { nd_opt = nd6_option(ndopts); if (nd_opt == NULL && ndopts->nd_opts_last == NULL) { /* * Message validation requires that all included * options have a length that is greater than zero. */ ICMP6STAT_INC(icp6s_nd_badopt); bzero(ndopts, sizeof(*ndopts)); return -1; } if (nd_opt == NULL) goto skip1; switch (nd_opt->nd_opt_type) { case ND_OPT_SOURCE_LINKADDR: case ND_OPT_TARGET_LINKADDR: case ND_OPT_MTU: case ND_OPT_REDIRECTED_HEADER: case ND_OPT_NONCE: if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { nd6log((LOG_INFO, "duplicated ND6 option found (type=%d)\n", nd_opt->nd_opt_type)); /* XXX bark? */ } else { ndopts->nd_opt_array[nd_opt->nd_opt_type] = nd_opt; } break; case ND_OPT_PREFIX_INFORMATION: if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { ndopts->nd_opt_array[nd_opt->nd_opt_type] = nd_opt; } ndopts->nd_opts_pi_end = (struct nd_opt_prefix_info *)nd_opt; break; /* What about ND_OPT_ROUTE_INFO? RFC 4191 */ case ND_OPT_RDNSS: /* RFC 6106 */ case ND_OPT_DNSSL: /* RFC 6106 */ /* * Silently ignore options we know and do not care about * in the kernel. */ break; default: /* * Unknown options must be silently ignored, * to accomodate future extension to the protocol. */ nd6log((LOG_DEBUG, "nd6_options: unsupported option %d - " "option ignored\n", nd_opt->nd_opt_type)); } skip1: i++; if (i > V_nd6_maxndopt) { ICMP6STAT_INC(icp6s_nd_toomanyopt); nd6log((LOG_INFO, "too many loop in nd opt\n")); break; } if (ndopts->nd_opts_done) break; } return 0; } /* * ND6 timer routine to handle ND6 entries */ void nd6_llinfo_settimer_locked(struct llentry *ln, long tick) { int canceled; LLE_WLOCK_ASSERT(ln); if (tick < 0) { ln->la_expire = 0; ln->ln_ntick = 0; canceled = callout_stop(&ln->ln_timer_ch); } else { ln->la_expire = time_uptime + tick / hz; LLE_ADDREF(ln); if (tick > INT_MAX) { ln->ln_ntick = tick - INT_MAX; canceled = callout_reset(&ln->ln_timer_ch, INT_MAX, nd6_llinfo_timer, ln); } else { ln->ln_ntick = 0; canceled = callout_reset(&ln->ln_timer_ch, tick, nd6_llinfo_timer, ln); } } if (canceled) LLE_REMREF(ln); } void nd6_llinfo_settimer(struct llentry *ln, long tick) { LLE_WLOCK(ln); nd6_llinfo_settimer_locked(ln, tick); LLE_WUNLOCK(ln); } static void nd6_llinfo_timer(void *arg) { struct llentry *ln; struct in6_addr *dst; struct ifnet *ifp; struct nd_ifinfo *ndi = NULL; KASSERT(arg != NULL, ("%s: arg NULL", __func__)); ln = (struct llentry *)arg; LLE_WLOCK(ln); if (callout_pending(&ln->la_timer)) { /* * Here we are a bit odd here in the treatment of * active/pending. If the pending bit is set, it got * rescheduled before I ran. The active * bit we ignore, since if it was stopped * in ll_tablefree() and was currently running * it would have return 0 so the code would * not have deleted it since the callout could * not be stopped so we want to go through * with the delete here now. If the callout * was restarted, the pending bit will be back on and * we just want to bail since the callout_reset would * return 1 and our reference would have been removed * by nd6_llinfo_settimer_locked above since canceled * would have been 1. */ LLE_WUNLOCK(ln); return; } ifp = ln->lle_tbl->llt_ifp; CURVNET_SET(ifp->if_vnet); if (ln->ln_ntick > 0) { if (ln->ln_ntick > INT_MAX) { ln->ln_ntick -= INT_MAX; nd6_llinfo_settimer_locked(ln, INT_MAX); } else { ln->ln_ntick = 0; nd6_llinfo_settimer_locked(ln, ln->ln_ntick); } goto done; } ndi = ND_IFINFO(ifp); dst = &L3_ADDR_SIN6(ln)->sin6_addr; if (ln->la_flags & LLE_STATIC) { goto done; } if (ln->la_flags & LLE_DELETED) { (void)nd6_free(ln, 0); ln = NULL; goto done; } switch (ln->ln_state) { case ND6_LLINFO_INCOMPLETE: if (ln->la_asked < V_nd6_mmaxtries) { ln->la_asked++; nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000); LLE_WUNLOCK(ln); nd6_ns_output(ifp, NULL, dst, ln, NULL); LLE_WLOCK(ln); } else { struct mbuf *m = ln->la_hold; if (m) { struct mbuf *m0; /* * assuming every packet in la_hold has the * same IP header. Send error after unlock. */ m0 = m->m_nextpkt; m->m_nextpkt = NULL; ln->la_hold = m0; clear_llinfo_pqueue(ln); } EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_TIMEDOUT); (void)nd6_free(ln, 0); ln = NULL; if (m != NULL) icmp6_error2(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR, 0, ifp); } break; case ND6_LLINFO_REACHABLE: if (!ND6_LLINFO_PERMANENT(ln)) { ln->ln_state = ND6_LLINFO_STALE; nd6_llinfo_settimer_locked(ln, (long)V_nd6_gctimer * hz); } break; case ND6_LLINFO_STALE: /* Garbage Collection(RFC 2461 5.3) */ if (!ND6_LLINFO_PERMANENT(ln)) { EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED); (void)nd6_free(ln, 1); ln = NULL; } break; case ND6_LLINFO_DELAY: if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { /* We need NUD */ ln->la_asked = 1; ln->ln_state = ND6_LLINFO_PROBE; nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000); LLE_WUNLOCK(ln); nd6_ns_output(ifp, dst, dst, ln, NULL); LLE_WLOCK(ln); } else { ln->ln_state = ND6_LLINFO_STALE; /* XXX */ nd6_llinfo_settimer_locked(ln, (long)V_nd6_gctimer * hz); } break; case ND6_LLINFO_PROBE: if (ln->la_asked < V_nd6_umaxtries) { ln->la_asked++; nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000); LLE_WUNLOCK(ln); nd6_ns_output(ifp, dst, dst, ln, NULL); LLE_WLOCK(ln); } else { EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED); (void)nd6_free(ln, 0); ln = NULL; } break; default: panic("%s: paths in a dark night can be confusing: %d", __func__, ln->ln_state); } done: if (ln != NULL) LLE_FREE_LOCKED(ln); CURVNET_RESTORE(); } /* * ND6 timer routine to expire default route list and prefix list */ void nd6_timer(void *arg) { CURVNET_SET((struct vnet *) arg); struct nd_defrouter *dr, *ndr; struct nd_prefix *pr, *npr; struct in6_ifaddr *ia6, *nia6; callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz, nd6_timer, curvnet); /* expire default router list */ TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) { if (dr->expire && dr->expire < time_uptime) defrtrlist_del(dr); } /* * expire