//===--- SemaExprObjC.cpp - Semantic Analysis for ObjC Expressions --------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements semantic analysis for Objective-C expressions. // //===----------------------------------------------------------------------===// #include "Sema.h" #include "clang/AST/ASTContext.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/ExprObjC.h" #include "llvm/ADT/SmallString.h" #include "clang/Lex/Preprocessor.h" using namespace clang; Sema::ExprResult Sema::ParseObjCStringLiteral(SourceLocation *AtLocs, ExprTy **strings, unsigned NumStrings) { StringLiteral **Strings = reinterpret_cast(strings); // Most ObjC strings are formed out of a single piece. However, we *can* // have strings formed out of multiple @ strings with multiple pptokens in // each one, e.g. @"foo" "bar" @"baz" "qux" which need to be turned into one // StringLiteral for ObjCStringLiteral to hold onto. StringLiteral *S = Strings[0]; // If we have a multi-part string, merge it all together. if (NumStrings != 1) { // Concatenate objc strings. llvm::SmallString<128> StrBuf; llvm::SmallVector StrLocs; for (unsigned i = 0; i != NumStrings; ++i) { S = Strings[i]; // ObjC strings can't be wide. if (S->isWide()) { Diag(S->getLocStart(), diag::err_cfstring_literal_not_string_constant) << S->getSourceRange(); return true; } // Get the string data. StrBuf.append(S->getStrData(), S->getStrData()+S->getByteLength()); // Get the locations of the string tokens. StrLocs.append(S->tokloc_begin(), S->tokloc_end()); // Free the temporary string. S->Destroy(Context); } // Create the aggregate string with the appropriate content and location // information. S = StringLiteral::Create(Context, &StrBuf[0], StrBuf.size(), false, Context.getPointerType(Context.CharTy), &StrLocs[0], StrLocs.size()); } // Verify that this composite string is acceptable for ObjC strings. if (CheckObjCString(S)) return true; // Initialize the constant string interface lazily. This assumes // the NSString interface is seen in this translation unit. Note: We // don't use NSConstantString, since the runtime team considers this // interface private (even though it appears in the header files). QualType Ty = Context.getObjCConstantStringInterface(); if (!Ty.isNull()) { Ty = Context.getPointerType(Ty); } else { IdentifierInfo *NSIdent = &Context.Idents.get("NSString"); NamedDecl *IF = LookupName(TUScope, NSIdent, LookupOrdinaryName); if (ObjCInterfaceDecl *StrIF = dyn_cast_or_null(IF)) { Context.setObjCConstantStringInterface(StrIF); Ty = Context.getObjCConstantStringInterface(); Ty = Context.getPointerType(Ty); } else { // If there is no NSString interface defined then treat constant // strings as untyped objects and let the runtime figure it out later. Ty = Context.getObjCIdType(); } } return new (Context) ObjCStringLiteral(S, Ty, AtLocs[0]); } Expr *Sema::BuildObjCEncodeExpression(SourceLocation AtLoc, QualType EncodedType, SourceLocation RParenLoc) { QualType StrTy; if (EncodedType->isDependentType()) StrTy = Context.DependentTy; else { std::string Str; Context.getObjCEncodingForType(EncodedType, Str); // The type of @encode is the same as the type of the corresponding string, // which is an array type. StrTy = Context.CharTy; // A C++ string literal has a const-qualified element type (C++ 2.13.4p1). if (getLangOptions().CPlusPlus) StrTy.addConst(); StrTy = Context.getConstantArrayType(StrTy, llvm::APInt(32, Str.size()+1), ArrayType::Normal, 0); } return new (Context) ObjCEncodeExpr(StrTy, EncodedType, AtLoc, RParenLoc); } Sema::ExprResult Sema::ParseObjCEncodeExpression(SourceLocation AtLoc, SourceLocation