/* * Copyright (c) 1997, 1998, 1999, 2000 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ */ /* * ADMtek AN986 Pegasus USB to ethernet driver. Datasheet is available * from http://www.admtek.com.tw. * * Written by Bill Paul * Electrical Engineering Department * Columbia University, New York City */ /* * The Pegasus chip uses four USB "endpoints" to provide 10/100 ethernet * support: the control endpoint for reading/writing registers, burst * read endpoint for packet reception, burst write for packet transmission * and one for "interrupts." The chip uses the same RX filter scheme * as the other ADMtek ethernet parts: one perfect filter entry for the * the station address and a 64-bit multicast hash table. The chip supports * both MII and HomePNA attachments. * * Since the maximum data transfer speed of USB is supposed to be 12Mbps, * you're never really going to get 100Mbps speeds from this device. I * think the idea is to allow the device to connect to 10 or 100Mbps * networks, not necessarily to provide 100Mbps performance. Also, since * the controller uses an external PHY chip, it's possible that board * designers might simply choose a 10Mbps PHY. * * Registers are accessed using usbd_do_request(). Packet transfers are * done using usbd_transfer() and friends. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* for DELAY */ #include #include #include #include #include #include #include #include #include #include MODULE_DEPEND(aue, miibus, 1, 1, 1); /* "controller miibus0" required. See GENERIC if you get errors here. */ #include "miibus_if.h" #ifndef lint static const char rcsid[] = "$FreeBSD$"; #endif /* * Various supported device vendors/products. */ Static struct aue_type aue_devs[] = { { USB_VENDOR_ADMTEK, USB_PRODUCT_ADMTEK_PEGASUS }, { USB_VENDOR_BILLIONTON, USB_PRODUCT_BILLIONTON_USB100 }, { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_LUATX }, { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DSB650 }, { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DSB650TX }, { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DSB650TX_PNA }, { USB_VENDOR_SMC, USB_PRODUCT_SMC_2202USB }, { USB_VENDOR_LINKSYS, USB_PRODUCT_LINKSYS_USB100TX }, { USB_VENDOR_LINKSYS, USB_PRODUCT_LINKSYS_USB10TA }, { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_FETHER_USB_TX }, { 0, 0 } }; Static struct usb_qdat aue_qdat; Static int aue_match __P((device_t)); Static int aue_attach __P((device_t)); Static int aue_detach __P((device_t)); Static int aue_tx_list_init __P((struct aue_softc *)); Static int aue_rx_list_init __P((struct aue_softc *)); Static int aue_newbuf __P((struct aue_softc *, struct aue_chain *, struct mbuf *)); Static int aue_encap __P((struct aue_softc *, struct mbuf *, int)); #ifdef AUE_INTR_PIPE Static void aue_intr __P((usbd_xfer_handle, usbd_private_handle, usbd_status)); #endif Static void aue_rxeof __P((usbd_xfer_handle, usbd_private_handle, usbd_status)); Static void aue_txeof __P((usbd_xfer_handle, usbd_private_handle, usbd_status)); Static void aue_tick __P((void *)); Static void aue_rxstart __P((struct ifnet *)); Static void aue_start __P((struct ifnet *)); Static int aue_ioctl __P((struct ifnet *, u_long, caddr_t)); Static void aue_init __P((void *)); Static void aue_stop __P((struct aue_softc *)); Static void aue_watchdog __P((struct ifnet *)); Static void aue_shutdown __P((device_t)); Static int aue_ifmedia_upd __P((struct ifnet *)); Static void aue_ifmedia_sts __P((struct ifnet *, struct ifmediareq *)); Static void aue_eeprom_getword __P((struct aue_softc *, int, u_int16_t *)); Static void aue_read_eeprom __P((struct aue_softc *, caddr_t, int, int, int)); Static int aue_miibus_readreg __P((device_t, int, int)); Static int aue_miibus_writereg __P((device_t, int, int, int)); Static void aue_miibus_statchg __P((device_t)); Static void aue_setmulti __P((struct aue_softc *)); Static u_int32_t aue_crc __P((caddr_t)); Static void aue_reset __P((struct aue_softc *)); Static int csr_read_1 __P((struct aue_softc *, int)); Static int