/*- * Copyright (c) 2010 George V. Neville-Neil * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include /* * Support for MIPS CPUs * */ static int mips24k_npmcs; struct mips24k_event_code_map { enum pmc_event pe_ev; /* enum value */ uint8_t pe_counter; /* Which counter this can be counted in. */ uint8_t pe_code; /* numeric code */ }; /* * MIPS event codes are encoded with a select bit. The * select bit is used when writing to CP0 so that we * can select either counter 0/2 or 1/3. The cycle * and instruction counters are special in that they * can be counted on either 0/2 or 1/3. */ #define MIPS24K_ALL 255 /* Count events in any counter. */ #define MIPS24K_CTR_0 0 /* Counter 0 Event */ #define MIPS24K_CTR_1 1 /* Counter 1 Event */ const struct mips24k_event_code_map mips24k_event_codes[] = { { PMC_EV_MIPS24K_CYCLE, MIPS24K_ALL, 0}, { PMC_EV_MIPS24K_INSTR_EXECUTED, MIPS24K_ALL, 1}, { PMC_EV_MIPS24K_BRANCH_COMPLETED, MIPS24K_CTR_0, 2}, { PMC_EV_MIPS24K_BRANCH_MISPRED, MIPS24K_CTR_1, 2}, { PMC_EV_MIPS24K_RETURN, MIPS24K_CTR_0, 3}, { PMC_EV_MIPS24K_RETURN_MISPRED, MIPS24K_CTR_1, 3}, { PMC_EV_MIPS24K_RETURN_NOT_31, MIPS24K_CTR_0, 4}, { PMC_EV_MIPS24K_RETURN_NOTPRED, MIPS24K_CTR_1, 4}, { PMC_EV_MIPS24K_ITLB_ACCESS, MIPS24K_CTR_0, 5}, { PMC_EV_MIPS24K_ITLB_MISS, MIPS24K_CTR_1, 5}, { PMC_EV_MIPS24K_DTLB_ACCESS, MIPS24K_CTR_0, 6}, { PMC_EV_MIPS24K_DTLB_MISS, MIPS24K_CTR_1, 6}, { PMC_EV_MIPS24K_JTLB_IACCESS, MIPS24K_CTR_0, 7}, { PMC_EV_MIPS24K_JTLB_IMISS, MIPS24K_CTR_1, 7}, { PMC_EV_MIPS24K_JTLB_DACCESS, MIPS24K_CTR_0, 8}, { PMC_EV_MIPS24K_JTLB_DMISS, MIPS24K_CTR_1, 8}, { PMC_EV_MIPS24K_IC_FETCH, MIPS24K_CTR_0, 9}, { PMC_EV_MIPS24K_IC_MISS, MIPS24K_CTR_1, 9}, { PMC_EV_MIPS24K_DC_LOADSTORE, MIPS24K_CTR_0, 10}, { PMC_EV_MIPS24K_DC_WRITEBACK, MIPS24K_CTR_1, 10}, { PMC_EV_MIPS24K_DC_MISS, MIPS24K_ALL, 11}, /* 12 reserved */ { PMC_EV_MIPS24K_STORE_MISS, MIPS24K_CTR_0, 13}, { PMC_EV_MIPS24K_LOAD_MISS, MIPS24K_CTR_1, 13}, { PMC_EV_MIPS24K_INTEGER_COMPLETED, MIPS24K_CTR_0, 14}, { PMC_EV_MIPS24K_FP_COMPLETED, MIPS24K_CTR_1, 14}, { PMC_EV_MIPS24K_LOAD_COMPLETED, MIPS24K_CTR_0, 15}, { PMC_EV_MIPS24K_STORE_COMPLETED, MIPS24K_CTR_1, 15}, { PMC_EV_MIPS24K_BARRIER_COMPLETED, MIPS24K_CTR_0, 16}, { PMC_EV_MIPS24K_MIPS16_COMPLETED, MIPS24K_CTR_1, 16}, { PMC_EV_MIPS24K_NOP_COMPLETED, MIPS24K_CTR_0, 17}, { PMC_EV_MIPS24K_INTEGER_MULDIV_COMPLETED, MIPS24K_CTR_1, 17}, { PMC_EV_MIPS24K_RF_STALL, MIPS24K_CTR_0, 18}, { PMC_EV_MIPS24K_INSTR_REFETCH, MIPS24K_CTR_1, 18}, { PMC_EV_MIPS24K_STORE_COND_COMPLETED, MIPS24K_CTR_0, 19}, { PMC_EV_MIPS24K_STORE_COND_FAILED, MIPS24K_CTR_1, 