/*- * Copyright (c) 2010 Pawel Jakub Dawidek <pjd@FreeBSD.org> * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD$"); #include <sys/param.h> #include <sys/gpt.h> #ifndef LITTLE_ENDIAN #error gpt.c works only for little endian architectures #endif #include "stand.h" #include "crc32.h" #include "drv.h" #include "gpt.h" static struct gpt_hdr hdr_primary, hdr_backup, *gpthdr; static uint64_t hdr_primary_lba, hdr_backup_lba; static struct gpt_ent table_primary[MAXTBLENTS], table_backup[MAXTBLENTS]; static struct gpt_ent *gpttable; static int curent, bootonce; /* * Buffer below 64kB passed on gptread(), which can hold at least * one sector of data (512 bytes). */ static char *secbuf; static void gptupdate(const char *which, struct dsk *dskp, struct gpt_hdr *hdr, struct gpt_ent *table) { int entries_per_sec, firstent; daddr_t slba; /* * We need to update the following for both primary and backup GPT: * 1. Sector on disk that contains current partition. * 2. Partition table checksum. * 3. Header checksum. * 4. Header on disk. */ entries_per_sec = DEV_BSIZE / hdr->hdr_entsz; slba = curent / entries_per_sec; firstent = slba * entries_per_sec; bcopy(&table[firstent], secbuf, DEV_BSIZE); slba += hdr->hdr_lba_table; if (drvwrite(dskp, secbuf, slba, 1)) { printf("%s: unable to update %s GPT partition table\n", BOOTPROG, which); return; } hdr->hdr_crc_table = crc32(table, hdr->hdr_entries * hdr->hdr_entsz); hdr->hdr_crc_self = 0; hdr->hdr_crc_self = crc32(hdr, hdr->hdr_size); bzero(secbuf, DEV_BSIZE); bcopy(hdr, secbuf, hdr->hdr_size); if (drvwrite(dskp, secbuf, hdr->hdr_lba_self, 1)) { printf("%s: unable to update %s GPT header\n", BOOTPROG, which); return; } } int gptfind(const uuid_t *uuid, struct dsk *dskp, int part) { struct gpt_ent *ent; int firsttry; if (part >= 0) { if (part == 0 || part > gpthdr->hdr_entries) { printf("%s: invalid partition index\n", BOOTPROG); return (-1); } ent = &gpttable[part - 1]; if (bcmp(&ent->ent_type, uuid, sizeof(uuid_t)) != 0) { printf("%s: specified partition is not UFS\n", BOOTPROG); return (-1); } curent = part - 1; goto found; } firsttry = (curent == -1); curent++; if (curent >= gpthdr->hdr_entries) { curent = gpthdr->hdr_entries; return (-1); } if (bootonce) { /* * First look for partition with both GPT_ENT_ATTR_BOOTME and * GPT_ENT_ATTR_BOOTONCE flags. */ for (; curent < gpthdr->hdr_entries; curent++) { ent = &gpttable[curent]; if (bcmp(&ent->ent_type, uuid, sizeof(uuid_t)) != 0) continue; if (!(ent->ent_attr & GPT_ENT_ATTR_BOOTME)) continue; if (!(ent->ent_attr & GPT_ENT_ATTR_BOOTONCE)) continue; /* Ok, found one. */ goto found; } bootonce = 0; curent = 0; } for (; curent < gpthdr->hdr_entries; curent++) { ent = &gpttable[curent]; if (bcmp(&ent->ent_type, uuid, sizeof(uuid_t)) != 0) continue; if (!