csr_write_1 __P((struct aue_softc *, int, int)); Static int csr_read_2 __P((struct aue_softc *, int)); Static int csr_write_2 __P((struct aue_softc *, int, int)); Static device_method_t aue_methods[] = { /* Device interface */ DEVMETHOD(device_probe, aue_match), DEVMETHOD(device_attach, aue_attach), DEVMETHOD(device_detach, aue_detach), DEVMETHOD(device_shutdown, aue_shutdown), /* bus interface */ DEVMETHOD(bus_print_child, bus_generic_print_child), DEVMETHOD(bus_driver_added, bus_generic_driver_added), /* MII interface */ DEVMETHOD(miibus_readreg, aue_miibus_readreg), DEVMETHOD(miibus_writereg, aue_miibus_writereg), DEVMETHOD(miibus_statchg, aue_miibus_statchg), { 0, 0 } }; Static driver_t aue_driver = { "aue", aue_methods, sizeof(struct aue_softc) }; Static devclass_t aue_devclass; DRIVER_MODULE(if_aue, uhub, aue_driver, aue_devclass, usbd_driver_load, 0); DRIVER_MODULE(miibus, aue, miibus_driver, miibus_devclass, 0, 0); #define AUE_SETBIT(sc, reg, x) \ csr_write_1(sc, reg, csr_read_1(sc, reg) | (x)) #define AUE_CLRBIT(sc, reg, x) \ csr_write_1(sc, reg, csr_read_1(sc, reg) & ~(x)) Static int csr_read_1(sc, reg) struct aue_softc *sc; int reg; { usb_device_request_t req; usbd_status err; u_int8_t val = 0; int s; if (sc->aue_gone) return(0); s = splusb(); req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = AUE_UR_READREG; USETW(req.wValue, 0); USETW(req.wIndex, reg); USETW(req.wLength, 1); err = usbd_do_request_flags(sc->aue_udev, &req, &val, USBD_NO_TSLEEP, NULL); splx(s); if (err) return(0); return(val); } Static int csr_read_2(sc, reg) struct aue_softc *sc; int reg; { usb_device_request_t req; usbd_status err; u_int16_t val = 0; int s; if (sc->aue_gone) return(0); s = splusb(); req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = AUE_UR_READREG; USETW(req.wValue, 0); USETW(req.wIndex, reg); USETW(req.wLength, 2); err = usbd_do_request_flags(sc->aue_udev, &req, &val, USBD_NO_TSLEEP, NULL); splx(s); if (err) return(0); return(val); } Static int csr_write_1(sc, reg, val) struct aue_softc *sc; int reg, val; { usb_device_request_t req; usbd_status err; int s; if (sc->aue_gone) return(0); s = splusb(); req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = AUE_UR_WRITEREG; USETW(req.wValue, val); USETW(req.wIndex, reg); USETW(req.wLength, 1); err = usbd_do_request_flags(sc->aue_udev, &req, &val, USBD_NO_TSLEEP, NULL); splx(s); if (err) return(-1); return(0); } Static int csr_write_2(sc, reg, val) struct aue_softc *sc; int reg, val; { usb_device_request_t req; usbd_status err; int s; if (sc->aue_gone) return(0); s = splusb(); req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = AUE_UR_WRITEREG; USETW(req.wValue, val); USETW(req.wIndex, reg); USETW(req.wLength, 2); err = usbd_do_request_flags(sc->aue_udev, &req, &val, USBD_NO_TSLEEP, NULL); splx(s); if (err) return(-1); return(0); } /* * Read a word of data stored in the EEPROM at address 'addr.' */ Static void aue_eeprom_getword(sc, addr, dest) struct aue_softc *sc; int addr; u_int16_t *dest; { register int i; u_int16_t word = 0; csr_write_1(sc, AUE_EE_REG, addr); csr_write_1(sc, AUE_EE_CTL, AUE_EECTL_READ); for (i = 0; i < AUE_TIMEOUT; i++) { if (csr_read_1(sc, AUE_EE_CTL) & AUE_EECTL_DONE) break; } if (i == AUE_TIMEOUT) { printf("aue%d: EEPROM read timed out\n", sc->aue_unit); } word = csr_read_2(sc, AUE_EE_DATA); *dest = word; return; } /* * Read a sequence of words from the EEPROM. */ Static void aue_read_eeprom(sc, dest, off, cnt, swap) struct aue_softc *sc; caddr_t dest; int off; int cnt; int swap; { int i; u_int16_t word = 0, *ptr; for (i = 0; i < cnt; i++) { aue_eeprom_getword(sc, off + i, &word); ptr = (u_int16_t *)(dest + (i * 2)); if (swap) *ptr = ntohs(word); else *ptr = word; } return; } Static int aue_miibus_readreg(dev, phy, reg) device_t dev; int phy, reg; { struct aue_softc *sc; int i; u_int16_t val = 0; sc = device_get_softc(dev); /* * The Am79C901 HomePNA PHY actually contains * two transceivers: a 1Mbps HomePNA PHY and a * 10Mbps full/half duplex ethernet PHY with * NWAY