19}, { PMC_EV_MIPS24K_ICACHE_REQUESTS, MIPS24K_CTR_0, 20}, { PMC_EV_MIPS24K_ICACHE_HIT, MIPS24K_CTR_1, 20}, { PMC_EV_MIPS24K_L2_WRITEBACK, MIPS24K_CTR_0, 21}, { PMC_EV_MIPS24K_L2_ACCESS, MIPS24K_CTR_1, 21}, { PMC_EV_MIPS24K_L2_MISS, MIPS24K_CTR_0, 22}, { PMC_EV_MIPS24K_L2_ERR_CORRECTED, MIPS24K_CTR_1, 22}, { PMC_EV_MIPS24K_EXCEPTIONS, MIPS24K_CTR_0, 23}, /* Event 23 on COP0 1/3 is undefined */ { PMC_EV_MIPS24K_RF_CYCLES_STALLED, MIPS24K_CTR_0, 24}, { PMC_EV_MIPS24K_IFU_CYCLES_STALLED, MIPS24K_CTR_0, 25}, { PMC_EV_MIPS24K_ALU_CYCLES_STALLED, MIPS24K_CTR_1, 25}, /* Events 26 through 32 undefined or reserved to customers */ { PMC_EV_MIPS24K_UNCACHED_LOAD, MIPS24K_CTR_0, 33}, { PMC_EV_MIPS24K_UNCACHED_STORE, MIPS24K_CTR_1, 33}, { PMC_EV_MIPS24K_CP2_REG_TO_REG_COMPLETED, MIPS24K_CTR_0, 35}, { PMC_EV_MIPS24K_MFTC_COMPLETED, MIPS24K_CTR_1, 35}, /* Event 36 reserved */ { PMC_EV_MIPS24K_IC_BLOCKED_CYCLES, MIPS24K_CTR_0, 37}, { PMC_EV_MIPS24K_DC_BLOCKED_CYCLES, MIPS24K_CTR_1, 37}, { PMC_EV_MIPS24K_L2_IMISS_STALL_CYCLES, MIPS24K_CTR_0, 38}, { PMC_EV_MIPS24K_L2_DMISS_STALL_CYCLES, MIPS24K_CTR_1, 38}, { PMC_EV_MIPS24K_DMISS_CYCLES, MIPS24K_CTR_0, 39}, { PMC_EV_MIPS24K_L2_MISS_CYCLES, MIPS24K_CTR_1, 39}, { PMC_EV_MIPS24K_UNCACHED_BLOCK_CYCLES, MIPS24K_CTR_0, 40}, { PMC_EV_MIPS24K_MDU_STALL_CYCLES, MIPS24K_CTR_0, 41}, { PMC_EV_MIPS24K_FPU_STALL_CYCLES, MIPS24K_CTR_1, 41}, { PMC_EV_MIPS24K_CP2_STALL_CYCLES, MIPS24K_CTR_0, 42}, { PMC_EV_MIPS24K_COREXTEND_STALL_CYCLES, MIPS24K_CTR_1, 42}, { PMC_EV_MIPS24K_ISPRAM_STALL_CYCLES, MIPS24K_CTR_0, 43}, { PMC_EV_MIPS24K_DSPRAM_STALL_CYCLES, MIPS24K_CTR_1, 43}, { PMC_EV_MIPS24K_CACHE_STALL_CYCLES, MIPS24K_CTR_0, 44}, /* Event 44 undefined on 1/3 */ { PMC_EV_MIPS24K_LOAD_TO_USE_STALLS, MIPS24K_CTR_0, 45}, { PMC_EV_MIPS24K_BASE_MISPRED_STALLS, MIPS24K_CTR_1, 45}, { PMC_EV_MIPS24K_CPO_READ_STALLS, MIPS24K_CTR_0, 46}, { PMC_EV_MIPS24K_BRANCH_MISPRED_CYCLES, MIPS24K_CTR_1, 46}, /* Event 47 reserved */ { PMC_EV_MIPS24K_IFETCH_BUFFER_FULL, MIPS24K_CTR_0, 48}, { PMC_EV_MIPS24K_FETCH_BUFFER_ALLOCATED, MIPS24K_CTR_1, 48}, { PMC_EV_MIPS24K_EJTAG_ITRIGGER, MIPS24K_CTR_0, 49}, { PMC_EV_MIPS24K_EJTAG_DTRIGGER, MIPS24K_CTR_1, 49}, { PMC_EV_MIPS24K_FSB_LT_QUARTER, MIPS24K_CTR_0, 50}, { PMC_EV_MIPS24K_FSB_QUARTER_TO_HALF, MIPS24K_CTR_1, 50}, { PMC_EV_MIPS24K_FSB_GT_HALF, MIPS24K_CTR_0, 51}, { PMC_EV_MIPS24K_FSB_FULL_PIPELINE_STALLS, MIPS24K_CTR_1, 51}, { PMC_EV_MIPS24K_LDQ_LT_QUARTER, MIPS24K_CTR_0, 52}, { PMC_EV_MIPS24K_LDQ_QUARTER_TO_HALF, MIPS24K_CTR_1, 52}, { PMC_EV_MIPS24K_LDQ_GT_HALF, MIPS24K_CTR_0, 53}, { PMC_EV_MIPS24K_LDQ_FULL_PIPELINE_STALLS, MIPS24K_CTR_1, 