EncodeLoc, SourceLocation LParenLoc, TypeTy *ty, SourceLocation RParenLoc) { QualType EncodedType = QualType::getFromOpaquePtr(ty); return BuildObjCEncodeExpression(AtLoc, EncodedType, RParenLoc); } Sema::ExprResult Sema::ParseObjCSelectorExpression(Selector Sel, SourceLocation AtLoc, SourceLocation SelLoc, SourceLocation LParenLoc, SourceLocation RParenLoc) { ObjCMethodDecl *Method = LookupInstanceMethodInGlobalPool(Sel, SourceRange(LParenLoc, RParenLoc)); if (!Method) Method = LookupFactoryMethodInGlobalPool(Sel, SourceRange(LParenLoc, RParenLoc)); if (!Method) Diag(SelLoc, diag::warn_undeclared_selector) << Sel; QualType Ty = Context.getObjCSelType(); return new (Context) ObjCSelectorExpr(Ty, Sel, AtLoc, RParenLoc); } Sema::ExprResult Sema::ParseObjCProtocolExpression(IdentifierInfo *ProtocolId, SourceLocation AtLoc, SourceLocation ProtoLoc, SourceLocation LParenLoc, SourceLocation RParenLoc) { ObjCProtocolDecl* PDecl = LookupProtocol(ProtocolId); if (!PDecl) { Diag(ProtoLoc, diag::err_undeclared_protocol) << ProtocolId; return true; } QualType Ty = Context.getObjCProtoType(); if (Ty.isNull()) return true; Ty = Context.getPointerType(Ty); return new (Context) ObjCProtocolExpr(Ty, PDecl, AtLoc, RParenLoc); } bool Sema::CheckMessageArgumentTypes(Expr **Args, unsigned NumArgs, Selector Sel, ObjCMethodDecl *Method, bool isClassMessage, SourceLocation lbrac, SourceLocation rbrac, QualType &ReturnType) { if (!Method) { // Apply default argument promotion as for (C99 6.5.2.2p6). for (unsigned i = 0; i != NumArgs; i++) DefaultArgumentPromotion(Args[i]); unsigned DiagID = isClassMessage ? diag::warn_class_method_not_found : diag::warn_inst_method_not_found; Diag(lbrac, DiagID) << Sel << isClassMessage << SourceRange(lbrac, rbrac); ReturnType = Context.getObjCIdType(); return false; } ReturnType = Method->getResultType(); unsigned NumNamedArgs = Sel.getNumArgs(); assert(NumArgs >= NumNamedArgs && "Too few arguments for selector!"); bool IsError = false; for (unsigned i = 0; i < NumNamedArgs; i++) { Expr *argExpr = Args[i]; assert(argExpr && "CheckMessageArgumentTypes(): missing expression"); QualType lhsType = Method->param_begin()[i]->getType(); QualType rhsType = argExpr->getType(); // If necessary, apply function/array conversion. C99 6.7.5.3p[7,8]. if (lhsType->isArrayType()) lhsType = Context.getArrayDecayedType(lhsType); else if (lhsType->isFunctionType()) lhsType = Context.getPointerType(lhsType); AssignConvertType Result = CheckSingleAssignmentConstraints(lhsType, argExpr); if (Args[i] != argExpr) // The expression was converted. Args[i] = argExpr; // Make sure we store the converted expression. IsError |= DiagnoseAssignmentResult(Result, argExpr->getLocStart(), lhsType, rhsType, argExpr, "sending"); } // Promote additional arguments to variadic methods. if (Method->isVariadic()) { for (unsigned i = NumNamedArgs; i < NumArgs; ++i) IsError |= DefaultVariadicArgumentPromotion(Args[i], VariadicMethod); } else { // Check for extra arguments to non-variadic methods. if (NumArgs != NumNamedArgs) { Diag(Args[NumNamedArgs]->getLocStart(), diag::err_typecheck_call_too_many_args) << 2 /*method*/ << Method->getSourceRange() << SourceRange(Args[NumNamedArgs]->getLocStart(), Args[NumArgs-1]->getLocEnd()); } } return IsError; } bool Sema::isSelfExpr(Expr *RExpr) { if (DeclRefExpr *DRE = dyn_cast(RExpr)) if (DRE->getDecl()->getIdentifier() == &Context.Idents.get("self")) return true; return false; } // Helper method for ActOnClassMethod/ActOnInstanceMethod. // Will search "local" class/category implementations for a method decl. // If failed, then we search in class's