autoneg. However in the ADMtek adapter, * only the 1Mbps PHY is actually connected to * anything, so we ignore the 10Mbps one. It * happens to be configured for MII address 3, * so we filter that out. */ if (sc->aue_info->aue_vid == USB_VENDOR_ADMTEK && sc->aue_info->aue_did == USB_PRODUCT_ADMTEK_PEGASUS) { if (phy == 3) return(0); if (phy != 1) return(0); } csr_write_1(sc, AUE_PHY_ADDR, phy); csr_write_1(sc, AUE_PHY_CTL, reg|AUE_PHYCTL_READ); for (i = 0; i < AUE_TIMEOUT; i++) { if (csr_read_1(sc, AUE_PHY_CTL) & AUE_PHYCTL_DONE) break; } if (i == AUE_TIMEOUT) { printf("aue%d: MII read timed out\n", sc->aue_unit); } val = csr_read_2(sc, AUE_PHY_DATA); return(val); } Static int aue_miibus_writereg(dev, phy, reg, data) device_t dev; int phy, reg, data; { struct aue_softc *sc; int i; if (phy == 3) return(0); sc = device_get_softc(dev); csr_write_2(sc, AUE_PHY_DATA, data); csr_write_1(sc, AUE_PHY_ADDR, phy); csr_write_1(sc, AUE_PHY_CTL, reg|AUE_PHYCTL_WRITE); for (i = 0; i < AUE_TIMEOUT; i++) { if (csr_read_1(sc, AUE_PHY_CTL) & AUE_PHYCTL_DONE) break; } if (i == AUE_TIMEOUT) { printf("aue%d: MII read timed out\n", sc->aue_unit); } return(0); } Static void aue_miibus_statchg(dev) device_t dev; { struct aue_softc *sc; struct mii_data *mii; sc = device_get_softc(dev); mii = device_get_softc(sc->aue_miibus); AUE_CLRBIT(sc, AUE_CTL0, AUE_CTL0_RX_ENB|AUE_CTL0_TX_ENB); if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) { AUE_SETBIT(sc, AUE_CTL1, AUE_CTL1_SPEEDSEL); } else { AUE_CLRBIT(sc, AUE_CTL1, AUE_CTL1_SPEEDSEL); } if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { AUE_SETBIT(sc, AUE_CTL1, AUE_CTL1_DUPLEX); } else { AUE_CLRBIT(sc, AUE_CTL1, AUE_CTL1_DUPLEX); } AUE_SETBIT(sc, AUE_CTL0, AUE_CTL0_RX_ENB|AUE_CTL0_TX_ENB); /* * Set the LED modes on the LinkSys adapter. * This turns on the 'dual link LED' bin in the auxmode * register of the Broadcom PHY. */ if ((sc->aue_info->aue_vid == USB_VENDOR_LINKSYS && sc->aue_info->aue_did == USB_PRODUCT_LINKSYS_USB100TX) || (sc->aue_info->aue_vid == USB_VENDOR_LINKSYS && sc->aue_info->aue_did == USB_PRODUCT_LINKSYS_USB10TA) || (sc->aue_info->aue_vid == USB_VENDOR_DLINK && sc->aue_info->aue_did == USB_PRODUCT_DLINK_DSB650TX) || (sc->aue_info->aue_vid == USB_VENDOR_DLINK && sc->aue_info->aue_did == USB_PRODUCT_DLINK_DSB650)) { u_int16_t auxmode; auxmode = aue_miibus_readreg(dev, 0, 0x1b); aue_miibus_writereg(dev, 0, 0x1b, auxmode | 0x04); } return; } #define AUE_POLY 0xEDB88320 #define AUE_BITS 6 Static u_int32_t aue_crc(addr) caddr_t addr; { u_int32_t idx, bit, data, crc; /* Compute CRC for the address value. */ crc = 0xFFFFFFFF; /* initial value */ for (idx = 0; idx < 6; idx++) { for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) crc = (crc >> 1) ^ (((crc ^ data) & 1) ? AUE_POLY : 0); } return (crc & ((1 << AUE_BITS) - 1)); } Static void aue_setmulti(sc) struct aue_softc *sc; { struct ifnet *ifp; struct ifmultiaddr *ifma; u_int32_t h = 0, i; ifp = &sc->arpcom.ac_if; if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { AUE_SETBIT(sc, AUE_CTL0, AUE_CTL0_ALLMULTI); return; } AUE_CLRBIT(sc, AUE_CTL0, AUE_CTL0_ALLMULTI); /* first, zot all the existing hash bits */ for (i = 0; i < 8; i++) csr_write_1(sc, AUE_MAR0 + i, 0); /* now program new ones */ for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL; ifma = ifma->ifma_link.le_next) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; h = aue_crc(LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); AUE_SETBIT(sc, AUE_MAR + (h >> 3), 1 << (h & 0xF)); } return; } Static void aue_reset(sc) struct aue_softc *sc; { register int i; AUE_SETBIT(sc, AUE_CTL1, AUE_CTL1_RESETMAC); for (i = 0; i < AUE_TIMEOUT; i++) { if (!