53}, { PMC_EV_MIPS24K_WBB_LT_QUARTER, MIPS24K_CTR_0, 54}, { PMC_EV_MIPS24K_WBB_QUARTER_TO_HALF, MIPS24K_CTR_1, 54}, { PMC_EV_MIPS24K_WBB_GT_HALF, MIPS24K_CTR_0, 55}, { PMC_EV_MIPS24K_WBB_FULL_PIPELINE_STALLS, MIPS24K_CTR_1, 55}, /* Events 56-63 reserved */ { PMC_EV_MIPS24K_REQUEST_LATENCY, MIPS24K_CTR_0, 61}, { PMC_EV_MIPS24K_REQUEST_COUNT, MIPS24K_CTR_1, 61} }; const int mips24k_event_codes_size = sizeof(mips24k_event_codes) / sizeof(mips24k_event_codes[0]); /* * Per-processor information. */ struct mips24k_cpu { struct pmc_hw *pc_mipspmcs; }; static struct mips24k_cpu **mips24k_pcpu; /* * Performance Count Register N */ static uint32_t mips24k_pmcn_read(unsigned int pmc) { uint32_t reg = 0; KASSERT(pmc < mips24k_npmcs, ("[mips,%d] illegal PMC number %d", __LINE__, pmc)); /* The counter value is the next value after the control register. */ switch (pmc) { case 0: reg = mips_rd_perfcnt1(); break; case 1: reg = mips_rd_perfcnt3(); break; default: return 0; } return (reg); } static uint32_t mips24k_pmcn_write(unsigned int pmc, uint32_t reg) { KASSERT(pmc < mips24k_npmcs, ("[mips,%d] illegal PMC number %d", __LINE__, pmc)); switch (pmc) { case 0: mips_wr_perfcnt1(reg); break; case 1: mips_wr_perfcnt3(reg); break; default: return 0; } return (reg); } static int mips24k_allocate_pmc(int cpu, int ri, struct pmc *pm, const struct pmc_op_pmcallocate *a) { enum pmc_event pe; uint32_t caps, config, counter; int i; KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[mips,%d] illegal CPU value %d", __LINE__, cpu)); KASSERT(ri >= 0 && ri < mips24k_npmcs, ("[mips,%d] illegal row index %d", __LINE__, ri)); caps = a->pm_caps; if (a->pm_class != PMC_CLASS_MIPS24K) return (EINVAL); pe = a->pm_ev; for (i = 0; i < mips24k_event_codes_size; i++) { if (mips24k_event_codes[i].pe_ev == pe) { config = mips24k_event_codes[i].pe_code; counter = mips24k_event_codes[i].pe_counter; break; } } if (i == mips24k_event_codes_size) return (EINVAL); if ((counter != MIPS24K_ALL) && (counter != ri)) return (EINVAL); config <<= MIPS24K_PMC_SELECT; if (caps & PMC_CAP_SYSTEM) config |= (MIPS24K_PMC_SUPER_ENABLE | MIPS24K_PMC_KERNEL_ENABLE); if (caps & PMC_CAP_USER) config |= MIPS24K_PMC_USER_ENABLE; if ((caps & (PMC_CAP_USER | PMC_CAP_SYSTEM)) == 0) config |= MIPS24K_PMC_ENABLE; if (caps & PMC_CAP_INTERRUPT) config |= MIPS24K_PMC_INTERRUPT_ENABLE; pm->pm_md.pm_mips24k.pm_mips24k_evsel = config; PMCDBG(MDP,ALL,2,"mips-allocate ri=%d -> config=0x%x", ri, config); return 0; } static int mips24k_read_pmc(int cpu, int ri, pmc_value_t *v) { struct pmc *pm; pmc_value_t tmp; KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[mips,%d] illegal