/*- * Copyright (c) 1988, 1989, 1990, 1993 * The Regents of the University of California. All rights reserved. * Copyright (c) 1988, 1989 by Adam de Boor * Copyright (c) 1989 by Berkeley Softworks * All rights reserved. * * This code is derived from software contributed to Berkeley by * Adam de Boor. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)cond.c 8.2 (Berkeley) 1/2/94 */ #include <sys/cdefs.h> __FBSDID("$FreeBSD$"); /* * Functions to handle conditionals in a makefile. * * Interface: * Cond_Eval Evaluate the conditional in the passed line. */ #include <ctype.h> #include <string.h> #include <stdlib.h> #include "buf.h" #include "cond.h" #include "dir.h" #include "globals.h" #include "GNode.h" #include "make.h" #include "parse.h" #include "str.h" #include "targ.h" #include "util.h" #include "var.h" /* * The parsing of conditional expressions is based on this grammar: * E -> F || E * E -> F * F -> T && F * F -> T * T -> defined(variable) * T -> make(target) * T -> exists(file) * T -> empty(varspec) * T -> target(name) * T -> symbol * T -> $(varspec) op value * T -> $(varspec) == "string" * T -> $(varspec) != "string" * T -> ( E ) * T -> ! T * op -> == | != | > | < | >= | <= * * 'symbol' is some other symbol to which the default function (condDefProc) * is applied. * * Tokens are scanned from the 'condExpr' string. The scanner (CondToken) * will return And for '&' and '&&', Or for '|' and '||', Not for '!', * LParen for '(', RParen for ')' and will evaluate the other terminal * symbols, using either the default function or the function given in the * terminal, and return the result as either True or False. * * All Non-Terminal functions (CondE, CondF and CondT) return Err on error. */ typedef enum { And, Or, Not, True, False, LParen, RParen, EndOfFile, None, Err } Token; typedef Boolean CondProc(int, char *); /*- * Structures to handle elegantly the different forms of #if's. The * last two fields are stored in condInvert and condDefProc, respectively. */ static void CondPushBack(Token); static int CondGetArg(char **, char **, const char *, Boolean); static CondProc CondDoDefined; static CondProc CondDoMake; static CondProc CondDoExists; static CondProc CondDoTarget; static char *CondCvtArg(char *, double *); static Token CondToken(Boolean); static Token CondT(Boolean); static Token CondF(Boolean); static Token CondE(Boolean); static const struct If { Boolean doNot; /* TRUE if default function should be negated */ CondProc *defProc; /* Default function to apply */ Boolean isElse; /* actually el<XXX> */ } ifs[] = { [COND_IF] = { FALSE, CondDoDefined, FALSE }, [COND_IFDEF] = { FALSE, CondDoDefined, FALSE }, [COND_IFNDEF] = { TRUE, CondDoDefined, FALSE }, [COND_IFMAKE] = { FALSE, CondDoMake, FALSE }, [COND_IFNMAKE] = { TRUE, CondDoMake, FALSE }, [COND_ELIF] = { FALSE, CondDoDefined, TRUE }, [COND_ELIFDEF] = { FALSE, CondDoDefined, TRUE }, [COND_ELIFNDEF] = { TRUE, CondDoDefined, TRUE }, [COND_ELIFMAKE] = { FALSE, CondDoMake, TRUE }, [COND_ELIFNMAKE] = { TRUE, CondDoMake, TRUE }, }; static Boolean condInvert; /* Invert the default function */ static CondProc *condDefProc; /* default function to apply */ static char *condExpr; /* The expression to parse */ static Token condPushBack = None; /* Single push-back token in parsing */ #define MAXIF 30 /* greatest depth of #if'ing */ static Boolean condStack[MAXIF]; /* Stack of conditionals's values */ static int condLineno[MAXIF]; /* Line numbers of the opening .if */ static int condTop = MAXIF; /* Top-most conditional */ static int skipIfLevel = 0; /* Depth of skipped conditionals */ static int skipIfLineno[MAXIF]; /* Line numbers of skipped .ifs */ Boolean skipLine = FALSE; /* Whether the parse module is skipping * lines */ /** * CondPushBack * Push back the most recent token read. We only need one level of * this, so the thing is just stored in 'condPushback'. * * Side Effects: * condPushback is overwritten. */ static void CondPushBack(Token t) { condPushBack = t; } /** * CondGetArg * Find the argument of a built-in function. parens is set to TRUE * if the arguments are bounded by parens. * * Results: * The length of the argument and the address of the argument. * * Side Effects: * The pointer is set to point to the closing parenthesis of the * function call. */ static int CondGetArg(char **linePtr, char **argPtr, const char *func, Boolean parens) { char *cp; size_t argLen; Buffer *buf; cp = *linePtr; if (parens) { while (*cp != '(' && *cp != '\0') { cp++; } if (*cp == '(') { cp++; } } if (*cp == '\0') { /* * No arguments whatsoever. Because 'make' and 'defined' * aren't really "reserved words", we don't print a message. * I think this is better than hitting the user with a warning * message every time s/he uses the word 'make' or 'defined' * at the beginning of a symbol... */ *argPtr = cp; return (0); } while (*cp == ' ' || *cp == '\t') { cp++; } /* * Create a buffer for the argument and start it out at 16 characters * long. Why 16? Why not? */ buf = Buf_Init(16); while ((strchr(" \t)&|", *cp) == NULL) && (*cp != '\0')) { if (*cp == '$') { /* * Parse the variable spec and install it as part of * the argument if it's valid. We tell Var_Parse to * complain on an undefined variable, so we don't do * it too. Nor do we return an error, though perhaps * we should... */ char *cp2; size_t len = 0; Boolean doFree; cp2 = Var_Parse(cp, VAR_CMD, TRUE, &len, &doFree); Buf_Append(buf, cp2); if (doFree) { free(cp2); } cp += len; } else { Buf_AddByte(buf, (Byte)*cp); cp++; } } Buf_AddByte(buf, (Byte)'\0'); *argPtr = (char *)Buf_GetAll(buf, &argLen); Buf_Destroy(buf, FALSE); while (*cp == ' ' || *cp == '\t') { cp++; } if (parens && *cp != ')') { Parse_Error(PARSE_WARNING, "Missing closing parenthesis for %s()", func); return (0); } else if (parens) { /* * Advance pointer past close parenthesis. */ cp++; } *linePtr = cp; return (argLen); } /** * CondDoDefined * Handle the 'defined' function for conditionals. * * Results: * TRUE if the given variable is defined. */ static Boolean CondDoDefined(int argLen, char *arg) { char savec = arg[argLen]; Boolean result; arg[argLen] = '\0'; if (Var_Value(arg, VAR_CMD) != NULL) { result = TRUE; } else { result = FALSE; } arg[argLen] = savec; return (result); } /** * CondDoMake * Handle the 'make' function for conditionals. * * Results: * TRUE if the given target is being made. */ static Boolean CondDoMake(int argLen, char *arg) { char savec = arg[argLen]; Boolean result; const LstNode *ln; arg[argLen] = '\0'; result = FALSE; LST_FOREACH(ln, &create) { if (Str_Match(Lst_Datum(ln), arg)) { result = TRUE; break; } } arg[argLen] = savec; return (result); } /** * CondDoExists * See if the given file exists. * * Results: * TRUE if the file exists and FALSE if it does not. */ static Boolean CondDoExists(int argLen, char *arg) { char savec = arg[argLen]; Boolean result; char *path; arg[argLen] = '\0'; path = Path_FindFile(arg, &dirSearchPath); if (path != NULL) { result = TRUE; free(path); } else { result = FALSE; } arg[argLen] = savec; return (result); } /** * CondDoTarget * See if the given node exists and is an actual target. * * Results: * TRUE if the node exists as a target and FALSE if it does not. */ static Boolean CondDoTarget(int argLen, char *arg) { char savec = arg[argLen]; Boolean result; GNode *gn; arg[argLen] = '\0'; gn = Targ_FindNode(arg, TARG_NOCREATE); if ((gn != NULL) && !OP_NOP(gn->type)) { result = TRUE; } else { result = FALSE; } arg[argLen] = savec; return (result); } /** * CondCvtArg * Convert the given number into a double. If the number begins * with 0x, it is interpreted as a hexadecimal integer * and converted to a double from there. All other strings just have * strtod called on them. * * Results: * Sets 'value' to double value of string. * Returns address of the first character after the last valid * character of the converted number. * * Side Effects: * Can change 'value' even if string is not a valid number. */ static char * CondCvtArg(char *str, double *value) { if ((*str == '0') && (str[1] == 'x')) { long i; for (str += 2, i = 0; ; str++) { int x; if (isdigit((unsigned char)*str)) x = *str - '0'; else if (isxdigit((unsigned char)*str)) x = 10 + *str - isupper((unsigned char)*str) ? 'A' : 'a'; else { *value = (double)i; return (str); } i = (i << 4) + x; } } else { char *eptr; *value = strtod(str, &eptr); return (eptr); } } /** * CondToken * Return the next token from the input. * * Results: * A Token for the next lexical token in the stream. * * Side Effects: * condPushback will be set back to None if it is used. */ static Token CondToken(Boolean doEval) { Token t; if (condPushBack != None) { t = condPushBack; condPushBack = None; return (t); } while (*condExpr == ' ' || *condExpr == '\t') { condExpr++; } switch (*condExpr) { case '(': t = LParen; condExpr++; break; case ')': t = RParen; condExpr++; break; case '|': if (condExpr[1] == '|') { condExpr++; } condExpr++; t = Or; break; case '&': if (condExpr[1] == '&') { condExpr++; } condExpr++; t = And; break; case '!': t = Not; condExpr++; break; case '\n': case '\0': t = EndOfFile; break; case '$': { char *lhs; const char *op; char *rhs; char zero[] = "0"; size_t varSpecLen = 0; Boolean doFree; /* * Parse the variable spec and skip over it, saving its * value in lhs. */ t = Err; lhs = Var_Parse(condExpr, VAR_CMD, doEval, &varSpecLen, &doFree); if (lhs == var_Error) { /* * Even if !doEval, we still report syntax * errors, which is what getting var_Error * back with !doEval means. */ return (Err); } condExpr += varSpecLen; if (!isspace((unsigned char)*condExpr) && strchr("!=><", *condExpr) == NULL) { Buffer *buf; buf = Buf_Init(0); Buf_Append(buf, lhs); if (doFree) free(lhs); for (;*condExpr && !isspace((unsigned char)*condExpr); condExpr++) Buf_AddByte(buf, (Byte)*condExpr); Buf_AddByte(buf, (Byte)'\0'); lhs = (char *)Buf_GetAll(buf, &varSpecLen); Buf_Destroy(buf, FALSE); doFree = TRUE; } /* * Skip whitespace to get to the operator */ while (isspace((unsigned char)*condExpr)) condExpr++; /* * Make sure the operator is a valid one. If it isn't a * known relational operator, pretend we got a * != 0 comparison. */ op = condExpr; switch (*condExpr) { case '!': case '=': case '<': case '>': if (condExpr[1] == '=') { condExpr += 2; } else { condExpr += 1; } while (isspace((unsigned char)*condExpr)) { condExpr++; } if (*condExpr == '\0') { Parse_Error(PARSE_WARNING, "Missing right-hand-side of operator"); goto error; } rhs = condExpr; break; default: op = "!="; rhs = zero; break; } if (*rhs == '"') { /* * Doing a string comparison. Only allow == and * != for * operators. */ char *string; char *cp, *cp2; int qt; Buffer *buf; do_string_compare: if (((*op != '!') && (*op != '=')) || (op[1] != '=')) { Parse_Error(PARSE_WARNING, "String comparison operator should " "be either == or !="); goto error; } buf = Buf_Init(0); qt = *rhs == '"' ? 