(csr_read_1(sc, AUE_CTL1) & AUE_CTL1_RESETMAC)) break; } if (i == AUE_TIMEOUT) printf("aue%d: reset failed\n", sc->aue_unit); /* * The PHY(s) attached to the Pegasus chip may be held * in reset until we flip on the GPIO outputs. Make sure * to set the GPIO pins high so that the PHY(s) will * be enabled. * * Note: We force all of the GPIO pins low first, *then* * enable the ones we want. */ csr_write_1(sc, AUE_GPIO0, AUE_GPIO_OUT0|AUE_GPIO_SEL0); csr_write_1(sc, AUE_GPIO0, AUE_GPIO_OUT0|AUE_GPIO_SEL0|AUE_GPIO_SEL1); /* Grrr. LinkSys has to be different from everyone else. */ if ((sc->aue_info->aue_vid == USB_VENDOR_LINKSYS && sc->aue_info->aue_did == USB_PRODUCT_LINKSYS_USB100TX) || (sc->aue_info->aue_vid == USB_VENDOR_LINKSYS && sc->aue_info->aue_did == USB_PRODUCT_LINKSYS_USB10TA) || (sc->aue_info->aue_vid == USB_VENDOR_DLINK && sc->aue_info->aue_did == USB_PRODUCT_DLINK_DSB650TX) || (sc->aue_info->aue_vid == USB_VENDOR_DLINK && sc->aue_info->aue_did == USB_PRODUCT_DLINK_DSB650)) { csr_write_1(sc, AUE_GPIO0, AUE_GPIO_SEL0|AUE_GPIO_SEL1); csr_write_1(sc, AUE_GPIO0, AUE_GPIO_SEL0|AUE_GPIO_SEL1| AUE_GPIO_OUT0); } /* Wait a little while for the chip to get its brains in order. */ DELAY(10000); return; } /* * Probe for a Pegasus chip. */ USB_MATCH(aue) { USB_MATCH_START(aue, uaa); struct aue_type *t; if (!uaa->iface) return(UMATCH_NONE); t = aue_devs; while(t->aue_vid) { if (uaa->vendor == t->aue_vid && uaa->product == t->aue_did) { return(UMATCH_VENDOR_PRODUCT); } t++; } return(UMATCH_NONE); } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ USB_ATTACH(aue) { USB_ATTACH_START(aue, sc, uaa); char devinfo[1024]; int s; u_char eaddr[ETHER_ADDR_LEN]; struct ifnet *ifp; usb_interface_descriptor_t *id; usb_endpoint_descriptor_t *ed; int i; struct aue_type *t; s = splimp(); bzero(sc, sizeof(struct aue_softc)); sc->aue_iface = uaa->iface; sc->aue_udev = uaa->device; sc->aue_unit = device_get_unit(self); if (usbd_set_config_no(sc->aue_udev, AUE_CONFIG_NO, 0)) { printf("aue%d: getting interface handle failed\n", sc->aue_unit); splx(s); USB_ATTACH_ERROR_RETURN; } t = aue_devs; while(t->aue_vid) { if (uaa->vendor == t->aue_vid && uaa->product == t->aue_did) { sc->aue_info = t; break; } t++; } id = usbd_get_interface_descriptor(uaa->iface); usbd_devinfo(uaa->device, 0, devinfo); device_set_desc_copy(self, devinfo); printf("%s: %s\n", USBDEVNAME(self), devinfo); /* Find endpoints. */ for (i = 0; i < id->bNumEndpoints; i++) { ed = usbd_interface2endpoint_descriptor(uaa->iface, i); if (!ed) { printf("aue%d: couldn't get ep %d\n", sc->aue_unit, i); splx(s); USB_ATTACH_ERROR_RETURN; } if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && (ed->bmAttributes & UE_XFERTYPE) == UE_BULK) { sc->aue_ed[AUE_ENDPT_RX] = ed->bEndpointAddress; } else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT && (ed->bmAttributes & UE_XFERTYPE) == UE_BULK) { sc->aue_ed[AUE_ENDPT_TX] = ed->bEndpointAddress; } else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && (ed->bmAttributes & UE_XFERTYPE) == UE_INTERRUPT) { sc->aue_ed[AUE_ENDPT_INTR] = ed->bEndpointAddress; } } /* Reset the adapter. */ aue_reset(sc); /* * Get station address from the EEPROM. */ aue_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 0); /* * A Pegasus chip was detected. Inform the world. */ printf("aue%d: Ethernet address: %6D\n", sc->aue_unit, eaddr, ":"); bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN); ifp = &sc->arpcom.ac_if; ifp->if_softc = sc; ifp->if_unit = sc->aue_unit; ifp->if_name = "aue"; ifp->if_mtu = ETHERMTU; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = aue_ioctl; ifp->if_output = ether_output; ifp->if_start = aue_start; ifp->if_watchdog = aue_watchdog; ifp->if_init = aue_init; ifp->if_baudrate = 10000000; ifp->if_snd.ifq_maxlen = IFQ_MAXLEN; /* * Do MII setup. * NOTE: Doing this causes child devices to be attached to us, * which we would normally disconnect at in the detach routine * using device_delete_child(). However the USB code is set up * such that when this driver is removed, all children devices * are removed as well. In effect, the USB code ends up detaching * all of our children for us, so we don't have to do is ourselves * in aue_detach(). It's important to point this out since if * we *do* try to detach the child devices ourselves, we will * end up getting the children deleted twice, which will crash * the system. */ if (mii_phy_probe(self, &sc->aue_miibus, aue_ifmedia_upd, aue_ifmedia_sts)) { printf("aue%d: MII without any PHY!