/*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1989, 1993, 1995 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Poul-Henning Kamp of the FreeBSD Project. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)vfs_cache.c 8.5 (Berkeley) 3/22/95 */ #include __FBSDID("$FreeBSD$"); #include "opt_ddb.h" #include "opt_ktrace.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef KTRACE #include #endif #ifdef INVARIANTS #include #endif #include #include #include #ifdef DDB #include #endif #include /* * High level overview of name caching in the VFS layer. * * Originally caching was implemented as part of UFS, later extracted to allow * use by other filesystems. A decision was made to make it optional and * completely detached from the rest of the kernel, which comes with limitations * outlined near the end of this comment block. * * This fundamental choice needs to be revisited. In the meantime, the current * state is described below. Significance of all notable routines is explained * in comments placed above their implementation. Scattered thoroughout the * file are TODO comments indicating shortcomings which can be fixed without * reworking everything (most of the fixes will likely be reusable). Various * details are omitted from this explanation to not clutter the overview, they * have to be checked by reading the code and associated commentary. * * Keep in mind that it's individual path components which are cached, not full * paths. That is, for a fully cached path "foo/bar/baz" there are 3 entries, * one for each name. * * I. Data organization * * Entries are described by "struct namecache" objects and stored in a hash * table. See cache_get_hash for more information. * * "struct vnode" contains pointers to source entries (names which can be found * when traversing through said vnode), destination entries (names of that * vnode (see "Limitations" for a breakdown on the subject) and a pointer to * the parent vnode. * * The (directory vnode; name) tuple reliably determines the target entry if * it exists. * * Since there are no small locks at this time (all are 32 bytes in size on * LP64), the code works around the problem by introducing lock arrays to * protect hash buckets and vnode lists. * * II. Filesystem integration * * Filesystems participating in name caching do the following: * - set vop_lookup routine to vfs_cache_lookup * - set vop_cachedlookup to whatever can perform the lookup if the above fails * - if they support lockless lookup (see below), vop_fplookup_vexec and * vop_fplookup_symlink are set along with the MNTK_FPLOOKUP flag on the * mount point * - call cache_purge or cache_vop_* routines to eliminate stale entries as * applicable * - call cache_enter to add entries depending on the MAKEENTRY flag * * With the above in mind, there are 2 entry points when doing lookups: * - ... -> namei -> cache_fplookup -- this is the default * - ... -> VOP_LOOKUP -> vfs_cache_lookup -- normally only called by namei * should the above fail * * Example code flow how an entry is added: * ... -> namei -> cache_fplookup -> cache_fplookup_noentry -> VOP_LOOKUP -> * vfs_cache_lookup -> VOP_CACHEDLOOKUP -> ufs_lookup_ino -> cache_enter * * III. Performance considerations * * For lockless case forward lookup avoids any writes to shared areas apart * from the terminal path component. In other words non-modifying lookups of * different files don't suffer any scalability problems in the namecache. * Looking up the same file is limited by VFS and goes beyond the scope of this * file. * * At least on amd64 the single-threaded bottleneck for long paths is hashing * (see cache_get_hash). There are cases where the code issues acquire fence * multiple times, they can be combined on architectures which suffer from it. * * For locked case each encountered vnode has to be referenced and locked in * order to be handed out to the caller (normally that's namei). This * introduces significant hit single-threaded and serialization multi-threaded. * * Reverse lookup (e.g., "getcwd") fully scales provided it is fully cached -- * avoids any writes to shared areas to any components. * * Unrelated insertions are partially serialized on updating the global entry * counter and possibly serialized on colliding bucket or vnode locks. * * IV. Observability * * Note not everything has an explicit dtrace probe nor it should have, thus * some of the one-liners below depend on implementation details. * * Examples: * * # Check what lookups failed to be handled in a lockless manner. Column 1 is * # line number, column 2 is status code (see cache_fpl_status) * dtrace -n 'vfs:fplookup:lookup:done { @[arg1, arg2] = count(); }' * * # Lengths of names added by binary name * dtrace -n 'fbt::cache_enter_time:entry { @[execname] = quantize(args[2]->cn_namelen); }' * * # Same as above but only those which exceed 64 characters * dtrace -n 'fbt::cache_enter_time:entry /args[2]->cn_namelen > 64/ { @[execname] = quantize(args[2]->cn_namelen); }' * * # Who is performing lookups with spurious slashes (e.g., "foo//bar") and what * # path is it * dtrace -n 'fbt::cache_fplookup_skip_slashes:entry { @[execname, stringof(args[0]->cnp->cn_pnbuf)] = count(); }' * * V. Limitations and implementation defects * * - since it is possible there is no entry for an open file, tools like * "procstat" may fail to resolve fd -> vnode -> path to anything * - even if a filesystem adds an entry, it may get purged (e.g., due to memory * shortage) in which case the above problem applies * - hardlinks are not tracked, thus if a vnode is reachable in more than one * way, resolving a name may return a different path than the one used to * open it (even if said path is still valid) * - by default entries are not added for newly created files * - adding an entry may need to evict negative entry first, which happens in 2 * distinct places (evicting on lookup, adding in a later VOP) making it * impossible to simply reuse it * - there is a simple scheme to evict negative entries as the cache is approaching * its capacity, but it is very unclear if doing so is a good idea to begin with * - vnodes are subject to being recycled even if target inode is left in memory, * which loses the name cache entries when it perhaps should not. in case of tmpfs * names get duplicated -- kept by filesystem itself and namecache separately * - struct namecache has a fixed size and comes in 2 variants, often wasting space. * now hard to replace with malloc due to dependence on SMR. * - lack of better integration with the kernel also turns nullfs into a layered * filesystem instead of something which can take advantage of caching */ static SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "Name cache"); SDT_PROVIDER_DECLARE(vfs); SDT_PROBE_DEFINE3(vfs, namecache, enter, done, "struct vnode *", "char *", "struct vnode *"); SDT_PROBE_DEFINE3(vfs, namecache, enter, duplicate, "struct vnode *", "char *", "struct vnode *"); SDT_PROBE_DEFINE2(vfs, namecache, enter_negative, done, "struct vnode *", "char *"); SDT_PROBE_DEFINE2(vfs, namecache, fullpath_smr, hit, "struct vnode *", "const char *"); SDT_PROBE_DEFINE4(vfs, namecache, fullpath_smr, miss, "struct vnode *", "struct namecache *", "int", "int"); SDT_PROBE_DEFINE1(vfs, namecache, fullpath, entry, "struct vnode *"); SDT_PROBE_DEFINE3(vfs, namecache, fullpath, hit, "struct vnode *", "char *", "struct vnode *"); SDT_PROBE_DEFINE1(vfs, namecache, fullpath, miss, "struct vnode *"); SDT_PROBE_DEFINE3(vfs, namecache, fullpath, return, "int", "struct vnode *", "char *"); SDT_PROBE_DEFINE3(vfs, namecache, lookup, hit, "struct vnode *", "char *", "struct vnode *"); SDT_PROBE_DEFINE2(vfs, namecache, lookup, hit__negative, "struct vnode *", "char *"); SDT_PROBE_DEFINE2(vfs, namecache, lookup, miss, "struct vnode *", "char *"); SDT_PROBE_DEFINE2(vfs, namecache, removecnp, hit, "struct vnode *", "struct componentname *"); SDT_PROBE_DEFINE2(vfs, namecache, removecnp, miss, "struct vnode *", "struct componentname *"); SDT_PROBE_DEFINE1(vfs, namecache, purge, done, "struct vnode *"); SDT_PROBE_DEFINE1(vfs, namecache, purge, batch, "int"); SDT_PROBE_DEFINE1(vfs, namecache, purge_negative, done, "struct vnode *"); SDT_PROBE_DEFINE1(vfs, namecache, purgevfs, done, "struct mount *"); SDT_PROBE_DEFINE3(vfs, namecache, zap, done, "struct vnode *", "char *", "struct vnode *"); SDT_PROBE_DEFINE2(vfs, namecache, zap_negative, done, "struct vnode *", "char *"); SDT_PROBE_DEFINE2(vfs, namecache, evict_negative, done, "struct vnode *", "char *"); SDT_PROBE_DEFINE1(vfs, namecache, symlink, alloc__fail, "size_t"); SDT_PROBE_DEFINE3(vfs, fplookup, lookup, done, "struct nameidata", "int", "bool"); SDT_PROBE_DECLARE(vfs, namei, lookup, entry); SDT_PROBE_DECLARE(vfs, namei, lookup, return); static char __read_frequently cache_fast_lookup_enabled = true; /* * This structure describes the elements in the cache of recent * names looked up by namei. */ struct negstate { u_char neg_flag; u_char neg_hit; }; _Static_assert(sizeof(struct negstate) <= sizeof(struct vnode *), "the state must fit in a union with a pointer without growing it"); struct namecache { LIST_ENTRY(namecache) nc_src; /* source vnode list */ TAILQ_ENTRY(namecache) nc_dst; /* destination vnode list */ CK_SLIST_ENTRY(namecache) nc_hash;/* hash chain */ struct vnode *nc_dvp; /* vnode of parent of name */ union { struct vnode *nu_vp; /* vnode the name refers to */ struct negstate nu_neg;/* negative entry state */ } n_un; u_char nc_flag; /* flag bits */ u_char nc_nlen; /* length of name */ char nc_name[0]; /* segment name + nul */ }; /* * struct namecache_ts repeats struct namecache layout up to the * nc_nlen member. * struct namecache_ts is used in place of struct namecache when time(s) need * to be stored. The nc_dotdottime field is used when a cache entry is mapping * both a non-dotdot directory name plus dotdot for the directory's * parent. * * See below for alignment requirement. */ struct namecache_ts { struct timespec nc_time; /* timespec provided by fs */ struct timespec nc_dotdottime; /* dotdot timespec provided by fs */ int nc_ticks; /* ticks value when entry was added */ int nc_pad; struct namecache nc_nc; }; TAILQ_HEAD(cache_freebatch, namecache); /* * At least mips n32 performs 64-bit accesses to timespec as found * in namecache_ts and requires them to be aligned. Since others * may be in the same spot suffer a little bit and enforce the * alignment for everyone. Note this is a nop for 64-bit platforms. */ #define CACHE_ZONE_ALIGNMENT UMA_ALIGNOF(time_t) /* * TODO: the initial value of CACHE_PATH_CUTOFF was inherited from the * 4.4 BSD codebase. Later on struct namecache was tweaked to become * smaller and the value was bumped to retain the total size, but it * was never re-evaluated for suitability. A simple test counting * lengths during package building shows that the value of 45 covers * about 86% of all added entries, reaching 99% at 65. * * Regardless of the above, use of dedicated zones instead of malloc may be * inducing additional waste. This may be hard to address as said zones are * tied to VFS SMR. Even if retaining them, the current split should be * re-evaluated. */ #ifdef __LP64__ #define CACHE_PATH_CUTOFF 45 #define CACHE_LARGE_PAD 6 #else #define CACHE_PATH_CUTOFF 41 #define CACHE_LARGE_PAD 2 #endif #define CACHE_ZONE_SMALL_SIZE (offsetof(struct namecache, nc_name) + CACHE_PATH_CUTOFF + 1) #define CACHE_ZONE_SMALL_TS_SIZE (offsetof(struct namecache_ts, nc_nc) + CACHE_ZONE_SMALL_SIZE) #define CACHE_ZONE_LARGE_SIZE (offsetof(struct namecache, nc_name) + NAME_MAX + 1 + CACHE_LARGE_PAD) #define CACHE_ZONE_LARGE_TS_SIZE (offsetof(struct namecache_ts, nc_nc) + CACHE_ZONE_LARGE_SIZE) _Static_assert((CACHE_ZONE_SMALL_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size"); _Static_assert((CACHE_ZONE_SMALL_TS_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size"); _Static_assert((CACHE_ZONE_LARGE_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size"); _Static_assert((CACHE_ZONE_LARGE_TS_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size"); #define nc_vp n_un.nu_vp #define nc_neg n_un.nu_neg /* * Flags in namecache.nc_flag */ #define NCF_WHITE 0x01 #define NCF_ISDOTDOT 0x02 #define NCF_TS 0x04 #define NCF_DTS 0x08 #define NCF_DVDROP 0x10 #define NCF_NEGATIVE 0x20 #define NCF_INVALID 0x40 #define NCF_WIP 0x80 /* * Flags in negstate.neg_flag */ #define NEG_HOT 0x01 static bool cache_neg_evict_cond(u_long lnumcache); /* * Mark an entry as invalid. * * This is called before it starts getting deconstructed. */ static void cache_ncp_invalidate(struct namecache *ncp) { KASSERT((ncp->nc_flag & NCF_INVALID) == 