(ent->ent_attr & GPT_ENT_ATTR_BOOTME)) continue; if (ent->ent_attr & GPT_ENT_ATTR_BOOTONCE) continue; /* Ok, found one. */ goto found; } if (firsttry) { /* * No partition with BOOTME flag was found, try to boot from * first UFS partition. */ for (curent = 0; curent < gpthdr->hdr_entries; curent++) { ent = &gpttable[curent]; if (bcmp(&ent->ent_type, uuid, sizeof(uuid_t)) != 0) continue; /* Ok, found one. */ goto found; } } return (-1); found: dskp->part = curent + 1; ent = &gpttable[curent]; dskp->start = ent->ent_lba_start; if (ent->ent_attr & GPT_ENT_ATTR_BOOTONCE) { /* * Clear BOOTME, but leave BOOTONCE set before trying to * boot from this partition. */ if (hdr_primary_lba > 0) { table_primary[curent].ent_attr &= ~GPT_ENT_ATTR_BOOTME; gptupdate("primary", dskp, &hdr_primary, table_primary); } if (hdr_backup_lba > 0) { table_backup[curent].ent_attr &= ~GPT_ENT_ATTR_BOOTME; gptupdate("backup", dskp, &hdr_backup, table_backup); } } return (0); } static int gptread_hdr(const char *which, struct dsk *dskp, struct gpt_hdr *hdr, uint64_t hdrlba) { uint32_t crc; if (drvread(dskp, secbuf, hdrlba, 1)) { printf("%s: unable to read %s GPT header\n", BOOTPROG, which); return (-1); } bcopy(secbuf, hdr, sizeof(*hdr)); if (bcmp(hdr->hdr_sig, GPT_HDR_SIG, sizeof(hdr->hdr_sig)) != 0 || hdr->hdr_lba_self != hdrlba || hdr->hdr_revision < 0x00010000 || hdr->hdr_entsz < sizeof(struct gpt_ent) || hdr->hdr_entries > MAXTBLENTS || DEV_BSIZE % hdr->hdr_entsz != 0) { printf("%s: invalid %s GPT header\n", BOOTPROG, which); return (-1); } crc = hdr->hdr_crc_self; hdr->hdr_crc_self = 0; if (crc32(hdr, hdr->hdr_size) != crc) { printf("%s: %s GPT header checksum mismatch\n", BOOTPROG, which); return (-1); } hdr->hdr_crc_self = crc; return (0); } void gptbootfailed(struct dsk *dskp) { if (!(gpttable[curent].ent_attr & GPT_ENT_ATTR_BOOTONCE)) return; if (hdr_primary_lba > 0) { table_primary[curent].ent_attr &= ~GPT_ENT_ATTR_BOOTONCE; table_primary[curent].ent_attr |= GPT_ENT_ATTR_BOOTFAILED; gptupdate("primary", dskp, &hdr_primary, table_primary); } if (hdr_backup_lba > 0) { table_backup[curent].ent_attr &= ~GPT_ENT_ATTR_BOOTONCE; table_backup[curent].ent_attr |= GPT_ENT_ATTR_BOOTFAILED; gptupdate("backup", dskp, &hdr_backup, table_backup); } } static void gptbootconv(const char *which, struct dsk *dskp, struct gpt_hdr *hdr, struct gpt_ent *table) { struct gpt_ent *ent; daddr_t slba; int table_updated, sector_updated; int entries_per_sec, nent, part; table_updated = 0; entries_per_sec = DEV_BSIZE / hdr->hdr_entsz; for (nent = 0, slba = hdr->hdr_lba_table; slba < hdr->hdr_lba_table + hdr->hdr_entries / entries_per_sec; slba++, nent += entries_per_sec) { sector_updated = 0; for (part = 0; part < entries_per_sec; part++) { ent = &table[nent + part]; if ((ent->ent_attr & (GPT_ENT_ATTR_BOOTME | GPT_ENT_ATTR_BOOTONCE | GPT_ENT_ATTR_BOOTFAILED)) != GPT_ENT_ATTR_BOOTONCE) { continue; } ent->ent_attr &= ~GPT_ENT_ATTR_BOOTONCE; ent->ent_attr |= GPT_ENT_ATTR_BOOTFAILED; table_updated = 1; sector_updated = 1; } if (!sector_updated) continue; bcopy(&table[nent], secbuf, DEV_BSIZE); if (drvwrite(dskp, secbuf, slba, 1)) { printf("%s: unable to update %s GPT partition table\n", BOOTPROG, which); } } if (!table_updated) return; hdr->hdr_crc_table = crc32(table, hdr->hdr_entries * hdr->hdr_entsz); hdr->hdr_crc_self = 0; hdr->hdr_crc_self = crc32(hdr, hdr->hdr_size); bzero(secbuf, DEV_BSIZE); bcopy(hdr, secbuf, hdr->hdr_size); if (drvwrite(dskp, secbuf, hdr->hdr_lba_self, 1)) printf("%s: unable to update %s GPT header\n", BOOTPROG, which); } static int gptread_table(const char *which, const uuid_t *uuid, struct dsk *dskp, struct gpt_hdr *hdr, struct gpt_ent *table) { struct gpt_ent *ent; int entries_per_sec; int part, nent; daddr_t slba; if (hdr->hdr_entries == 0) return (0); entries_per_sec = DEV_BSIZE / hdr->hdr_entsz; slba = hdr->hdr_lba_table; nent = 0; for (;;) { if (drvread(dskp, secbuf, slba, 1)) { printf("%s: unable to read %s GPT partition table\n", BOOTPROG, which); return (-1); } ent = (struct gpt_ent *)secbuf; for (part = 0; part < entries_per_sec; part++, ent++) { bcopy(ent, &table[nent], sizeof(table[nent])); if (++nent >= hdr->hdr_entries) break; } if (nent >= hdr->hdr_entries) break; slba++; } if (crc32(table, nent * hdr->hdr_entsz) != hdr->hdr_crc_table) { printf("%s: %s GPT table checksum mismatch\n", BOOTPROG, which); return (-1); } return (0); } int gptread(const uuid_t *uuid, struct dsk *dskp, char *buf) { uint64_t altlba; /* * Read and verify both GPT headers: primary and backup. */ secbuf = buf; hdr_primary_lba = hdr_backup_lba = 0; curent = -1; bootonce = 1; dskp->start = 0; if (gptread_hdr("primary", dskp, &hdr_primary, 1) == 0 && gptread_table("primary", uuid, dskp, &hdr_primary, table_primary) == 0) { hdr_primary_lba = hdr_primary.hdr_lba_self; gpthdr = &hdr_primary; gpttable = table_primary; } if (hdr_primary_lba > 0) { /* * If primary header is valid, we can get backup * header location from there. */ altlba = hdr_primary.hdr_lba_alt; } else { altlba = drvsize(dskp); if (altlba > 0) altlba--; } if (altlba == 0) printf("%s: unable to locate backup GPT header\n", BOOTPROG); else if (gptread_hdr("backup", dskp, &hdr_backup, altlba) == 0 && gptread_table("backup", uuid, dskp, &hdr_backup, table_backup) == 0) { hdr_backup_lba = hdr_backup.hdr_lba_self; if (hdr_primary_lba == 0) { gpthdr = &hdr_backup; gpttable = table_backup; printf("%s: using backup GPT\n", BOOTPROG); } } /* * Convert all BOOTONCE without BOOTME flags into BOOTFAILED. * BOOTONCE without BOOTME means that we tried to boot from it, * but failed after leaving gptboot and machine was rebooted. * We don't want to leave partitions marked as BOOTONCE only, * because when we boot successfully start-up scripts should * find at most one partition with only BOOTONCE flag and this * will mean that we booted from that partition. */ if (hdr_primary_lba != 0) gptbootconv("primary", dskp, &hdr_primary, table_primary); if (hdr_backup_lba != 0) gptbootconv("backup", dskp, &hdr_backup, table_backup); if (hdr_primary_lba == 0 && hdr_backup_lba == 0) return (-1); return (0); }