1 : 0; for (cp = &rhs[qt]; ((qt && (*cp != '"')) || (!qt && strchr(" \t)", *cp) == NULL)) && (*cp != '\0'); cp++) { if ((*cp == '\\') && (cp[1] != '\0')) { /* * Backslash escapes things -- * skip over next character, * if it exists. */ cp++; Buf_AddByte(buf, (Byte)*cp); } else if (*cp == '$') { size_t len = 0; Boolean freeIt; cp2 = Var_Parse(cp, VAR_CMD, doEval, &len, &freeIt); if (cp2 != var_Error) { Buf_Append(buf, cp2); if (freeIt) { free(cp2); } cp += len - 1; } else { Buf_AddByte(buf, (Byte)*cp); } } else { Buf_AddByte(buf, (Byte)*cp); } } string = Buf_Peel(buf); DEBUGF(COND, ("lhs = \"%s\", rhs = \"%s\", " "op = %.2s\n", lhs, string, op)); /* * Null-terminate rhs and perform the * comparison. t is set to the result. */ if (*op == '=') { t = strcmp(lhs, string) ? False : True; } else { t = strcmp(lhs, string) ? True : False; } free(string); if (rhs == condExpr) { if (*cp == '\0' || (!qt && *cp == ')')) condExpr = cp; else condExpr = cp + 1; } } else { /* * rhs is either a float or an integer. * Convert both the lhs and the rhs to a * double and compare the two. */ double left, right; char *string; if (*CondCvtArg(lhs, &left) != '\0') goto do_string_compare; if (*rhs == '$') { size_t len = 0; Boolean freeIt; string = Var_Parse(rhs, VAR_CMD, doEval, &len, &freeIt); if (string == var_Error) { right = 0.0; } else { if (*CondCvtArg(string, &right) != '\0') { if (freeIt) free(string); goto do_string_compare; } if (freeIt) free(string); if (rhs == condExpr) condExpr += len; } } else { char *c = CondCvtArg(rhs, &right); if (c == rhs) goto do_string_compare; if (rhs == condExpr) { /* * Skip over the right-hand side */ condExpr = c; } } DEBUGF(COND, ("left = %f, right = %f, " "op = %.2s\n", left, right, op)); switch (op[0]) { case '!': if (op[1] != '=') { Parse_Error(PARSE_WARNING, "Unknown operator"); goto error; } t = (left != right ? True : False); break; case '=': if (op[1] != '=') { Parse_Error(PARSE_WARNING, "Unknown operator"); goto error; } t = (left == right ? True : False); break; case '<': if (op[1] == '=') { t = (left <= right?True:False); } else { t = (left < right?True:False); } break; case '>': if (op[1] == '=') { t = (left >= right?True:False); } else { t = (left > right?True:False); } break; default: break; } } error: if (doFree) free(lhs); break; } default: { CondProc *evalProc; Boolean invert = FALSE; char *arg; int arglen; if (strncmp(condExpr, "defined", 7) == 0) { /* * Use CondDoDefined to evaluate the argument * and CondGetArg to extract the argument from * the 'function call'. */ evalProc = CondDoDefined; condExpr += 7; arglen = CondGetArg(&condExpr, &arg, "defined", TRUE); if (arglen == 0) { condExpr -= 7; goto use_default; } } else if (strncmp(condExpr, "make", 4) == 0) { /* * Use CondDoMake to evaluate the argument and * CondGetArg to extract the argument from the * 'function call'. */ evalProc = CondDoMake; condExpr += 4; arglen = CondGetArg(&condExpr, &arg, "make", TRUE); if (arglen == 0) { condExpr -= 4; goto use_default; } } else if (strncmp(condExpr, "exists", 6) == 0) { /* * Use CondDoExists to evaluate the argument and * CondGetArg to extract the argument from the * 'function call'. */ evalProc = CondDoExists; condExpr += 6; arglen = CondGetArg(&condExpr, &arg, "exists", TRUE); if (arglen == 0) { condExpr -= 6; goto use_default; } } else if (strncmp(condExpr, "empty", 5) == 0) { /* * Use Var_Parse to parse the spec in parens and * return True if the resulting string is empty. */ size_t length; Boolean doFree; char *val; condExpr += 5; for (arglen = 0; condExpr[arglen] != '(' && condExpr[arglen] != '\0'; arglen += 1) continue; if (condExpr[arglen] != '\0') { length = 0; val = Var_Parse(&condExpr[arglen - 1], VAR_CMD, FALSE, &length, &doFree); if (val == var_Error) { t = Err; } else { /* * A variable is empty when it * just contains spaces... * 4/15/92, christos */ char *p; for (p = val; *p && isspace((unsigned char)*p); p++) continue; t = (*p == '\0') ? True : False; } if (doFree) { free(val); } /* * Advance condExpr to beyond the * closing ). Note that we subtract * one