CPU value %d", __LINE__, cpu)); KASSERT(ri >= 0 && ri < mips24k_npmcs, ("[mips,%d] illegal row index %d", __LINE__, ri)); pm = mips24k_pcpu[cpu]->pc_mipspmcs[ri].phw_pmc; tmp = mips24k_pmcn_read(ri); PMCDBG(MDP,REA,2,"mips-read id=%d -> %jd", ri, tmp); if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) *v = MIPS24K_PERFCTR_VALUE_TO_RELOAD_COUNT(tmp); else *v = tmp; return 0; } static int mips24k_write_pmc(int cpu, int ri, pmc_value_t v) { struct pmc *pm; KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[mips,%d] illegal CPU value %d", __LINE__, cpu)); KASSERT(ri >= 0 && ri < mips24k_npmcs, ("[mips,%d] illegal row-index %d", __LINE__, ri)); pm = mips24k_pcpu[cpu]->pc_mipspmcs[ri].phw_pmc; if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) v = MIPS24K_RELOAD_COUNT_TO_PERFCTR_VALUE(v); PMCDBG(MDP,WRI,1,"mips-write cpu=%d ri=%d v=%jx", cpu, ri, v); mips24k_pmcn_write(ri, v); return 0; } static int mips24k_config_pmc(int cpu, int ri, struct pmc *pm) { struct pmc_hw *phw; PMCDBG(MDP,CFG,1, "cpu=%d ri=%d pm=%p", cpu, ri, pm); KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[mips,%d] illegal CPU value %d", __LINE__, cpu)); KASSERT(ri >= 0 && ri < mips24k_npmcs, ("[mips,%d] illegal row-index %d", __LINE__, ri)); phw = &mips24k_pcpu[cpu]->pc_mipspmcs[ri]; KASSERT(pm == NULL || phw->phw_pmc == NULL, ("[mips,%d] pm=%p phw->pm=%p hwpmc not unconfigured", __LINE__, pm, phw->phw_pmc)); phw->phw_pmc = pm; return 0; } static int mips24k_start_pmc(int cpu, int ri) { uint32_t config; struct pmc *pm; struct pmc_hw *phw; phw = &mips24k_pcpu[cpu]->pc_mipspmcs[ri]; pm = phw->phw_pmc; config = pm->pm_md.pm_mips24k.pm_mips24k_evsel; /* Enable the PMC. */ switch (ri) { case 0: mips_wr_perfcnt0(config); break; case 1: mips_wr_perfcnt2(config); break; default: break; } return 0; } static int mips24k_stop_pmc(int cpu, int ri) { struct pmc *pm; struct pmc_hw *phw; phw = &mips24k_pcpu[cpu]->pc_mipspmcs[ri]; pm = phw->phw_pmc; /* * Disable the PMCs. * * Clearing the entire register turns the counter off as well * as removes the previously sampled event. */ switch (ri) { case 0: mips_wr_perfcnt0(0); break; case 1: mips_wr_perfcnt2(0); break; default: break; } return 0; } static int mips24k_release_pmc(int cpu, int ri, struct pmc *pmc) { struct pmc_hw *phw; KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[mips,%d] illegal CPU value %d", __LINE__, cpu)); KASSERT(ri >= 0 && ri < mips24k_npmcs, ("[mips,%d] illegal row-index %d", __LINE__, ri)); phw = &mips24k_pcpu[cpu]->pc_mipspmcs[ri]; KASSERT(phw->phw_pmc == NULL, ("[mips,%d] PHW pmc %p