\n", sc->aue_unit); splx(s); USB_ATTACH_ERROR_RETURN; } aue_qdat.ifp = ifp; aue_qdat.if_rxstart = aue_rxstart; /* * Call MI attach routine. */ ether_ifattach(ifp, ETHER_BPF_SUPPORTED); callout_handle_init(&sc->aue_stat_ch); usb_register_netisr(); sc->aue_gone = 0; splx(s); USB_ATTACH_SUCCESS_RETURN; } Static int aue_detach(dev) device_t dev; { struct aue_softc *sc; struct ifnet *ifp; int s; s = splusb(); sc = device_get_softc(dev); ifp = &sc->arpcom.ac_if; sc->aue_gone = 1; untimeout(aue_tick, sc, sc->aue_stat_ch); ether_ifdetach(ifp, ETHER_BPF_SUPPORTED); if (sc->aue_ep[AUE_ENDPT_TX] != NULL) usbd_abort_pipe(sc->aue_ep[AUE_ENDPT_TX]); if (sc->aue_ep[AUE_ENDPT_RX] != NULL) usbd_abort_pipe(sc->aue_ep[AUE_ENDPT_RX]); #ifdef AUE_INTR_PIPE if (sc->aue_ep[AUE_ENDPT_INTR] != NULL) usbd_abort_pipe(sc->aue_ep[AUE_ENDPT_INTR]); #endif splx(s); return(0); } /* * Initialize an RX descriptor and attach an MBUF cluster. */ Static int aue_newbuf(sc, c, m) struct aue_softc *sc; struct aue_chain *c; struct mbuf *m; { struct mbuf *m_new = NULL; if (m == NULL) { MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) { printf("aue%d: no memory for rx list " "-- packet dropped!\n", sc->aue_unit); return(ENOBUFS); } MCLGET(m_new, M_DONTWAIT); if (!(m_new->m_flags & M_EXT)) { printf("aue%d: no memory for rx list " "-- packet dropped!\n", sc->aue_unit); m_freem(m_new); return(ENOBUFS); } m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; } else { m_new = m; m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; m_new->m_data = m_new->m_ext.ext_buf; } m_adj(m_new, ETHER_ALIGN); c->aue_mbuf = m_new; return(0); } Static int aue_rx_list_init(sc) struct aue_softc *sc; { struct aue_cdata *cd; struct aue_chain *c; int i; cd = &sc->aue_cdata; for (i = 0; i < AUE_RX_LIST_CNT; i++) { c = &cd->aue_rx_chain[i]; c->aue_sc = sc; c->aue_idx = i; if (aue_newbuf(sc, c, NULL) == ENOBUFS) return(ENOBUFS); if (c->aue_xfer == NULL) { c->aue_xfer = usbd_alloc_xfer(sc->aue_udev); if (c->aue_xfer == NULL) return(ENOBUFS); } } return(0); } Static int aue_tx_list_init(sc) struct aue_softc *sc; { struct aue_cdata *cd; struct aue_chain *c; int i; cd = &sc->aue_cdata; for (i = 0; i < AUE_TX_LIST_CNT; i++) { c = &cd->aue_tx_chain[i]; c->aue_sc = sc; c->aue_idx = i; c->aue_mbuf = NULL; if (c->aue_xfer == NULL) { c->aue_xfer = usbd_alloc_xfer(sc->aue_udev); if (c->aue_xfer == NULL) return(ENOBUFS); } c->aue_buf = malloc(AUE_BUFSZ, M_USBDEV, M_NOWAIT); if (c->aue_buf == NULL) return(ENOBUFS); } return(0); } #ifdef AUE_INTR_PIPE Static void aue_intr(xfer, priv, status) usbd_xfer_handle xfer; usbd_private_handle priv; usbd_status status; { struct aue_softc *sc; struct ifnet *ifp; struct aue_intrpkt *p; int s; s = splimp(); sc = priv; ifp = &sc->arpcom.ac_if; if (!(ifp->if_flags & IFF_RUNNING)) { splx(s); return; } if (status != USBD_NORMAL_COMPLETION) { if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) { splx(s); return; } printf("aue%d: usb error on intr: %s\n", sc->aue_unit, usbd_errstr(status)); if (status == USBD_STALLED) usbd_clear_endpoint_stall(sc->aue_ep[AUE_ENDPT_RX]); splx(s); return; } usbd_get_xfer_status(xfer, NULL, (void **)&p, NULL, NULL); if (p->aue_txstat0) ifp->if_oerrors++; if (p->aue_txstat0 & (AUE_TXSTAT0_LATECOLL & AUE_TXSTAT0_EXCESSCOLL)) ifp->if_collisions++; splx(s); return; } #endif Static void aue_rxstart(ifp) struct ifnet *ifp; { struct aue_softc *sc; struct aue_chain *c; sc = ifp->if_softc; c = &sc->aue_cdata.aue_rx_chain[sc->aue_cdata.aue_rx_prod]; if (aue_newbuf(sc, c, NULL) == ENOBUFS) { ifp->if_ierrors++; return; } /* Setup new transfer. */ usbd_setup_xfer(c->aue_xfer, sc->aue_ep[AUE_ENDPT_RX], c, mtod(c->aue_mbuf, char *), AUE_BUFSZ, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, aue_rxeof); usbd_transfer(c->aue_xfer); return; } /* * A frame has been uploaded: pass the resulting mbuf chain up to * the higher level protocols. */ Static void aue_rxeof(xfer, priv, status) usbd_xfer_handle xfer; usbd_private_handle priv; usbd_status status; { struct aue_softc *sc; struct aue_chain *c; struct mbuf *m; struct ifnet *ifp; int total_len = 0; struct aue_rxpkt r; c = priv; sc = c->aue_sc; ifp = &sc->arpcom.ac_if; if (!