root for an instance method. // Returns 0 if no method is found. ObjCMethodDecl *Sema::LookupPrivateClassMethod(Selector Sel, ObjCInterfaceDecl *ClassDecl) { ObjCMethodDecl *Method = 0; // lookup in class and all superclasses while (ClassDecl && !Method) { if (ObjCImplementationDecl *ImpDecl = LookupObjCImplementation(ClassDecl->getIdentifier())) Method = ImpDecl->getClassMethod(Sel); // Look through local category implementations associated with the class. if (!Method) { for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Method; i++) { if (ObjCCategoryImpls[i]->getClassInterface() == ClassDecl) Method = ObjCCategoryImpls[i]->getClassMethod(Sel); } } // Before we give up, check if the selector is an instance method. // But only in the root. This matches gcc's behaviour and what the // runtime expects. if (!Method && !ClassDecl->getSuperClass()) { Method = ClassDecl->lookupInstanceMethod(Sel); // Look through local category implementations associated // with the root class. if (!Method) Method = LookupPrivateInstanceMethod(Sel, ClassDecl); } ClassDecl = ClassDecl->getSuperClass(); } return Method; } ObjCMethodDecl *Sema::LookupPrivateInstanceMethod(Selector Sel, ObjCInterfaceDecl *ClassDecl) { ObjCMethodDecl *Method = 0; while (ClassDecl && !Method) { // If we have implementations in scope, check "private" methods. if (ObjCImplementationDecl *ImpDecl = LookupObjCImplementation(ClassDecl->getIdentifier())) Method = ImpDecl->getInstanceMethod(Sel); // Look through local category implementations associated with the class. if (!Method) { for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Method; i++) { if (ObjCCategoryImpls[i]->getClassInterface() == ClassDecl) Method = ObjCCategoryImpls[i]->getInstanceMethod(Sel); } } ClassDecl = ClassDecl->getSuperClass(); } return Method; } Action::OwningExprResult Sema::ActOnClassPropertyRefExpr( IdentifierInfo &receiverName, IdentifierInfo &propertyName, SourceLocation &receiverNameLoc, SourceLocation &propertyNameLoc) { ObjCInterfaceDecl *IFace = getObjCInterfaceDecl(&receiverName); // Search for a declared property first. Selector Sel = PP.getSelectorTable().getNullarySelector(&propertyName); ObjCMethodDecl *Getter = IFace->lookupClassMethod(Sel); // If this reference is in an @implementation, check for 'private' methods. if (!Getter) if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface()) if (ObjCImplementationDecl *ImpDecl = LookupObjCImplementation(ClassDecl->getIdentifier())) Getter = ImpDecl->getClassMethod(Sel); if (Getter) { // FIXME: refactor/share with ActOnMemberReference(). // Check if we can reference this property. if (DiagnoseUseOfDecl(Getter, propertyNameLoc)) return ExprError(); } // Look for the matching setter, in case it is needed. Selector SetterSel = SelectorTable::constructSetterName(PP.getIdentifierTable(), PP.getSelectorTable(), &propertyName); ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel); if (!Setter) { // If this reference is in an @implementation, also check for 'private' // methods. if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface()) if (ObjCImplementationDecl *ImpDecl = LookupObjCImplementation(ClassDecl->getIdentifier())) Setter = ImpDecl->getClassMethod(SetterSel); } // Look through local category implementations associated with the class. if (!Setter) { for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Setter; i++) { if (ObjCCategoryImpls[i]->getClassInterface() == IFace) Setter = ObjCCategoryImpls[i]->getClassMethod(SetterSel); } } if (Setter && DiagnoseUseOfDecl(Setter, propertyNameLoc)) return ExprError(); if (Getter || Setter) { QualType