non-NULL", __LINE__, phw->phw_pmc)); return 0; } static int mips24k_intr(int cpu, struct trapframe *tf) { int error; int retval, ri; struct pmc *pm; struct mips24k_cpu *pc; uint32_t r, r0, r2; KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[mips24k,%d] CPU %d out of range", __LINE__, cpu)); retval = 0; pc = mips24k_pcpu[cpu]; /* Stop PMCs without clearing the counter */ r0 = mips_rd_perfcnt0(); mips_wr_perfcnt0(r0 & ~(0x1f)); r2 = mips_rd_perfcnt2(); mips_wr_perfcnt2(r2 & ~(0x1f)); for (ri = 0; ri < mips24k_npmcs; ri++) { pm = mips24k_pcpu[cpu]->pc_mipspmcs[ri].phw_pmc; if (pm == NULL) continue; if (! PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) continue; r = mips24k_pmcn_read(ri); /* If bit 31 is set, the counter has overflowed */ if ((r & 0x80000000) == 0) continue; retval = 1; if (pm->pm_state != PMC_STATE_RUNNING) continue; error = pmc_process_interrupt(cpu, pm, tf, TRAPF_USERMODE(tf)); if (error) { /* Clear/disable the relevant counter */ if (ri == 0) r0 = 0; else if (ri == 1) r2 = 0; mips24k_stop_pmc(cpu, ri); } /* Reload sampling count */ mips24k_write_pmc(cpu, ri, pm->pm_sc.pm_reloadcount); } /* * Re-enable the PMC counters where they left off. * * Any counter which overflowed will have its sample count * reloaded in the loop above. */ mips_wr_perfcnt0(r0); mips_wr_perfcnt2(r2); return retval; } static int mips24k_describe(int cpu, int ri, struct pmc_info *pi, struct pmc **ppmc) { int error; struct pmc_hw *phw; char mips24k_name[PMC_NAME_MAX]; KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[mips,%d], illegal CPU %d", __LINE__, cpu)); KASSERT(ri >= 0 && ri < mips24k_npmcs, ("[mips,%d] row-index %d out of range", __LINE__, ri)); phw = &mips24k_pcpu[cpu]->pc_mipspmcs[ri]; snprintf(mips24k_name, sizeof(mips24k_name), "MIPS-%d", ri); if ((error = copystr(mips24k_name, pi->pm_name, PMC_NAME_MAX, NULL)) != 0) return error; pi->pm_class = PMC_CLASS_MIPS24K; if (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) { pi->pm_enabled = TRUE; *ppmc = phw->phw_pmc; } else { pi->pm_enabled = FALSE; *ppmc = NULL; } return (0); } static int mips24k_get_config(int cpu, int ri, struct pmc **ppm) { *ppm = mips24k_pcpu[cpu]->pc_mipspmcs[ri].phw_pmc; return 0; } /* * XXX don't know what we should do here. */ static int mips24k_switch_in(struct pmc_cpu *pc, struct pmc_process *pp) { return 0; } static int mips24k_switch_out(struct pmc_cpu *pc, struct pmc_process *pp) { return 0; } static int mips24k_pcpu_init(struct pmc_mdep *md, int cpu) { int first_ri, i; struct pmc_cpu *pc; struct mips24k_cpu *pac; struct pmc_hw *phw; KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[mips,%d] wrong