(ifp->if_flags & IFF_RUNNING)) return; if (status != USBD_NORMAL_COMPLETION) { if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) return; printf("aue%d: usb error on rx: %s\n", sc->aue_unit, usbd_errstr(status)); if (status == USBD_STALLED) usbd_clear_endpoint_stall(sc->aue_ep[AUE_ENDPT_RX]); goto done; } usbd_get_xfer_status(xfer, NULL, NULL, &total_len, NULL); if (total_len <= 4 + ETHER_CRC_LEN) { ifp->if_ierrors++; goto done; } m = c->aue_mbuf; bcopy(mtod(m, char *) + total_len - 4, (char *)&r, sizeof(r)); /* Turn off all the non-error bits in the rx status word. */ r.aue_rxstat &= AUE_RXSTAT_MASK; if (r.aue_rxstat) { ifp->if_ierrors++; goto done; } /* No errors; receive the packet. */ total_len -= (4 + ETHER_CRC_LEN); ifp->if_ipackets++; m->m_pkthdr.rcvif = (struct ifnet *)&aue_qdat; m->m_pkthdr.len = m->m_len = total_len; /* Put the packet on the special USB input queue. */ usb_ether_input(m); return; done: /* Setup new transfer. */ usbd_setup_xfer(xfer, sc->aue_ep[AUE_ENDPT_RX], c, mtod(c->aue_mbuf, char *), AUE_BUFSZ, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, aue_rxeof); usbd_transfer(xfer); return; } /* * A frame was downloaded to the chip. It's safe for us to clean up * the list buffers. */ Static void aue_txeof(xfer, priv, status) usbd_xfer_handle xfer; usbd_private_handle priv; usbd_status status; { struct aue_softc *sc; struct aue_chain *c; struct ifnet *ifp; usbd_status err; int s; s = splimp(); c = priv; sc = c->aue_sc; ifp = &sc->arpcom.ac_if; if (status != USBD_NORMAL_COMPLETION) { if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) { splx(s); return; } printf("aue%d: usb error on tx: %s\n", sc->aue_unit, usbd_errstr(status)); if (status == USBD_STALLED) usbd_clear_endpoint_stall(sc->aue_ep[AUE_ENDPT_TX]); splx(s); return; } ifp->if_timer = 0; ifp->if_flags &= ~IFF_OACTIVE; usbd_get_xfer_status(c->aue_xfer, NULL, NULL, NULL, &err); if (c->aue_mbuf != NULL) { c->aue_mbuf->m_pkthdr.rcvif = ifp; usb_tx_done(c->aue_mbuf); c->aue_mbuf = NULL; } if (err) ifp->if_oerrors++; else ifp->if_opackets++; splx(s); return; } Static void aue_tick(xsc) void *xsc; { struct aue_softc *sc; struct ifnet *ifp; struct mii_data *mii; int s; s = splimp(); sc = xsc; if (sc == NULL) { splx(s); return; } ifp = &sc->arpcom.ac_if; mii = device_get_softc(sc->aue_miibus); if (mii == NULL) { splx(s); return; } mii_tick(mii); if (!sc->aue_link) { mii_pollstat(mii); if (mii->mii_media_status & IFM_ACTIVE && IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) sc->aue_link++; if (ifp->if_snd.ifq_head != NULL) aue_start(ifp); } sc->aue_stat_ch = timeout(aue_tick, sc, hz); splx(s); return; } Static int aue_encap(sc, m, idx) struct aue_softc *sc; struct mbuf *m; int idx; { int total_len; struct aue_chain *c; usbd_status err; c = &sc->aue_cdata.aue_tx_chain[idx]; /* * Copy the mbuf data into a contiguous buffer, leaving two * bytes at the beginning to hold the frame length. */ m_copydata(m, 0, m->m_pkthdr.len, c->aue_buf + 2); c->aue_mbuf = m; total_len = m->m_pkthdr.len + 2; /* * The ADMtek documentation says that the packet length is * supposed to be specified in the first two bytes of the * transfer, however it actually seems to ignore this info * and base the frame size on the bulk transfer length. */ c->aue_buf[0] = (u_int8_t)m->m_pkthdr.len; c->aue_buf[1] = (u_int8_t)(m->m_pkthdr.len >> 8); usbd_setup_xfer(c->aue_xfer, sc->aue_ep[AUE_ENDPT_TX], c, c->aue_buf, total_len, USBD_FORCE_SHORT_XFER, 10000, aue_txeof); /* Transmit */ err = usbd_transfer(c->aue_xfer); if (err != USBD_IN_PROGRESS) { aue_stop(sc); return(EIO); } sc->aue_cdata.aue_tx_cnt++; return(0); } Static void aue_start(ifp) struct ifnet *ifp; { struct aue_softc *sc; struct mbuf *m_head = NULL; sc = ifp->if_softc; if (!sc->aue_link) return; if (ifp->if_flags & IFF_OACTIVE) return; IF_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) return; if (aue_encap(sc, m_head, 0)) { IF_PREPEND(&ifp->if_snd, m_head); ifp->if_flags |= IFF_OACTIVE; return; } /* * If there's a BPF listener, bounce a copy of this frame * to him. */ if (ifp->if_bpf) bpf_mtap(ifp, m_head); ifp->if_flags |= IFF_OACTIVE; /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; return; } Static void aue_init(xsc) void *xsc; { struct aue_softc *sc = xsc; struct ifnet *ifp = &sc->arpcom.ac_if; struct mii_data *mii; struct aue_chain *c; usbd_status err; int i, s; if (ifp->if_flags & IFF_RUNNING) return; s = splimp(); /* * Cancel pending I/O and free all RX/TX buffers. */ aue_reset(sc); mii = device_get_softc(sc->aue_miibus); /* Set MAC address */ for (i = 0; i < ETHER_ADDR_LEN; i++) csr_write_1(sc, AUE_PAR0 + i, sc->arpcom.ac_enaddr[i]); /* If we want promiscuous mode, set the allframes bit. */ if (ifp->if_flags & IFF_PROMISC) { AUE_SETBIT(sc, AUE_CTL2, AUE_CTL2_RX_PROMISC); } else { AUE_CLRBIT(sc, AUE_CTL2, AUE_CTL2_RX_PROMISC); } /* Init TX ring. */ if (aue_tx_list_init(sc) == ENOBUFS) { printf("aue%d: tx list init failed\n", sc->aue_unit); splx(s); return; } /* Init RX ring. */ if (aue_rx_list_init(sc) == ENOBUFS) { printf("aue%d: rx list init failed\n", sc->aue_unit); splx(s); return; } #ifdef AUE_INTR_PIPE sc->aue_cdata.aue_ibuf = malloc(AUE_INTR_PKTLEN, M_USBDEV, M_NOWAIT); #endif /* Load the multicast filter. */ aue_setmulti(sc); /* Enable RX and TX */ csr_write_1(sc, AUE_CTL0, AUE_CTL0_RXSTAT_APPEND|AUE_CTL0_RX_ENB); AUE_SETBIT(sc, AUE_CTL0, AUE_CTL0_TX_ENB); AUE_SETBIT(sc, AUE_CTL2, AUE_CTL2_EP3_CLR); mii_mediachg(mii); /* Open RX and TX pipes. */ err = usbd_open_pipe(sc->aue_iface, sc->aue_ed[AUE_ENDPT_RX], USBD_EXCLUSIVE_USE, &sc->aue_ep[AUE_ENDPT_RX]); if (err) { printf("aue%d: open rx pipe failed: %s\n", sc->aue_unit, usbd_errstr(err)); splx(s); return; } err = usbd_open_pipe(sc->aue_iface, sc->aue_ed[AUE_ENDPT_TX], USBD_EXCLUSIVE_USE, &sc->aue_ep[AUE_ENDPT_TX]); if (err) { printf("aue%d: open tx pipe failed: %s\n", sc->aue_unit, usbd_errstr(err)); splx(s); return; } #ifdef AUE_INTR_PIPE err = usbd_open_pipe_intr(sc->aue_iface, sc->aue_ed[AUE_ENDPT_INTR], USBD_SHORT_XFER_OK, &sc->aue_ep[AUE_ENDPT_INTR], sc, sc->aue_cdata.aue_ibuf, AUE_INTR_PKTLEN, aue_intr, AUE_INTR_INTERVAL); if (err) { printf("aue%d: open intr pipe failed: %s\n", sc->aue_unit, usbd_errstr(err)); splx(s); return; } #endif /* Start up the receive pipe. */ for (i = 0; i < AUE_RX_LIST_CNT; i++) { c = &sc->aue_cdata.aue_rx_chain[i]; usbd_setup_xfer(c->aue_xfer, sc->aue_ep[AUE_ENDPT_RX], c, mtod(c->aue_mbuf, char *), AUE_BUFSZ, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, aue_rxeof); usbd_transfer(c->aue_xfer); } ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; (void)splx(s); sc->aue_stat_ch = timeout(aue_tick, sc, hz); return; } /* * Set media options. */ Static int aue_ifmedia_upd(ifp) struct ifnet *ifp; { struct aue_softc *sc; struct mii_data *mii; sc = ifp->if_softc; mii = device_get_softc(sc->aue_miibus); sc->aue_link = 0; if (mii->mii_instance) { struct mii_softc *miisc; for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL; miisc = LIST_NEXT(miisc, mii_list)) mii_phy_reset(miisc); } mii_mediachg(mii); return(0); } /* * Report current media status. */ Static void aue_ifmedia_sts(ifp, ifmr) struct ifnet *ifp; struct ifmediareq *ifmr; { struct aue_softc *sc; struct mii_data *mii; sc = ifp->if_softc; mii = device_get_softc(sc->aue_miibus); mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; return; } Static int aue_ioctl(ifp, command, data) struct ifnet *ifp; u_long command; caddr_t data; { struct aue_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; struct mii_data *mii; int s, error = 0; s = splimp(); switch(command) { case SIOCSIFADDR: case SIOCGIFADDR: case SIOCSIFMTU: error = ether_ioctl(ifp, command, data); break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING && ifp->if_flags & IFF_PROMISC && !