PType; if (Getter) PType = Getter->getResultType(); else { for (ObjCMethodDecl::param_iterator PI = Setter->param_begin(), E = Setter->param_end(); PI != E; ++PI) PType = (*PI)->getType(); } return Owned(new (Context) ObjCKVCRefExpr(Getter, PType, Setter, propertyNameLoc, IFace, receiverNameLoc)); } return ExprError(Diag(propertyNameLoc, diag::err_property_not_found) << &propertyName << Context.getObjCInterfaceType(IFace)); } // ActOnClassMessage - used for both unary and keyword messages. // ArgExprs is optional - if it is present, the number of expressions // is obtained from Sel.getNumArgs(). Sema::ExprResult Sema::ActOnClassMessage( Scope *S, IdentifierInfo *receiverName, Selector Sel, SourceLocation lbrac, SourceLocation receiverLoc, SourceLocation selectorLoc, SourceLocation rbrac, ExprTy **Args, unsigned NumArgs) { assert(receiverName && "missing receiver class name"); Expr **ArgExprs = reinterpret_cast(Args); ObjCInterfaceDecl* ClassDecl = 0; bool isSuper = false; if (receiverName->isStr("super")) { if (getCurMethodDecl()) { isSuper = true; ObjCInterfaceDecl *OID = getCurMethodDecl()->getClassInterface(); if (!OID) return Diag(lbrac, diag::error_no_super_class_message) << getCurMethodDecl()->getDeclName(); ClassDecl = OID->getSuperClass(); if (!ClassDecl) return Diag(lbrac, diag::error_no_super_class) << OID->getDeclName(); if (getCurMethodDecl()->isInstanceMethod()) { QualType superTy = Context.getObjCInterfaceType(ClassDecl); superTy = Context.getPointerType(superTy); ExprResult ReceiverExpr = new (Context) ObjCSuperExpr(SourceLocation(), superTy); // We are really in an instance method, redirect. return ActOnInstanceMessage(ReceiverExpr.get(), Sel, lbrac, selectorLoc, rbrac, Args, NumArgs); } // We are sending a message to 'super' within a class method. Do nothing, // the receiver will pass through as 'super' (how convenient:-). } else { // 'super' has been used outside a method context. If a variable named // 'super' has been declared, redirect. If not, produce a diagnostic. NamedDecl *SuperDecl = LookupName(S, receiverName, LookupOrdinaryName); ValueDecl *VD = dyn_cast_or_null(SuperDecl); if (VD) { ExprResult ReceiverExpr = new (Context) DeclRefExpr(VD, VD->getType(), receiverLoc); // We are really in an instance method, redirect. return ActOnInstanceMessage(ReceiverExpr.get(), Sel, lbrac, selectorLoc, rbrac, Args, NumArgs); } return Diag(receiverLoc, diag::err_undeclared_var_use) << receiverName; } } else ClassDecl = getObjCInterfaceDecl(receiverName); // The following code allows for the following GCC-ism: // // typedef XCElementDisplayRect XCElementGraphicsRect; // // @implementation XCRASlice // - whatever { // Note that XCElementGraphicsRect is a typedef name. // _sGraphicsDelegate =[[XCElementGraphicsRect alloc] init]; // } // // If necessary, the following lookup could move to getObjCInterfaceDecl(). if (!ClassDecl) { NamedDecl *IDecl = LookupName(TUScope, receiverName, LookupOrdinaryName); if (TypedefDecl *OCTD = dyn_cast_or_null(IDecl)) { const ObjCInterfaceType *OCIT; OCIT = OCTD->getUnderlyingType()->getAsObjCInterfaceType(); if (!OCIT) { Diag(receiverLoc, diag::err_invalid_receiver_to_message); return true; } ClassDecl = OCIT->getDecl(); } } assert(ClassDecl && "missing interface declaration"); ObjCMethodDecl *Method = 0; QualType returnType; if (ClassDecl->isForwardDecl()) { // A forward class used in messaging is tread as a 'Class' Diag(lbrac, diag::warn_receiver_forward_class) << ClassDecl->getDeclName(); Method = LookupFactoryMethodInGlobalPool(Sel, SourceRange(lbrac,rbrac)); if (Method) Diag(Method->getLocation(), diag::note_method_sent_forward_class) << Method->getDeclName(); } if (!Method) Method = ClassDecl->lookupClassMethod(Sel); // If we have an implementation in scope, check "private" methods. if (!Method) Method = LookupPrivateClassMethod(Sel, ClassDecl); if (Method && DiagnoseUseOfDecl(Method, receiverLoc)) return true; if (CheckMessageArgumentTypes(ArgExprs, NumArgs, Sel, Method, true, lbrac, rbrac, returnType)) return true; returnType = returnType.getNonReferenceType(); // If we have the ObjCInterfaceDecl* for the class that is receiving the // message, use that to construct the ObjCMessageExpr. Otherwise pass on the // IdentifierInfo* for the class. // FIXME: need to do a better job handling 'super' usage within a class. For // now, we simply pass the "super" identifier through (which isn't consistent // with instance methods. if (isSuper) return new (Context) ObjCMessageExpr(receiverName, Sel, returnType, Method, lbrac, rbrac, ArgExprs, NumArgs); else return new (Context) ObjCMessageExpr(ClassDecl, Sel, returnType, Method, lbrac, rbrac, ArgExprs, NumArgs); } // ActOnInstanceMessage - used for both unary and keyword messages. // ArgExprs is optional - if it is present, the number of expressions // is obtained from Sel.getNumArgs(). Sema::ExprResult Sema::ActOnInstanceMessage(ExprTy *receiver, Selector Sel, SourceLocation lbrac, SourceLocation receiverLoc, SourceLocation rbrac, ExprTy **Args, unsigned NumArgs) { assert(receiver && "missing receiver expression"); Expr **ArgExprs = reinterpret_cast(Args); Expr *RExpr = static_cast(receiver); // If necessary, apply function/array conversion to the receiver. // C99 6.7.5.3p[7,8]. DefaultFunctionArrayConversion(RExpr); QualType returnType; QualType ReceiverCType = Context.getCanonicalType(RExpr->getType()).getUnqualifiedType(); // Handle messages to 'super'. if (isa(RExpr)) { ObjCMethodDecl *Method = 0; if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) { // If we have an interface in scope, check 'super' methods. if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface()) if (ObjCInterfaceDecl *SuperDecl = ClassDecl->getSuperClass()) { Method = SuperDecl->lookupInstanceMethod(Sel); if (!Method) // If we have implementations in scope, check "private" methods. Method = LookupPrivateInstanceMethod(Sel, SuperDecl); } } if (Method && DiagnoseUseOfDecl(Method, receiverLoc)) return true; if (CheckMessageArgumentTypes(ArgExprs, NumArgs, Sel, Method, false, lbrac, rbrac, returnType)) return true; returnType = returnType.getNonReferenceType(); return new (Context) ObjCMessageExpr(RExpr, Sel, returnType, Method, lbrac, rbrac, ArgExprs, NumArgs); } // Handle messages to id. if (ReceiverCType == Context.getCanonicalType(Context.getObjCIdType()) || ReceiverCType->isBlockPointerType() || Context.isObjCNSObjectType(RExpr->getType())) { ObjCMethodDecl *Method = LookupInstanceMethodInGlobalPool( Sel, SourceRange(lbrac,rbrac)); if (!Method) Method = LookupFactoryMethodInGlobalPool(Sel, SourceRange(lbrac, rbrac)); if (CheckMessageArgumentTypes(ArgExprs, NumArgs, Sel, Method, false, lbrac, rbrac, returnType)) return true; returnType = returnType.getNonReferenceType(); return new (Context) ObjCMessageExpr(RExpr, Sel, returnType, Method, lbrac, rbrac, ArgExprs, NumArgs); } // Handle messages to Class. if (ReceiverCType == Context.getCanonicalType(Context.getObjCClassType())) { ObjCMethodDecl *Method = 0; if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) { if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface()) { // First check the public methods in the class interface. Method = ClassDecl->lookupClassMethod(Sel); if (!Method) Method = LookupPrivateClassMethod(Sel, ClassDecl); } if (Method && DiagnoseUseOfDecl(Method, receiverLoc)) return true; } if (!Method) { // If not messaging 'self', look for any factory method named 'Sel'. if (!isSelfExpr(RExpr)) { Method = LookupFactoryMethodInGlobalPool(Sel, SourceRange(lbrac,rbrac)); if (!Method) { // If no class (factory) method was found, check if an _instance_ // method of the same name exists in the root class only. Method = LookupInstanceMethodInGlobalPool( Sel, SourceRange(lbrac,rbrac)); if (Method) if (const ObjCInterfaceDecl *ID = dyn_cast(Method->getDeclContext())) { if (ID->getSuperClass()) Diag(lbrac, diag::warn_root_inst_method_not_found) << Sel << SourceRange(lbrac, rbrac); } } } } if (CheckMessageArgumentTypes(ArgExprs, NumArgs, Sel, Method, false, lbrac, rbrac, returnType)) return true; returnType = returnType.getNonReferenceType(); return new (Context) ObjCMessageExpr(RExpr, Sel, returnType, Method, lbrac, rbrac, ArgExprs, NumArgs); } ObjCMethodDecl *Method = 0; ObjCInterfaceDecl* ClassDecl = 0; // We allow sending a message to a qualified ID ("id"), which is ok as // long as one of the protocols implements the selector (if not, warn). if (const ObjCObjectPointerType *QIdTy = ReceiverCType->getAsObjCQualifiedIdType()) { // Search protocols for instance methods. for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(), E = QIdTy->qual_end(); I != E; ++I) { ObjCProtocolDecl *PDecl = *I; if (PDecl && (Method = PDecl->lookupInstanceMethod(Sel))) break; // Since we aren't supporting "Class", look for a class method. if (PDecl && (Method = PDecl->lookupClassMethod(Sel))) break; } } else if (const ObjCInterfaceType *OCIType = ReceiverCType->getAsPointerToObjCInterfaceType()) { // We allow sending a message to a pointer to an interface (an object). ClassDecl = OCIType->getDecl(); // FIXME: consider using LookupInstanceMethodInGlobalPool, since it will be // faster than the following method (which can do *many* linear searches). // The idea is to add class info to InstanceMethodPool. Method = ClassDecl->lookupInstanceMethod(Sel); if (!Method) { // Search protocol qualifiers. for (ObjCQualifiedInterfaceType::qual_iterator QI = OCIType->qual_begin(), E = OCIType->qual_end(); QI != E; ++QI) { if ((Method = (*QI)->lookupInstanceMethod(Sel))) break; } } if (!Method) { // If we have implementations in scope, check "private" methods. Method = LookupPrivateInstanceMethod(Sel, ClassDecl); if (!Method && !isSelfExpr(RExpr)) { // If we still haven't found a method, look in the global pool. This // behavior isn't very desirable, however we need it for GCC // compatibility. FIXME: should we deviate?? if (OCIType->qual_empty()) { Method = LookupInstanceMethodInGlobalPool( Sel, SourceRange(lbrac,rbrac)); if (Method && !OCIType->getDecl()->isForwardDecl()) Diag(lbrac, diag::warn_maynot_respond) << OCIType->getDecl()->getIdentifier()->getName() << Sel; } } } if (Method && DiagnoseUseOfDecl(Method, receiverLoc)) return true; } else if (!Context.getObjCIdType().isNull() && (ReceiverCType->isPointerType() || (ReceiverCType->isIntegerType() && ReceiverCType->isScalarType()))) { // Implicitly convert integers and pointers to 'id' but emit a warning. Diag(lbrac, diag::warn_bad_receiver_type) << RExpr->getType() << RExpr->getSourceRange(); ImpCastExprToType(RExpr, Context.getObjCIdType()); } else { // Reject other random receiver types (e.g. structs). Diag(lbrac, diag::err_bad_receiver_type) << RExpr->getType() << RExpr->getSourceRange(); return true; } if (Method) DiagnoseSentinelCalls(Method, receiverLoc, ArgExprs, NumArgs); if (CheckMessageArgumentTypes(ArgExprs, NumArgs, Sel, Method, false, lbrac, rbrac, returnType)) return true; returnType = returnType.getNonReferenceType(); return new (Context) ObjCMessageExpr(RExpr, Sel, returnType, Method, lbrac, rbrac, ArgExprs, NumArgs); } //===----------------------------------------------------------------------===// // ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's. //===----------------------------------------------------------------------===// /// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the /// inheritance hierarchy of 'rProto'. static bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto, ObjCProtocolDecl *rProto) { if (lProto == rProto) return true; for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(), E = rProto->protocol_end(); PI != E; ++PI) if (ProtocolCompatibleWithProtocol(lProto, *PI)) return true; return false; } /// ClassImplementsProtocol - Checks that 'lProto' protocol /// has been implemented in IDecl class, its super class or categories (if /// lookupCategory is true). static bool ClassImplementsProtocol(ObjCProtocolDecl *lProto, ObjCInterfaceDecl *IDecl, bool lookupCategory, bool RHSIsQualifiedID = false) { // 1st, look up the class. const ObjCList &Protocols = IDecl->getReferencedProtocols(); for (ObjCList::iterator PI = Protocols.begin(), E = Protocols.end(); PI != E; ++PI) { if (ProtocolCompatibleWithProtocol(lProto, *PI)) return true; // This is dubious and is added to be compatible with gcc. In gcc, it is // also allowed assigning a protocol-qualified 'id' type to a LHS object // when protocol in qualified LHS is in list of protocols in the rhs 'id' // object. This IMO, should be a bug. // FIXME: Treat this as an extension, and flag this as an error when GCC // extensions are not enabled. if (RHSIsQualifiedID && ProtocolCompatibleWithProtocol(*PI, lProto)) return true; } // 2nd, look up the category. if (lookupCategory) for (ObjCCategoryDecl *CDecl = IDecl->getCategoryList(); CDecl; CDecl = CDecl->getNextClassCategory()) { for (ObjCCategoryDecl::protocol_iterator PI = CDecl->protocol_begin(), E = CDecl->protocol_end(); PI != E; ++PI) if (ProtocolCompatibleWithProtocol(lProto, *PI)) return true; } // 3rd, look up the super class(s) if (IDecl->getSuperClass()) return ClassImplementsProtocol(lProto, IDecl->getSuperClass(), lookupCategory, RHSIsQualifiedID); return false; } /// QualifiedIdConformsQualifiedId - compare id with id /// return true if lhs's protocols conform to rhs's protocol; false /// otherwise. bool Sema::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) { if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType()) return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false); return false; } /// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an /// ObjCQualifiedIDType. /// FIXME: Move to ASTContext::typesAreCompatible() and friends. bool Sema::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs, bool compare) { // Allow id and an 'id' or void* type in all cases. if (const PointerType *PT = lhs->getAsPointerType()) { QualType PointeeTy = PT->getPointeeType(); if (PointeeTy->isVoidType() || Context.isObjCIdStructType(PointeeTy) || Context.isObjCClassStructType(PointeeTy)) return true; } else if (const PointerType *PT = rhs->getAsPointerType()) { QualType PointeeTy = PT->getPointeeType(); if (PointeeTy->isVoidType() || Context.isObjCIdStructType(PointeeTy) || Context.isObjCClassStructType(PointeeTy)) return true; } if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) { const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType(); const ObjCQualifiedInterfaceType *rhsQI = 0; QualType rtype; if (!rhsQID) { // Not comparing two ObjCQualifiedIdType's? if (!rhs->isPointerType()) return false; rtype = rhs->getAsPointerType()->getPointeeType(); rhsQI = rtype->getAsObjCQualifiedInterfaceType(); if (rhsQI == 0) { // If the RHS is a unqualified interface pointer "NSString*", // make sure we check the class hierarchy. if (const ObjCInterfaceType *IT = rtype->getAsObjCInterfaceType()) { ObjCInterfaceDecl *rhsID = IT->getDecl(); for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(), E = lhsQID->qual_end(); I != E; ++I) { // when comparing an id

on lhs with a static type on rhs, // see if static class implements all of id's protocols, directly or // through its super class and categories. if (!ClassImplementsProtocol(*I, rhsID, true)) return false; } return true; } } } ObjCObjectPointerType::qual_iterator RHSProtoI, RHSProtoE; if (rhsQI) { // We have a qualified interface (e.g. "NSObject *"). RHSProtoI = rhsQI->qual_begin(); RHSProtoE = rhsQI->qual_end(); } else if (rhsQID) { // We have a qualified id (e.g. "id *"). RHSProtoI = rhsQID->qual_begin(); RHSProtoE = rhsQID->qual_end(); } else { return false; } for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(), E = lhsQID->qual_end(); I != E; ++I) { ObjCProtocolDecl *lhsProto = *I; bool match = false; // when comparing an id

on lhs with a static type on rhs, // see if static class implements all of id's protocols, directly or // through its super class and categories. for (; RHSProtoI != RHSProtoE; ++RHSProtoI) { ObjCProtocolDecl *rhsProto = *RHSProtoI; if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) || (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) { match = true; break; } } if (rhsQI) { // If the RHS is a qualified interface pointer "NSString

*", // make sure we check the class hierarchy. if (const ObjCInterfaceType *IT = rtype->getAsObjCInterfaceType()) { ObjCInterfaceDecl *rhsID = IT->getDecl(); for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(), E = lhsQID->qual_end(); I != E; ++I) { // when comparing an id

on lhs with a static type on rhs, // see if static class implements all of id's protocols, directly or // through its super class and categories. if (ClassImplementsProtocol(*I, rhsID, true)) { match = true; break; } } } } if (!match) return false; } return true; } const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType(); assert(rhsQID && "One of the LHS/RHS should be id"); if (!lhs->isPointerType()) return false; QualType ltype = lhs->getAsPointerType()->getPointeeType(); if (const ObjCQualifiedInterfaceType *lhsQI = ltype->getAsObjCQualifiedInterfaceType()) { ObjCObjectPointerType::qual_iterator LHSProtoI = lhsQI->qual_begin(); ObjCObjectPointerType::qual_iterator LHSProtoE = lhsQI->qual_end(); for (; LHSProtoI != LHSProtoE; ++LHSProtoI) { bool match = false; ObjCProtocolDecl *lhsProto = *LHSProtoI; for (ObjCObjectPointerType::qual_iterator I = rhsQID->qual_begin(), E = rhsQID->qual_end(); I != E; ++I) { ObjCProtocolDecl *rhsProto = *I; if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) || (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) { match = true; break; } } if (!match) return false; } return true; } if (const ObjCInterfaceType *IT = ltype->getAsObjCInterfaceType()) { // for static type vs. qualified 'id' type, check that class implements // all of 'id's protocols. ObjCInterfaceDecl *lhsID = IT->getDecl(); for (ObjCObjectPointerType::qual_iterator I = rhsQID->qual_begin(), E = rhsQID->qual_end(); I != E; ++I) { if (!ClassImplementsProtocol(*I, lhsID, compare, true)) return false; } return true; } return false; }