cpu number %d", __LINE__, cpu)); PMCDBG(MDP,INI,1,"mips-init cpu=%d", cpu); mips24k_pcpu[cpu] = pac = malloc(sizeof(struct mips24k_cpu), M_PMC, M_WAITOK|M_ZERO); pac->pc_mipspmcs = malloc(sizeof(struct pmc_hw) * mips24k_npmcs, M_PMC, M_WAITOK|M_ZERO); pc = pmc_pcpu[cpu]; first_ri = md->pmd_classdep[PMC_MDEP_CLASS_INDEX_MIPS24K].pcd_ri; KASSERT(pc != NULL, ("[mips,%d] NULL per-cpu pointer", __LINE__)); for (i = 0, phw = pac->pc_mipspmcs; i < mips24k_npmcs; i++, phw++) { phw->phw_state = PMC_PHW_FLAG_IS_ENABLED | PMC_PHW_CPU_TO_STATE(cpu) | PMC_PHW_INDEX_TO_STATE(i); phw->phw_pmc = NULL; pc->pc_hwpmcs[i + first_ri] = phw; } /* * Clear the counter control register which has the effect * of disabling counting. */ for (i = 0; i < mips24k_npmcs; i++) mips24k_pmcn_write(i, 0); return 0; } static int mips24k_pcpu_fini(struct pmc_mdep *md, int cpu) { return 0; } struct pmc_mdep * pmc_mips24k_initialize() { struct pmc_mdep *pmc_mdep; struct pmc_classdep *pcd; /* * Read the counter control registers from CP0 * to determine the number of available PMCs. * The control registers use bit 31 as a "more" bit. * * XXX: With the current macros it is hard to read the * CP0 registers in any varied way. */ mips24k_npmcs = 2; PMCDBG(MDP,INI,1,"mips-init npmcs=%d", mips24k_npmcs); /* * Allocate space for pointers to PMC HW descriptors and for * the MDEP structure used by MI code. */ mips24k_pcpu = malloc(sizeof(struct mips24k_cpu *) * pmc_cpu_max(), M_PMC, M_WAITOK|M_ZERO); /* Just one class */ pmc_mdep = malloc(sizeof(struct pmc_mdep) + sizeof(struct pmc_classdep), M_PMC, M_WAITOK|M_ZERO); pmc_mdep->pmd_cputype = PMC_CPU_MIPS_24K; pmc_mdep->pmd_nclass = 1; pcd = &pmc_mdep->pmd_classdep[PMC_MDEP_CLASS_INDEX_MIPS24K]; pcd->pcd_caps = MIPS24K_PMC_CAPS; pcd->pcd_class = PMC_CLASS_MIPS24K; pcd->pcd_num = mips24k_npmcs; pcd->pcd_ri = pmc_mdep->pmd_npmc; pcd->pcd_width = 32; /* XXX: Fix for 64 bit MIPS */ pcd->pcd_allocate_pmc = mips24k_allocate_pmc; pcd->pcd_config_pmc = mips24k_config_pmc; pcd->pcd_pcpu_fini = mips24k_pcpu_fini; pcd->pcd_pcpu_init = mips24k_pcpu_init; pcd->pcd_describe = mips24k_describe; pcd->pcd_get_config = mips24k_get_config; pcd->pcd_read_pmc = mips24k_read_pmc; pcd->pcd_release_pmc = mips24k_release_pmc; pcd->pcd_start_pmc = mips24k_start_pmc; pcd->pcd_stop_pmc = mips24k_stop_pmc; pcd->pcd_write_pmc = mips24k_write_pmc; pmc_mdep->pmd_intr = mips24k_intr; pmc_mdep->pmd_switch_in = mips24k_switch_in; pmc_mdep->pmd_switch_out = mips24k_switch_out; pmc_mdep->pmd_npmc += mips24k_npmcs; return (pmc_mdep); } void pmc_mips24k_finalize(struct pmc_mdep *md) { (void) md; }