from arglen + length b/c length * is calculated from * condExpr[arglen - 1]. */ condExpr += arglen + length - 1; } else { condExpr -= 5; goto use_default; } break; } else if (strncmp(condExpr, "target", 6) == 0) { /* * Use CondDoTarget to evaluate the argument and * CondGetArg to extract the argument from the * 'function call'. */ evalProc = CondDoTarget; condExpr += 6; arglen = CondGetArg(&condExpr, &arg, "target", TRUE); if (arglen == 0) { condExpr -= 6; goto use_default; } } else { /* * The symbol is itself the argument to the * default function. We advance condExpr to * the end of the symbol by hand (the next * whitespace, closing paren or binary operator) * and set to invert the evaluation * function if condInvert is TRUE. */ use_default: invert = condInvert; evalProc = condDefProc; arglen = CondGetArg(&condExpr, &arg, "", FALSE); } /* * Evaluate the argument using the set function. If * invert is TRUE, we invert the sense of the function. */ t = (!doEval || (* evalProc) (arglen, arg) ? (invert ? False : True) : (invert ? True : False)); free(arg); break; } } return (t); } /** * CondT * Parse a single term in the expression. This consists of a terminal * symbol or Not and a terminal symbol (not including the binary * operators): * T -> defined(variable) | make(target) | exists(file) | symbol * T -> ! T | ( E ) * * Results: * True, False or Err. * * Side Effects: * Tokens are consumed. */ static Token CondT(Boolean doEval) { Token t; t = CondToken(doEval); if (t == EndOfFile) { /* * If we reached the end of the expression, the expression * is malformed... */ t = Err; } else if (t == LParen) { /* * T -> ( E ) */ t = CondE(doEval); if (t != Err) { if (CondToken(doEval) != RParen) { t = Err; } } } else if (t == Not) { t = CondT(doEval); if (t == True) { t = False; } else if (t == False) { t = True; } } return (t); } /** * CondF -- * Parse a conjunctive factor (nice name, wot?) * F -> T && F | T * * Results: * True, False or Err * * Side Effects: * Tokens are consumed. */ static Token CondF(Boolean doEval) { Token l, o; l = CondT(doEval); if (l != Err) { o = CondToken(doEval); if (o == And) { /* * F -> T && F * * If T is False, the whole thing will be False, but * we have to parse the r.h.s. anyway (to throw it * away). If T is True, the result is the r.h.s., * be it an Err or no. */ if (l == True) { l = CondF(doEval); } else { CondF(FALSE); } } else { /* * F -> T */ CondPushBack(o); } } return (l); } /** * CondE -- * Main expression production. * E -> F || E | F * * Results: * True, False or Err. * * Side Effects: * Tokens are, of course, consumed. */ static Token CondE(Boolean doEval) { Token l, o; l = CondF(doEval); if (l != Err) { o = CondToken(doEval); if (o == Or) { /* * E -> F || E * * A similar thing occurs for ||, except that here we * make sure the l.h.s. is False before we bother to * evaluate the r.h.s. Once again, if l is False, the * result is the r.h.s. and once again if l is True, * we parse the r.h.s. to throw it away. */ if (l == False) { l = CondE(doEval); } else { CondE(FALSE); } } else { /* * E -> F */ CondPushBack(o); } } return (l); } /** * Cond_If * Handle .if<X> and .elif<X> directives. * This function is called even when we're skipping. */ void Cond_If(char *line, int code, int lineno) { const struct If *ifp; Boolean value; ifp = &ifs[code]; if (ifp->isElse) { if (condTop == MAXIF) { Parse_Error(PARSE_FATAL, "if-less elif"); return; } if (skipIfLevel != 0) { /* * If skipping this conditional, just ignore * the whole thing. If we don't, the user * might be employing a variable that's * undefined, for which there's an enclosing * ifdef that we're skipping... */ skipIfLineno[skipIfLevel - 1] = lineno; return; } } else if (skipLine) { /* * Don't