(sc->aue_if_flags & IFF_PROMISC)) { AUE_SETBIT(sc, AUE_CTL2, AUE_CTL2_RX_PROMISC); } else if (ifp->if_flags & IFF_RUNNING && !(ifp->if_flags & IFF_PROMISC) && sc->aue_if_flags & IFF_PROMISC) { AUE_CLRBIT(sc, AUE_CTL2, AUE_CTL2_RX_PROMISC); } else if (!(ifp->if_flags & IFF_RUNNING)) aue_init(sc); } else { if (ifp->if_flags & IFF_RUNNING) aue_stop(sc); } sc->aue_if_flags = ifp->if_flags; error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: aue_setmulti(sc); error = 0; break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: mii = device_get_softc(sc->aue_miibus); error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); break; default: error = EINVAL; break; } (void)splx(s); return(error); } Static void aue_watchdog(ifp) struct ifnet *ifp; { struct aue_softc *sc; struct aue_chain *c; usbd_status stat; sc = ifp->if_softc; ifp->if_oerrors++; printf("aue%d: watchdog timeout\n", sc->aue_unit); c = &sc->aue_cdata.aue_tx_chain[0]; usbd_get_xfer_status(c->aue_xfer, NULL, NULL, NULL, &stat); aue_txeof(c->aue_xfer, c, stat); if (ifp->if_snd.ifq_head != NULL) aue_start(ifp); return; } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ Static void aue_stop(sc) struct aue_softc *sc; { usbd_status err; struct ifnet *ifp; int i; ifp = &sc->arpcom.ac_if; ifp->if_timer = 0; csr_write_1(sc, AUE_CTL0, 0); csr_write_1(sc, AUE_CTL1, 0); aue_reset(sc); untimeout(aue_tick, sc, sc->aue_stat_ch); /* Stop transfers. */ if (sc->aue_ep[AUE_ENDPT_RX] != NULL) { err = usbd_abort_pipe(sc->aue_ep[AUE_ENDPT_RX]); if (err) { printf("aue%d: abort rx pipe failed: %s\n", sc->aue_unit, usbd_errstr(err)); } err = usbd_close_pipe(sc->aue_ep[AUE_ENDPT_RX]); if (err) { printf("aue%d: close rx pipe failed: %s\n", sc->aue_unit, usbd_errstr(err)); } sc->aue_ep[AUE_ENDPT_RX] = NULL; } if (sc->aue_ep[AUE_ENDPT_TX] != NULL) { err = usbd_abort_pipe(sc->aue_ep[AUE_ENDPT_TX]); if (err) { printf("aue%d: abort tx pipe failed: %s\n", sc->aue_unit, usbd_errstr(err)); } err = usbd_close_pipe(sc->aue_ep[AUE_ENDPT_TX]); if (err) { printf("aue%d: close tx pipe failed: %s\n", sc->aue_unit, usbd_errstr(err)); } sc->aue_ep[AUE_ENDPT_TX] = NULL; } #ifdef AUE_INTR_PIPE if (sc->aue_ep[AUE_ENDPT_INTR] != NULL) { err = usbd_abort_pipe(sc->aue_ep[AUE_ENDPT_INTR]); if (err) { printf("aue%d: abort intr pipe failed: %s\n", sc->aue_unit, usbd_errstr(err)); } err = usbd_close_pipe(sc->aue_ep[AUE_ENDPT_INTR]); if (err) { printf("aue%d: close intr pipe failed: %s\n", sc->aue_unit, usbd_errstr(err)); } sc->aue_ep[AUE_ENDPT_INTR] = NULL; } #endif /* Free RX resources. */ for (i = 0; i < AUE_RX_LIST_CNT; i++) { if (sc->aue_cdata.aue_rx_chain[i].aue_buf != NULL) { free(sc->aue_cdata.aue_rx_chain[i].aue_buf, M_USBDEV); sc->aue_cdata.aue_rx_chain[i].aue_buf = NULL; } if (sc->aue_cdata.aue_rx_chain[i].aue_mbuf != NULL) { m_freem(sc->aue_cdata.aue_rx_chain[i].aue_mbuf); sc->aue_cdata.aue_rx_chain[i].aue_mbuf = NULL; } if (sc->aue_cdata.aue_rx_chain[i].aue_xfer != NULL) { usbd_free_xfer(sc->aue_cdata.aue_rx_chain[i].aue_xfer); sc->aue_cdata.aue_rx_chain[i].aue_xfer = NULL; } } /* Free TX resources. */ for (i = 0; i < AUE_TX_LIST_CNT; i++) { if (sc->aue_cdata.aue_tx_chain[i].aue_buf != NULL) { free(sc->aue_cdata.aue_tx_chain[i].aue_buf, M_USBDEV); sc->aue_cdata.aue_tx_chain[i].aue_buf = NULL; } if (sc->aue_cdata.aue_tx_chain[i].aue_mbuf != NULL) { m_freem(sc->aue_cdata.aue_tx_chain[i].aue_mbuf); sc->aue_cdata.aue_tx_chain[i].aue_mbuf = NULL; } if (sc->aue_cdata.aue_tx_chain[i].aue_xfer != NULL) { usbd_free_xfer(sc->aue_cdata.aue_tx_chain[i].aue_xfer); sc->aue_cdata.aue_tx_chain[i].aue_xfer = NULL; } } #ifdef AUE_INTR_PIPE free(sc->aue_cdata.aue_ibuf, M_USBDEV); sc->aue_cdata.aue_ibuf = NULL; #endif sc->aue_link = 0; ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); return; } /* * Stop all chip I/O so that the kernel's probe routines don't * get confused by errant DMAs when rebooting. */ Static void aue_shutdown(dev) device_t dev; { struct aue_softc *sc; sc = device_get_softc(dev); aue_reset(sc); aue_stop(sc); return; }