interface addresses. * in the past the loop was inside prefix expiry processing. * However, from a stricter speci-confrmance standpoint, we should * rather separate address lifetimes and prefix lifetimes. * * XXXRW: in6_ifaddrhead locking. */ addrloop: TAILQ_FOREACH_SAFE(ia6, &V_in6_ifaddrhead, ia_link, nia6) { /* check address lifetime */ if (IFA6_IS_INVALID(ia6)) { int regen = 0; /* * If the expiring address is temporary, try * regenerating a new one. This would be useful when * we suspended a laptop PC, then turned it on after a * period that could invalidate all temporary * addresses. Although we may have to restart the * loop (see below), it must be after purging the * address. Otherwise, we'd see an infinite loop of * regeneration. */ if (V_ip6_use_tempaddr && (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { if (regen_tmpaddr(ia6) == 0) regen = 1; } in6_purgeaddr(&ia6->ia_ifa); if (regen) goto addrloop; /* XXX: see below */ } else if (IFA6_IS_DEPRECATED(ia6)) { int oldflags = ia6->ia6_flags; ia6->ia6_flags |= IN6_IFF_DEPRECATED; /* * If a temporary address has just become deprecated, * regenerate a new one if possible. */ if (V_ip6_use_tempaddr && (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && (oldflags & IN6_IFF_DEPRECATED) == 0) { if (regen_tmpaddr(ia6) == 0) { /* * A new temporary address is * generated. * XXX: this means the address chain * has changed while we are still in * the loop. Although the change * would not cause disaster (because * it's not a deletion, but an * addition,) we'd rather restart the * loop just for safety. Or does this * significantly reduce performance?? */ goto addrloop; } } } else { /* * A new RA might have made a deprecated address * preferred. */ ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; } } /* expire prefix list */ LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { /* * check prefix lifetime. * since pltime is just for autoconf, pltime processing for * prefix is not necessary. */ if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME && time_uptime - pr->ndpr_lastupdate > pr->ndpr_vltime) { /* * address expiration and prefix expiration are * separate. NEVER perform in6_purgeaddr here. */ prelist_remove(pr); } } CURVNET_RESTORE(); } /* * ia6 - deprecated/invalidated temporary address */ static int regen_tmpaddr(struct in6_ifaddr *ia6) { struct ifaddr *ifa; struct ifnet *ifp; struct in6_ifaddr *public_ifa6 = NULL; ifp = ia6->ia_ifa.ifa_ifp; IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { struct in6_ifaddr *it6; if (ifa->ifa_addr->sa_family != AF_INET6) continue; it6 = (struct in6_ifaddr *)ifa; /* ignore no autoconf addresses. */ if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) continue; /* ignore autoconf addresses with different prefixes. */ if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) continue; /* * Now we are looking at an autoconf address with the same * prefix as ours. If the address is temporary and is still * preferred, do not create another one. It would be rare, but * could happen, for example, when we resume a laptop PC after * a long period. */ if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && !IFA6_IS_DEPRECATED(it6)) { public_ifa6 = NULL; break; } /* * This is a public autoconf address that has the same prefix * as ours. If it is preferred, keep it. We can't break the * loop here, because there may be a still-preferred temporary * address with the prefix. */ if (!IFA6_IS_DEPRECATED(it6)) public_ifa6 = it6; } if (public_ifa6 != NULL) ifa_ref(&public_ifa6->ia_ifa); IF_ADDR_RUNLOCK(ifp); if (public_ifa6 != NULL) { int e; if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) { ifa_free(&public_ifa6->ia_ifa); log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" " tmp addr,errno=%d\n", e); return (-1); } ifa_free(&public_ifa6->ia_ifa); return (0); } return (-1); } /* * Nuke neighbor cache/prefix/default router management table, right before * ifp goes away. */ void nd6_purge(struct ifnet *ifp) { struct nd_defrouter *dr, *ndr; struct nd_prefix *pr, *npr; /* * Nuke default router list entries toward ifp. * We defer removal of default router list entries that is installed * in the routing table, in order to keep additional side effects as * small as possible. */ TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) { if (dr->installed) continue; if (dr->ifp == ifp) defrtrlist_del(dr); } TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) { if (!dr->installed) continue; if (dr->ifp == ifp) defrtrlist_del(dr); } /* Nuke prefix list entries toward ifp */ LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { if (pr->ndpr_ifp == ifp) { /* * Because if_detach() does *not* release prefixes * while purging addresses the reference count will * still be above zero. We therefore reset it to * make sure that the prefix really gets purged. */ pr->ndpr_refcnt = 0; /* * Previously, pr->ndpr_addr is removed as well, * but I strongly believe we don't have to do it. * nd6_purge() is only called from in6_ifdetach(), * which removes all the associated interface addresses * by itself. * (jinmei@kame.net 20010129) */ prelist_remove(pr); } } /* cancel default outgoing interface setting */ if (V_nd6_defifindex == ifp->if_index) nd6_setdefaultiface(0); if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { /* Refresh default router list. */ defrouter_select(); } /* XXXXX * We do not nuke the neighbor cache entries here any more * because the neighbor cache is kept in if_afdata[AF_INET6]. * nd6_purge() is invoked by in6_ifdetach() which is called * from if_detach() where everything gets purged. So let * in6_domifdetach() do the actual L2 table purging work. */ } /* * the caller acquires and releases the lock on the lltbls * Returns the llentry locked */ struct llentry * nd6_lookup(struct in6_addr *addr6, int flags, struct ifnet *ifp) { struct sockaddr_in6 sin6; struct llentry *ln; int