even try to evaluate a conditional that's * not an else if we're skipping things... */ skipIfLineno[skipIfLevel] = lineno; skipIfLevel += 1; return; } /* * Initialize file-global variables for parsing */ condDefProc = ifp->defProc; condInvert = ifp->doNot; while (*line == ' ' || *line == '\t') { line++; } condExpr = line; condPushBack = None; switch (CondE(TRUE)) { case True: if (CondToken(TRUE) != EndOfFile) goto err; value = TRUE; break; case False: if (CondToken(TRUE) != EndOfFile) goto err; value = FALSE; break; case Err: err: Parse_Error(PARSE_FATAL, "Malformed conditional (%s)", line); return; default: abort(); } if (!ifp->isElse) { /* push this value */ condTop -= 1; } else if (skipIfLevel != 0 || condStack[condTop]) { /* * If this is an else-type conditional, it should only take * effect if its corresponding if was evaluated and FALSE. * If its if was TRUE or skipped, we return COND_SKIP (and * start skipping in case we weren't already), leaving the * stack unmolested so later elif's don't screw up... */ skipLine = TRUE; return; } if (condTop < 0) { /* * This is the one case where we can definitely proclaim a fatal * error. If we don't, we're hosed. */ Parse_Error(PARSE_FATAL, "Too many nested if's. %d max.",MAXIF); return; } /* push */ condStack[condTop] = value; condLineno[condTop] = lineno; skipLine = !value; } /** * Cond_Else * Handle .else statement. */ void Cond_Else(char *line __unused, int code __unused, int lineno __unused) { while (isspace((u_char)*line)) line++; if (*line != '\0' && (warn_flags & WARN_DIRSYNTAX)) { Parse_Error(PARSE_WARNING, "junk after .else ignored '%s'", line); } if (condTop == MAXIF) { Parse_Error(PARSE_FATAL, "if-less else"); return; } if (skipIfLevel != 0) return; if (skipIfLevel != 0 || condStack[condTop]) { /* * An else should only take effect if its corresponding if was * evaluated and FALSE. * If its if was TRUE or skipped, we return COND_SKIP (and * start skipping in case we weren't already), leaving the * stack unmolested so later elif's don't screw up... * XXX How does this work with two .else's? */ skipLine = TRUE; return; } /* inverse value */ condStack[condTop] = !condStack[condTop]; skipLine = !condStack[condTop]; } /** * Cond_Endif * Handle .endif statement. */ void Cond_Endif(char *line __unused, int code __unused, int lineno __unused) { while (isspace((u_char)*line)) line++; if (*line != '\0' && (warn_flags & WARN_DIRSYNTAX)) { Parse_Error(PARSE_WARNING, "junk after .endif ignored '%s'", line); } /* * End of a conditional section. If skipIfLevel is non-zero, * that conditional was skipped, so lines following it should * also be skipped. Hence, we return COND_SKIP. Otherwise, * the conditional was read so succeeding lines should be * parsed (think about it...) so we return COND_PARSE, unless * this endif isn't paired with a decent if. */ if (skipIfLevel != 0) { skipIfLevel -= 1; return; } if (condTop == MAXIF) { Parse_Error(PARSE_FATAL, "if-less endif"); return; } /* pop */ skipLine = FALSE; condTop += 1; } /** * Cond_End * Make sure everything's clean at the end of a makefile. * * Side Effects: * Parse_Error will be called if open conditionals are around. */ void Cond_End(void) { int level; if (condTop != MAXIF) { Parse_Error(PARSE_FATAL, "%d open conditional%s:", MAXIF - condTop + skipIfLevel, MAXIF - condTop + skipIfLevel== 1 ? "" : "s"); for (level = skipIfLevel; level > 0; level--) Parse_Error(PARSE_FATAL, "\t%*sat line %d (skipped)", MAXIF - condTop + level + 1, "", skipIfLineno[level - 1]); for (level = condTop; level < MAXIF; level++) Parse_Error(PARSE_FATAL, "\t%*sat line %d " "(evaluated to %s)", MAXIF - level + skipIfLevel, "", condLineno[level], condStack[level] ? "true" : "false"); } condTop = MAXIF; }