llflags; bzero(&sin6, sizeof(sin6)); sin6.sin6_len = sizeof(struct sockaddr_in6); sin6.sin6_family = AF_INET6; sin6.sin6_addr = *addr6; IF_AFDATA_LOCK_ASSERT(ifp); llflags = 0; if (flags & ND6_CREATE) llflags |= LLE_CREATE; if (flags & ND6_EXCLUSIVE) llflags |= LLE_EXCLUSIVE; ln = lla_lookup(LLTABLE6(ifp), llflags, (struct sockaddr *)&sin6); if ((ln != NULL) && (llflags & LLE_CREATE)) ln->ln_state = ND6_LLINFO_NOSTATE; return (ln); } /* * Test whether a given IPv6 address is a neighbor or not, ignoring * the actual neighbor cache. The neighbor cache is ignored in order * to not reenter the routing code from within itself. */ static int nd6_is_new_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp) { struct nd_prefix *pr; struct ifaddr *dstaddr; /* * A link-local address is always a neighbor. * XXX: a link does not necessarily specify a single interface. */ if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { struct sockaddr_in6 sin6_copy; u_int32_t zone; /* * We need sin6_copy since sa6_recoverscope() may modify the * content (XXX). */ sin6_copy = *addr; if (sa6_recoverscope(&sin6_copy)) return (0); /* XXX: should be impossible */ if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) return (0); if (sin6_copy.sin6_scope_id == zone) return (1); else return (0); } /* * If the address matches one of our addresses, * it should be a neighbor. * If the address matches one of our on-link prefixes, it should be a * neighbor. */ LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { if (pr->ndpr_ifp != ifp) continue; if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) { struct rtentry *rt; /* Always use the default FIB here. */ rt = in6_rtalloc1((struct sockaddr *)&pr->ndpr_prefix, 0, 0, RT_DEFAULT_FIB); if (rt == NULL) continue; /* * This is the case where multiple interfaces * have the same prefix, but only one is installed * into the routing table and that prefix entry * is not the one being examined here. In the case * where RADIX_MPATH is enabled, multiple route * entries (of the same rt_key value) will be * installed because the interface addresses all * differ. */ if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr)) { RTFREE_LOCKED(rt); continue; } RTFREE_LOCKED(rt); } if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, &addr->sin6_addr, &pr->ndpr_mask)) return (1); } /* * If the address is assigned on the node of the other side of * a p2p interface, the address should be a neighbor. */ dstaddr = ifa_ifwithdstaddr((struct sockaddr *)addr, RT_ALL_FIBS); if (dstaddr != NULL) { if (dstaddr->ifa_ifp == ifp) { ifa_free(dstaddr); return (1); } ifa_free(dstaddr); } /* * If the default router list is empty, all addresses are regarded * as on-link, and thus, as a neighbor. */ if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV && TAILQ_EMPTY(&V_nd_defrouter) && V_nd6_defifindex == ifp->if_index) { return (1); } return (0); } /* * Detect if a given IPv6 address identifies a neighbor on a given link. * XXX: should take care of the destination of a p2p link? */ int nd6_is_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp) { struct llentry *lle; int rc = 0; IF_AFDATA_UNLOCK_ASSERT(ifp); if (nd6_is_new_addr_neighbor(addr, ifp)) return (1); /* * Even if the address matches none of our addresses, it might be * in the neighbor cache. */ IF_AFDATA_RLOCK(ifp); if ((lle = nd6_lookup(&addr->sin6_addr, 0, ifp)) != NULL) { LLE_RUNLOCK(lle); rc = 1; } IF_AFDATA_RUNLOCK(ifp); return (rc); } /* * Free an nd6 llinfo entry. * Since the function would cause significant changes in the kernel, DO NOT * make it global, unless you have a strong reason for the change, and are sure * that the change is safe. */ static struct llentry * nd6_free(struct llentry *ln, int gc) { struct llentry *next; struct nd_defrouter *dr; struct ifnet *ifp; LLE_WLOCK_ASSERT(ln); /* * we used to have pfctlinput(PRC_HOSTDEAD) here. * even though it is not harmful, it was not really necessary. */ /* cancel timer */ nd6_llinfo_settimer_locked(ln, -1); ifp = ln->lle_tbl->llt_ifp; if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { dr = defrouter_lookup(&L3_ADDR_SIN6(ln)->sin6_addr, ifp); if (dr != NULL && dr->expire && ln->ln_state == ND6_LLINFO_STALE && gc) { /* * If the reason for the deletion is just garbage * collection, and the neighbor is an active default * router, do not delete it. Instead, reset the GC * timer using the router's lifetime. * Simply deleting the entry would affect default * router selection, which is not necessarily a good * thing, especially when we're using router preference * values. * XXX: the check for ln_state would be redundant, * but we intentionally keep it just in case. */ if (dr->expire > time_uptime) nd6_llinfo_settimer_locked(ln, (dr->expire - time_uptime) * hz); else nd6_llinfo_settimer_locked(ln, (long)V_nd6_gctimer * hz); next = LIST_NEXT(ln, lle_next); LLE_REMREF(ln); LLE_WUNLOCK(ln); return (next); } if (dr) { /* * Unreachablity of a router might affect the default * router selection and on-link detection of advertised * prefixes. */ /* * Temporarily fake the state to choose a new default * router and to perform on-link determination of * prefixes correctly. * Below the state will be set correctly, * or the entry itself will be deleted. */ ln->ln_state = ND6_LLINFO_INCOMPLETE; } if (ln->ln_router || dr) { /* * We need to unlock to avoid a LOR with rt6_flush() with the * rnh and for the calls to pfxlist_onlink_check() and * defrouter_select() in the block further down for calls * into nd6_lookup(). We still hold a ref. */ LLE_WUNLOCK(ln); /* * rt6_flush must be called whether or not the neighbor * is in the Default Router List. * See a corresponding comment in nd6_na_input(). */ rt6_flush(&L3_ADDR_SIN6(ln)->sin6_addr, ifp); } if (dr) { /* * Since defrouter_select() does not affect the * on-link determination and MIP6 needs the check * before the default router selection, we perform * the check now. */ pfxlist_onlink_check(); /* * Refresh default router list. */ defrouter_select(); } if (ln->ln_router || dr) LLE_WLOCK(ln); } /* * Before deleting the entry, remember the next entry as the * return value. We need this because pfxlist_onlink_check() above * might have freed other entries (particularly the old next entry) as * a side effect (XXX). */ next = LIST_NEXT(ln, lle_next); /* * Save to unlock. We still hold an extra reference and will not * free(9) in llentry_free() if someone else holds one as well. */ LLE_WUNLOCK(ln); IF_AFDATA_LOCK(ifp); LLE_WLOCK(ln); /* Guard against race with other llentry_free(). */ if (ln->la_flags & LLE_LINKED) { LLE_REMREF(ln); llentry_free(ln); } else LLE_FREE_LOCKED(ln); IF_AFDATA_UNLOCK(ifp); return (next); } /* * Upper-layer reachability hint for Neighbor Unreachability Detection. * * XXX cost-effective methods? */ void nd6_nud_hint(struct rtentry *rt, struct in6_addr *dst6, int force) { struct llentry *ln; struct ifnet *ifp; if ((dst6 == NULL) || (rt == NULL)) return; ifp = rt->rt_ifp; IF_AFDATA_RLOCK(ifp); ln = nd6_lookup(dst6, ND6_EXCLUSIVE, NULL); IF_AFDATA_RUNLOCK(ifp); if (ln == NULL) return; if (ln->ln_state < ND6_LLINFO_REACHABLE) goto done; /* * if we get upper-layer reachability confirmation many times, * it is possible we have false information. */ if (!force) { ln->ln_byhint++; if (ln->ln_byhint > V_nd6_maxnudhint) { goto done; } } ln->ln_state = ND6_LLINFO_REACHABLE; if (!ND6_LLINFO_PERMANENT(ln)) { nd6_llinfo_settimer_locked(ln, (long)ND_IFINFO(rt->rt_ifp)->reachable * hz); } done: LLE_WUNLOCK(ln); } /* * Rejuvenate this function for routing operations related * processing. */ void nd6_rtrequest(int req, struct rtentry *rt, struct rt_addrinfo *info) { struct sockaddr_in6 *gateway; struct nd_defrouter *dr; struct ifnet *ifp; gateway = (struct sockaddr_in6 *)rt->rt_gateway; ifp = rt->rt_ifp; switch (req) { case RTM_ADD: break; case RTM_DELETE: if (!ifp) return; /* * Only indirect routes are interesting. */ if ((rt->rt_flags & RTF_GATEWAY) == 0) return; /* * check for default route */ if (IN6_ARE_ADDR_EQUAL(&in6addr_any, &SIN6(rt_key(rt))->sin6_addr)) { dr = defrouter_lookup(&gateway->sin6_addr, ifp); if (dr != NULL) dr->installed = 0; } break; } } int nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp) { struct in6_drlist *drl = (struct in6_drlist *)data; struct in6_oprlist *oprl = (struct in6_oprlist *)data; struct in6_ndireq *ndi = (struct in6_ndireq *)data; struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; struct nd_defrouter *dr; struct nd_prefix *pr; int i = 0, error = 0; if (ifp->if_afdata[AF_INET6] == NULL) return (EPFNOSUPPORT); switch (cmd) { case SIOCGDRLST_IN6: /* * obsolete API, use sysctl under net.inet6.icmp6 */ bzero(drl, sizeof(*drl)); TAILQ_FOREACH(dr, &V_nd_defrouter, dr_entry) { if (i >= DRLSTSIZ) break; drl->defrouter[i].rtaddr = dr->rtaddr; in6_clearscope(&drl->defrouter[i].rtaddr); drl->defrouter[i].flags = dr->flags; drl->defrouter[i].rtlifetime = dr->rtlifetime; drl->defrouter[i].expire = dr->expire + (time_second - time_uptime); drl->defrouter[i].if_index = dr->ifp->if_index; i++; } break; case SIOCGPRLST_IN6: /* * obsolete API, use sysctl under net.inet6.icmp6 * * XXX the structure in6_prlist was changed in backward- * incompatible manner. in6_oprlist is used for SIOCGPRLST_IN6, * in6_prlist is used for nd6_sysctl() - fill_prlist(). */ /* * XXX meaning of fields, especialy "raflags", is very * differnet between RA prefix list and RR/static prefix list. * how about separating ioctls into two? */ bzero(oprl, sizeof(*oprl)); LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { struct nd_pfxrouter *pfr; int j; if (i >= PRLSTSIZ) break; oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr; oprl->prefix[i].raflags = pr->ndpr_raf; oprl->prefix[i].prefixlen = pr->ndpr_plen; oprl->prefix[i].vltime = pr->ndpr_vltime; oprl->prefix[i].pltime = pr->ndpr_pltime; oprl->prefix[i].if_index = pr->ndpr_ifp->if_index; if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) oprl->prefix[i].expire = 0; else { time_t maxexpire; /* XXX: we assume time_t is signed. */ maxexpire = (-1) & ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate) { oprl->prefix[i].expire = pr->ndpr_lastupdate + pr->ndpr_vltime + (time_second - time_uptime); } else oprl->prefix[i].expire = maxexpire; } j = 0; LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { if (j < DRLSTSIZ) { #define RTRADDR oprl->prefix[i].advrtr[j] RTRADDR = pfr->router->rtaddr; in6_clearscope(&RTRADDR); #undef RTRADDR } j++; } oprl->prefix[i].advrtrs = j; oprl->prefix[i].origin = PR_ORIG_RA; i++; } break; case OSIOCGIFINFO_IN6: #define ND ndi->ndi /* XXX: old ndp(8) assumes a positive value for linkmtu. */ bzero(&ND, sizeof(ND)); ND.linkmtu = IN6_LINKMTU(ifp); ND.maxmtu = ND_IFINFO(ifp)->maxmtu; ND.basereachable = ND_IFINFO(ifp)->basereachable; ND.reachable = ND_IFINFO(ifp)->reachable; ND.retrans = ND_IFINFO(ifp)->retrans; ND.flags = ND_IFINFO(ifp)->flags; ND.recalctm = ND_IFINFO(ifp)->recalctm; ND.chlim = ND_IFINFO(ifp)->chlim; break; case SIOCGIFINFO_IN6: ND = *ND_IFINFO(ifp); break; case SIOCSIFINFO_IN6: /* * used to change host variables from userland. * intented for a use on router to reflect RA configurations. */ /* 0 means 'unspecified' */ if (ND.linkmtu != 0) { if (ND.linkmtu < IPV6_MMTU || ND.linkmtu > IN6_LINKMTU(ifp)) { error = EINVAL; break; } ND_IFINFO(ifp)->linkmtu = ND.linkmtu; } if (ND.basereachable != 0) { int obasereachable = ND_IFINFO(ifp)->basereachable; ND_IFINFO(ifp)->basereachable = ND.basereachable; if (ND.basereachable != obasereachable) ND_IFINFO(ifp)->reachable = ND_COMPUTE_RTIME(ND.basereachable); } if (ND.retrans != 0) ND_IFINFO(ifp)->retrans = ND.retrans; if (ND.chlim != 0) ND_IFINFO(ifp)->chlim = ND.chlim; /* FALLTHROUGH */ case SIOCSIFINFO_FLAGS: { struct ifaddr *ifa; struct in6_ifaddr *ia; if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && !(ND.flags & ND6_IFF_IFDISABLED)) { /* ifdisabled 1->0 transision */ /* * If the interface is marked as ND6_IFF_IFDISABLED and * has an link-local address with IN6_IFF_DUPLICATED, * do not clear ND6_IFF_IFDISABLED. * See RFC 4862, Section 5.4.5. */ int duplicated_linklocal = 0; IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_INET6) continue; ia = (struct in6_ifaddr *)ifa; if ((ia->ia6_flags & IN6_IFF_DUPLICATED) && IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) { duplicated_linklocal = 1; break; } } IF_ADDR_RUNLOCK(ifp); if (duplicated_linklocal) { ND.flags |= ND6_IFF_IFDISABLED; log(LOG_ERR, "Cannot enable an interface" " with a link-local address marked" " duplicate.\n"); } else { ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED; if (ifp->if_flags & IFF_UP) in6_if_up(ifp); } } else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && (ND.flags & ND6_IFF_IFDISABLED)) { /* ifdisabled 0->1 transision */ /* Mark all IPv6 address as tentative. */ ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED; IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_INET6) continue; ia = (struct in6_ifaddr *)ifa; ia->ia6_flags |= IN6_IFF_TENTATIVE; } IF_ADDR_RUNLOCK(ifp); } if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) { if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) { /* auto_linklocal 0->1 transision */ /* If no link-local address on ifp, configure */ ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL; in6_ifattach(ifp, NULL); } else if (!(ND.flags & ND6_IFF_IFDISABLED) && ifp->if_flags & IFF_UP) { /* * When the IF already has * ND6_IFF_AUTO_LINKLOCAL, no link-local * address is assigned, and IFF_UP, try to * assign one. */ int haslinklocal = 0; IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_INET6) continue; ia = (struct in6_ifaddr *)ifa; if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) { haslinklocal = 1; break; } } IF_ADDR_RUNLOCK(ifp); if (!haslinklocal) in6_ifattach(ifp, NULL); } } } ND_IFINFO(ifp)->flags = ND.flags; break; #undef ND case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ /* sync kernel routing table with the default router list */ defrouter_reset(); defrouter_select(); break; case SIOCSPFXFLUSH_IN6: { /* flush all the prefix advertised by routers */ struct nd_prefix *pr, *next; LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, next) { struct in6_ifaddr *ia, *ia_next; if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr)) continue; /* XXX */ /* do we really have to remove addresses as well? */ /* XXXRW: in6_ifaddrhead locking. */ TAILQ_FOREACH_SAFE(ia, &V_in6_ifaddrhead, ia_link, ia_next) { if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) continue; if (ia->ia6_ndpr == pr) in6_purgeaddr(&ia->ia_ifa); } prelist_remove(pr); } break; } case SIOCSRTRFLUSH_IN6: { /* flush all the default routers */ struct nd_defrouter *dr, *next; defrouter_reset(); TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, next) { defrtrlist_del(dr); } defrouter_select(); break; } case SIOCGNBRINFO_IN6: { struct llentry *ln; struct in6_addr nb_addr = nbi->addr; /* make local for safety */ if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0) return (error); IF_AFDATA_RLOCK(ifp); ln = nd6_lookup(&nb_addr, 0, ifp); IF_AFDATA_RUNLOCK(ifp); if (ln == NULL) { error = EINVAL; break; } nbi->state = ln->ln_state; nbi->asked = ln->la_asked; nbi->isrouter = ln->ln_router; if (ln->la_expire == 0) nbi->expire = 0; else nbi->expire = ln->la_expire + (time_second - time_uptime); LLE_RUNLOCK(ln); break; } case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ ndif->ifindex = V_nd6_defifindex; break; case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ return (nd6_setdefaultiface(ndif->ifindex)); } return (error); } /* * Create neighbor cache entry and cache link-layer address, * on reception of inbound ND6 packets. (RS/RA/NS/redirect) * * type - ICMP6 type * code - type dependent information * * XXXXX * The caller of this function already acquired the ndp * cache table lock because the cache entry is returned. */ struct llentry * nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr, int lladdrlen, int type, int code) { struct llentry *ln = NULL; int is_newentry; int do_update; int olladdr; int llchange; int flags; int newstate = 0; uint16_t router = 0; struct sockaddr_in6 sin6; struct mbuf *chain = NULL; int static_route = 0; IF_AFDATA_UNLOCK_ASSERT(ifp); KASSERT(ifp != NULL, ("%s: ifp == NULL", __func__)); KASSERT(from != NULL, ("%s: from == NULL", __func__)); /* nothing must be updated for unspecified address */ if (IN6_IS_ADDR_UNSPECIFIED(from)) return NULL; /* * Validation about ifp->if_addrlen and lladdrlen must be done in * the caller. * * XXX If the link does not have link-layer adderss, what should * we do? (ifp->if_addrlen == 0) * Spec says nothing in sections for RA, RS and NA. There's small * description on it in NS section (RFC 2461 7.2.3). */ flags = lladdr ? ND6_EXCLUSIVE : 0; IF_AFDATA_RLOCK(ifp); ln = nd6_lookup(from, flags, ifp); IF_AFDATA_RUNLOCK(ifp); if (ln == NULL) { flags |= ND6_EXCLUSIVE; IF_AFDATA_LOCK(ifp); ln = nd6_lookup(from, flags | ND6_CREATE, ifp); IF_AFDATA_UNLOCK(ifp); is_newentry = 1; } else { /* do nothing if static ndp is set */ if (ln->la_flags & LLE_STATIC) { static_route = 1; goto done; } is_newentry = 0; } if (ln == NULL) return (NULL); olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0; if (olladdr && lladdr) { llchange = bcmp(lladdr, &ln->ll_addr, ifp->if_addrlen); } else llchange = 0; /* * newentry olladdr lladdr llchange (*=record) * 0 n n -- (1) * 0 y n -- (2) * 0 n y -- (3) * STALE * 0 y y n (4) * * 0 y y y (5) * STALE * 1 -- n -- (6) NOSTATE(= PASSIVE) * 1 -- y -- (7) * STALE */ if (lladdr) { /* (3-5) and (7) */ /* * Record source link-layer address * XXX is it dependent to ifp->if_type? */ bcopy(lladdr, &ln->ll_addr, ifp->if_addrlen); ln->la_flags |= LLE_VALID; EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); } if (!is_newentry) { if ((!olladdr && lladdr != NULL) || /* (3) */ (olladdr && lladdr != NULL && llchange)) { /* (5) */ do_update = 1; newstate = ND6_LLINFO_STALE; } else /* (1-2,4) */ do_update = 0; } else { do_update = 1; if (lladdr == NULL) /* (6) */ newstate = ND6_LLINFO_NOSTATE; else /* (7) */ newstate = ND6_LLINFO_STALE; } if (do_update) { /* * Update the state of the neighbor cache. */ ln->ln_state = newstate; if (ln->ln_state == ND6_LLINFO_STALE) { if (ln->la_hold != NULL) nd6_grab_holdchain(ln, &chain, &sin6); } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) { /* probe right away */ nd6_llinfo_settimer_locked((void *)ln, 0); } } /* * ICMP6 type dependent behavior. * * NS: clear IsRouter if new entry * RS: clear IsRouter * RA: set IsRouter if there's lladdr * redir: clear IsRouter if new entry * * RA case, (1): * The spec says that we must set IsRouter in the following cases: * - If lladdr exist, set IsRouter. This means (1-5). * - If it is old entry (!newentry), set IsRouter. This means (7). * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. * A quetion arises for (1) case. (1) case has no lladdr in the * neighbor cache, this is similar to (6). * This case is rare but we figured that we MUST NOT set IsRouter. * * newentry olladdr lladdr llchange NS RS RA redir * D R * 0 n n -- (1) c ? s * 0 y n -- (2) c s s * 0 n y -- (3) c s s * 0 y y n (4) c s s * 0 y y y (5) c s s * 1 -- n -- (6) c c c s * 1 -- y -- (7) c c s c s * * (c=clear s=set) */ switch (type & 0xff) { case ND_NEIGHBOR_SOLICIT: /* * New entry must have is_router flag cleared. */ if (is_newentry) /* (6-7) */ ln->ln_router = 0; break; case ND_REDIRECT: /* * If the icmp is a redirect to a better router, always set the * is_router flag. Otherwise, if the entry is newly created, * clear the flag. [RFC 2461, sec 8.3] */ if (code == ND_REDIRECT_ROUTER) ln->ln_router = 1; else if (is_newentry) /* (6-7) */ ln->ln_router = 0; break; case ND_ROUTER_SOLICIT: /* * is_router flag must always be cleared. */ ln->ln_router = 0; break; case ND_ROUTER_ADVERT: /* * Mark an entry with lladdr as a router. */ if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */ (is_newentry && lladdr)) { /* (7) */ ln->ln_router = 1; } break; } if (ln != NULL) { static_route = (ln->la_flags & LLE_STATIC); router = ln->ln_router; if (flags & ND6_EXCLUSIVE) LLE_WUNLOCK(ln); else LLE_RUNLOCK(ln); if (static_route) ln = NULL; } if (chain != NULL) nd6_flush_holdchain(ifp, ifp, chain, &sin6); /* * When the link-layer address of a router changes, select the * best router again. In particular, when the neighbor entry is newly * created, it might affect the selection policy. * Question: can we restrict the first condition to the "is_newentry" * case? * XXX: when we hear an RA from a new router with the link-layer * address option, defrouter_select() is called twice, since * defrtrlist_update called the function as well. However, I believe * we can compromise the overhead, since it only happens the first * time. * XXX: although defrouter_select() should not have a bad effect * for those are not autoconfigured hosts, we explicitly avoid such * cases for safety. */ if (do_update && router && ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { /* * guaranteed recursion */ defrouter_select(); } return (ln); done: if (ln != NULL) { if (flags & ND6_EXCLUSIVE) LLE_WUNLOCK(ln); else LLE_RUNLOCK(ln); if (static_route) ln = NULL; } return (ln); } static void nd6_slowtimo(void *arg) { CURVNET_SET((struct vnet *) arg); struct nd_ifinfo *nd6if; struct ifnet *ifp; callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, nd6_slowtimo, curvnet); IFNET_RLOCK_NOSLEEP(); TAILQ_FOREACH(ifp, &V_ifnet, if_link) { if (ifp->if_afdata[AF_INET6] == NULL) continue; nd6if = ND_IFINFO(ifp); if (nd6if->basereachable && /* already initialized */ (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { /* * Since reachable time rarely changes by router * advertisements, we SHOULD insure that a new random * value gets recomputed at least once every few hours. * (RFC 2461, 6.3.4) */ nd6if->recalctm = V_nd6_recalc_reachtm_interval; nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); } } IFNET_RUNLOCK_NOSLEEP(); CURVNET_RESTORE(); } void nd6_grab_holdchain(struct llentry *ln, struct mbuf **chain, struct sockaddr_in6 *sin6) { LLE_WLOCK_ASSERT(ln); *chain = ln->la_hold; ln->la_hold = NULL; memcpy(sin6, L3_ADDR_SIN6(ln), sizeof(*sin6)); if (ln->ln_state == ND6_LLINFO_STALE) { /* * The first time we send a packet to a * neighbor whose entry is STALE, we have * to change the state to DELAY and a sets * a timer to expire in DELAY_FIRST_PROBE_TIME * seconds to ensure do neighbor unreachability * detection on expiration. * (RFC 2461 7.3.3) */ ln->la_asked = 0; ln->ln_state = ND6_LLINFO_DELAY; nd6_llinfo_settimer_locked(ln, (long)V_nd6_delay * hz); } } static int nd6_output_ifp(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m, struct sockaddr_in6 *dst) { int error; int ip6len; struct ip6_hdr *ip6; struct m_tag *mtag; #ifdef MAC mac_netinet6_nd6_send(ifp, m); #endif /* * If called from nd6_ns_output() (NS), nd6_na_output() (NA), * icmp6_redirect_output() (REDIRECT) or from rip6_output() (RS, RA * as handled by rtsol and rtadvd), mbufs will be tagged for SeND * to be diverted to user space. When re-injected into the kernel, * send_output() will directly dispatch them to the outgoing interface. */ if (send_sendso_input_hook != NULL) { mtag = m_tag_find(m, PACKET_TAG_ND_OUTGOING, NULL); if (mtag != NULL) { ip6 = mtod(m, struct ip6_hdr *); ip6len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen); /* Use the SEND socket */ error = send_sendso_input_hook(m, ifp, SND_OUT, ip6len); /* -1 == no app on SEND socket */ if (error == 0 || error != -1) return (error); } } m_clrprotoflags(m); /* Avoid confusing lower layers. */ IP_PROBE(send, NULL, NULL, mtod(m, struct ip6_hdr *), ifp, NULL, mtod(m, struct ip6_hdr *)); if ((ifp->if_flags & IFF_LOOPBACK) == 0) origifp = ifp; error = (*ifp->if_output)(origifp, m, (struct sockaddr *)dst, NULL); return (error); } /* * IPv6 packet output - light version. * Checks if destination LLE exists and is in proper state * (e.g no modification required). If not true, fall back to * "heavy" version. */ int nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m, struct sockaddr_in6 *dst, struct rtentry *rt0) { struct llentry *ln = NULL; /* discard the packet if IPv6 operation is disabled on the interface */ if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) { m_freem(m); return (ENETDOWN); /* better error? */ } if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr)) goto sendpkt; if (nd6_need_cache(ifp) == 0) goto sendpkt; IF_AFDATA_RLOCK(ifp); ln = nd6_lookup(&dst->sin6_addr, 0, ifp); IF_AFDATA_RUNLOCK(ifp); /* * Perform fast path for the following cases: * 1) lle state is REACHABLE * 2) lle state is DELAY (NS message sentNS message sent) * * Every other case involves lle modification, so we handle * them separately. */ if (ln == NULL || (ln->ln_state != ND6_LLINFO_REACHABLE && ln->ln_state != ND6_LLINFO_DELAY)) { /* Fall back to slow processing path */ if (ln != NULL) LLE_RUNLOCK(ln); return (nd6_output_lle(ifp, origifp, m, dst)); } sendpkt: if (ln != NULL) LLE_RUNLOCK(ln); return (nd6_output_ifp(ifp, origifp, m, dst)); } /* * Output IPv6 packet - heavy version. * Function assume that either * 1) destination LLE does not exist, is invalid or stale, so * ND6_EXCLUSIVE lock needs to be acquired * 2) destination lle is provided (with ND6_EXCLUSIVE lock), * in that case packets are queued in &chain. * */ static int nd6_output_lle(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m, struct sockaddr_in6 *dst) { struct llentry *lle = NULL; int flags = 0; KASSERT(m != NULL, ("NULL mbuf, nothing to send")); /* discard the packet if IPv6 operation is disabled on the interface */ if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) { m_freem(m); return (ENETDOWN); /* better error? */ } if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr)) goto sendpkt; if (nd6_need_cache(ifp) == 0) goto sendpkt; /* * Address resolution or Neighbor Unreachability Detection * for the next hop. * At this point, the destination of the packet must be a unicast * or an anycast address(i.e. not a multicast). */ if (lle == NULL) { IF_AFDATA_RLOCK(ifp); lle = nd6_lookup(&dst->sin6_addr, ND6_EXCLUSIVE, ifp); IF_AFDATA_RUNLOCK(ifp); if ((lle == NULL) && nd6_is_addr_neighbor(dst, ifp)) { /* * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), * the condition below is not very efficient. But we believe * it is tolerable, because this should be a rare case. */ flags = ND6_CREATE | ND6_EXCLUSIVE; IF_AFDATA_LOCK(ifp); lle = nd6_lookup(&dst->sin6_addr, flags, ifp); IF_AFDATA_UNLOCK(ifp); } } if (lle == NULL) { if ((ifp->if_flags & IFF_POINTOPOINT) == 0 && !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) { char ip6buf[INET6_ADDRSTRLEN]; log(LOG_DEBUG, "nd6_output: can't allocate llinfo for %s " "(ln=%p)\n", ip6_sprintf(ip6buf, &dst->sin6_addr), lle); m_freem(m); return (ENOBUFS); } goto sendpkt; /* send anyway */ } LLE_WLOCK_ASSERT(lle); /* We don't have to do link-layer address resolution on a p2p link. */ if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && lle->ln_state < ND6_LLINFO_REACHABLE) { lle->ln_state = ND6_LLINFO_STALE; nd6_llinfo_settimer_locked(lle, (long)V_nd6_gctimer * hz); } /* * The first time we send a packet to a neighbor whose entry is * STALE, we have to change the state to DELAY and a sets a timer to * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do * neighbor unreachability detection on expiration. * (RFC 2461 7.3.3) */ if (lle->ln_state == ND6_LLINFO_STALE) { lle->la_asked = 0; lle->ln_state = ND6_LLINFO_DELAY; nd6_llinfo_settimer_locked(lle, (long)V_nd6_delay * hz); } /* * If the neighbor cache entry has a state other than INCOMPLETE * (i.e. its link-layer address is already resolved), just * send the packet. */ if (lle->ln_state > ND6_LLINFO_INCOMPLETE) goto sendpkt; /* * There is a neighbor cache entry, but no ethernet address * response yet. Append this latest packet to the end of the * packet queue in the mbuf, unless the number of the packet * does not exceed nd6_maxqueuelen. When it exceeds nd6_maxqueuelen, * the oldest packet in the queue will be removed. */ if (lle->ln_state == ND6_LLINFO_NOSTATE) lle->ln_state = ND6_LLINFO_INCOMPLETE; if (lle->la_hold != NULL) { struct mbuf *m_hold; int i; i = 0; for (m_hold = lle->la_hold; m_hold; m_hold = m_hold->m_nextpkt){ i++; if (m_hold->m_nextpkt == NULL) { m_hold->m_nextpkt = m; break; } } while (i >= V_nd6_maxqueuelen) { m_hold = lle->la_hold; lle->la_hold = lle->la_hold->m_nextpkt; m_freem(m_hold); i--; } } else { lle->la_hold = m; } /* * If there has been no NS for the neighbor after entering the * INCOMPLETE state, send the first solicitation. */ if (!ND6_LLINFO_PERMANENT(lle) && lle->la_asked == 0) { lle->la_asked++; nd6_llinfo_settimer_locked(lle, (long)ND_IFINFO(ifp)->retrans * hz / 1000); LLE_WUNLOCK(lle); nd6_ns_output(ifp, NULL, &dst->sin6_addr, lle, NULL); } else { /* We did the lookup so we need to do the unlock here. */ LLE_WUNLOCK(lle); } return (0); sendpkt: if (lle != NULL) LLE_WUNLOCK(lle); return (nd6_output_ifp(ifp, origifp, m, dst)); } int nd6_flush_holdchain(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *chain, struct sockaddr_in6 *dst) { struct mbuf *m, *m_head; struct ifnet *outifp; int error = 0; m_head = chain; if ((ifp->if_flags & IFF_LOOPBACK) != 0) outifp = origifp; else outifp = ifp; while (m_head) { m = m_head; m_head = m_head->m_nextpkt; error = nd6_output_ifp(ifp, origifp, m, dst); } /* * XXX * note that intermediate errors are blindly ignored - but this is * the same convention as used with nd6_output when called by * nd6_cache_lladdr */ return (error); } int nd6_need_cache(struct ifnet *ifp) { /* * XXX: we currently do not make neighbor cache on any interface * other than ARCnet, Ethernet, FDDI and GIF. * * RFC2893 says: * - unidirectional tunnels needs no ND */ switch (ifp->if_type) { case IFT_ARCNET: case IFT_ETHER: case IFT_FDDI: case IFT_IEEE1394: case IFT_L2VLAN: case IFT_IEEE80211: case IFT_INFINIBAND: case IFT_BRIDGE: case IFT_PROPVIRTUAL: return (1); default: return (0); } } /* * Add pernament ND6 link-layer record for given * interface address. * * Very similar to IPv4 arp_ifinit(), but: * 1) IPv6 DAD is performed in different place * 2) It is called by IPv6 protocol stack in contrast to * arp_ifinit() which is typically called in SIOCSIFADDR * driver ioctl handler. * */ int nd6_add_ifa_lle(struct in6_ifaddr *ia) { struct ifnet *ifp; struct llentry *ln; ifp = ia->ia_ifa.ifa_ifp; if (nd6_need_cache(ifp) == 0) return (0); IF_AFDATA_LOCK(ifp); ia->ia_ifa.ifa_rtrequest = nd6_rtrequest; ln = lla_lookup(LLTABLE6(ifp), (LLE_CREATE | LLE_IFADDR | LLE_EXCLUSIVE), (struct sockaddr *)&ia->ia_addr); IF_AFDATA_UNLOCK(ifp); if (ln != NULL) { ln->la_expire = 0; /* for IPv6 this means permanent */ ln->ln_state = ND6_LLINFO_REACHABLE; LLE_WUNLOCK(ln); return (0); } return (ENOBUFS); } /* * Removes ALL lle records for interface address prefix. * XXXME: That's probably not we really want to do, we need * to remove address record only and keep other records * until we determine if given prefix is really going * to be removed. */ void nd6_rem_ifa_lle(struct in6_ifaddr *ia) { struct sockaddr_in6 mask, addr; struct ifnet *ifp; ifp = ia->ia_ifa.ifa_ifp; memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr)); memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask)); lltable_prefix_free(AF_INET6, (struct sockaddr *)&addr, (struct sockaddr *)&mask, LLE_STATIC); } /* * the callers of this function need to be re-worked to drop * the lle lock, drop here for now */ int nd6_storelladdr(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst, u_char *desten, uint32_t *pflags) { struct llentry *ln; if (pflags != NULL) *pflags = 0; IF_AFDATA_UNLOCK_ASSERT(ifp); if (m != NULL && m->m_flags & M_MCAST) { switch (ifp->if_type) { case IFT_ETHER: case IFT_FDDI: case IFT_L2VLAN: case IFT_IEEE80211: case IFT_BRIDGE: case IFT_ISO88025: ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr, desten); return (0); default: m_freem(m); return (EAFNOSUPPORT); } } /* * the entry should have been created in nd6_store_lladdr */ IF_AFDATA_RLOCK(ifp); ln = lla_lookup(LLTABLE6(ifp), 0, dst); IF_AFDATA_RUNLOCK(ifp); if ((ln == NULL) || !(ln->la_flags & LLE_VALID)) { if (ln != NULL) LLE_RUNLOCK(ln); /* this could happen, if we could not allocate memory */ m_freem(m); return (1); } bcopy(&ln->ll_addr, desten, ifp->if_addrlen); if (pflags != NULL) *pflags = ln->la_flags; LLE_RUNLOCK(ln); /* * A *small* use after free race exists here */ return (0); } static void clear_llinfo_pqueue(struct llentry *ln) { struct mbuf *m_hold, *m_hold_next; for (m_hold = ln->la_hold; m_hold; m_hold = m_hold_next) { m_hold_next = m_hold->m_nextpkt; m_freem(m_hold); } ln->la_hold = NULL; return; } static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS); static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS); #ifdef SYSCTL_DECL SYSCTL_DECL(_net_inet6_icmp6); #endif SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist, CTLFLAG_RD, nd6_sysctl_drlist, ""); SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist, CTLFLAG_RD, nd6_sysctl_prlist, ""); SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_maxqueuelen), 1, ""); SYSCTL_INT(_net_inet6_icmp6, OID_AUTO, nd6_gctimer, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_gctimer), (60 * 60 * 24), ""); static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS) { struct in6_defrouter d; struct nd_defrouter *dr; int error; if (req->newptr) return (EPERM); bzero(&d, sizeof(d)); d.rtaddr.sin6_family = AF_INET6; d.rtaddr.sin6_len = sizeof(d.rtaddr); /* * XXX locking */ TAILQ_FOREACH(dr, &V_nd_defrouter, dr_entry) { d.rtaddr.sin6_addr = dr->rtaddr; error = sa6_recoverscope(&d.rtaddr); if (error != 0) return (error); d.flags = dr->flags; d.rtlifetime = dr->rtlifetime; d.expire = dr->expire + (time_second - time_uptime); d.if_index = dr->ifp->if_index; error = SYSCTL_OUT(req, &d, sizeof(d)); if (error != 0) return (error); } return (0); } static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS) { struct in6_prefix p; struct sockaddr_in6 s6; struct nd_prefix *pr; struct nd_pfxrouter *pfr; time_t maxexpire; int error; char ip6buf[INET6_ADDRSTRLEN]; if (req->newptr) return (EPERM); bzero(&p, sizeof(p)); p.origin = PR_ORIG_RA; bzero(&s6, sizeof(s6)); s6.sin6_family = AF_INET6; s6.sin6_len = sizeof(s6); /* * XXX locking */ LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { p.prefix = pr->ndpr_prefix; if (sa6_recoverscope(&p.prefix)) { log(LOG_ERR, "scope error in prefix list (%s)\n", ip6_sprintf(ip6buf, &p.prefix.sin6_addr)); /* XXX: press on... */ } p.raflags = pr->ndpr_raf; p.prefixlen = pr->ndpr_plen; p.vltime = pr->ndpr_vltime; p.pltime = pr->ndpr_pltime; p.if_index = pr->ndpr_ifp->if_index; if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) p.expire = 0; else { /* XXX: we assume time_t is signed. */ maxexpire = (-1) & ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate) p.expire = pr->ndpr_lastupdate + pr->ndpr_vltime + (time_second - time_uptime); else p.expire = maxexpire; } p.refcnt = pr->ndpr_refcnt; p.flags = pr->ndpr_stateflags; p.advrtrs = 0; LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) p.advrtrs++; error = SYSCTL_OUT(req, &p, sizeof(p)); if (error != 0) return (error); LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { s6.sin6_addr = pfr->router->rtaddr; if (sa6_recoverscope(&s6)) log(LOG_ERR, "scope error in prefix list (%s)\n", ip6_sprintf(ip6buf, &pfr->router->rtaddr)); error = SYSCTL_OUT(req, &s6, sizeof(s6)); if (error != 0) return (error); } } return (0); }