0, ("%s: entry %p already invalid", __func__, ncp)); atomic_store_char(&ncp->nc_flag, ncp->nc_flag | NCF_INVALID); atomic_thread_fence_rel(); } /* * Check whether the entry can be safely used. * * All places which elide locks are supposed to call this after they are * done with reading from an entry. */ #define cache_ncp_canuse(ncp) ({ \ struct namecache *_ncp = (ncp); \ u_char _nc_flag; \ \ atomic_thread_fence_acq(); \ _nc_flag = atomic_load_char(&_ncp->nc_flag); \ __predict_true((_nc_flag & (NCF_INVALID | NCF_WIP)) == 0); \ }) /* * Like the above but also checks NCF_WHITE. */ #define cache_fpl_neg_ncp_canuse(ncp) ({ \ struct namecache *_ncp = (ncp); \ u_char _nc_flag; \ \ atomic_thread_fence_acq(); \ _nc_flag = atomic_load_char(&_ncp->nc_flag); \ __predict_true((_nc_flag & (NCF_INVALID | NCF_WIP | NCF_WHITE)) == 0); \ }) VFS_SMR_DECLARE; static SYSCTL_NODE(_vfs_cache, OID_AUTO, param, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "Name cache parameters"); static u_int __read_mostly ncsize; /* the size as computed on creation or resizing */ SYSCTL_UINT(_vfs_cache_param, OID_AUTO, size, CTLFLAG_RW, &ncsize, 0, "Total namecache capacity"); u_int ncsizefactor = 2; SYSCTL_UINT(_vfs_cache_param, OID_AUTO, sizefactor, CTLFLAG_RW, &ncsizefactor, 0, "Size factor for namecache"); static u_long __read_mostly ncnegfactor = 5; /* ratio of negative entries */ SYSCTL_ULONG(_vfs_cache_param, OID_AUTO, negfactor, CTLFLAG_RW, &ncnegfactor, 0, "Ratio of negative namecache entries"); /* * Negative entry % of namecache capacity above which automatic eviction is allowed. * * Check cache_neg_evict_cond for details. */ static u_int ncnegminpct = 3; static u_int __read_mostly neg_min; /* the above recomputed against ncsize */ SYSCTL_UINT(_vfs_cache_param, OID_AUTO, negmin, CTLFLAG_RD, &neg_min, 0, "Negative entry count above which automatic eviction is allowed"); /* * Structures associated with name caching. */ #define NCHHASH(hash) \ (&nchashtbl[(hash) & nchash]) static __read_mostly CK_SLIST_HEAD(nchashhead, namecache) *nchashtbl;/* Hash Table */ static u_long __read_mostly nchash; /* size of hash table */ SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0, "Size of namecache hash table"); static u_long __exclusive_cache_line numneg; /* number of negative entries allocated */ static u_long __exclusive_cache_line numcache;/* number of cache entries allocated */ struct nchstats nchstats; /* cache effectiveness statistics */ static bool __read_mostly cache_rename_add = true; SYSCTL_BOOL(_vfs, OID_AUTO, cache_rename_add, CTLFLAG_RW, &cache_rename_add, 0, ""); static u_int __exclusive_cache_line neg_cycle; #define ncneghash 3 #define numneglists (ncneghash + 1) struct neglist { struct mtx nl_evict_lock; struct mtx nl_lock __aligned(CACHE_LINE_SIZE); TAILQ_HEAD(, namecache) nl_list; TAILQ_HEAD(, namecache) nl_hotlist; u_long nl_hotnum; } __aligned(CACHE_LINE_SIZE); static struct neglist neglists[numneglists]; static inline struct neglist * NCP2NEGLIST(struct namecache *ncp) { return (&neglists[(((uintptr_t)(ncp) >> 8) & ncneghash)]); } static inline struct negstate * NCP2NEGSTATE(struct namecache *ncp) { MPASS(atomic_load_char(&ncp->nc_flag) & NCF_NEGATIVE); return (&ncp->nc_neg); } #define numbucketlocks (ncbuckethash + 1) static u_int __read_mostly ncbuckethash; static struct mtx_padalign __read_mostly *bucketlocks; #define HASH2BUCKETLOCK(hash) \ ((struct mtx *)(&bucketlocks[((hash) & ncbuckethash)])) #define numvnodelocks (ncvnodehash + 1) static u_int __read_mostly ncvnodehash; static struct mtx __read_mostly *vnodelocks; static inline struct mtx * VP2VNODELOCK(struct vnode *vp) { return (&vnodelocks[(((uintptr_t)(vp) >> 8) & ncvnodehash)]); } static void cache_out_ts(struct namecache *ncp, struct timespec *tsp, int *ticksp) { struct namecache_ts *ncp_ts; KASSERT((ncp->nc_flag & NCF_TS) != 0 || (tsp == NULL && ticksp == NULL), ("No NCF_TS")); if (tsp == NULL) return; ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc); *tsp = ncp_ts->nc_time; *ticksp = ncp_ts->nc_ticks; } #ifdef DEBUG_CACHE static int __read_mostly doingcache = 1; /* 1 => enable the cache */ SYSCTL_INT(_debug, OID_AUTO, vfscache, CTLFLAG_RW, &doingcache, 0, "VFS namecache enabled"); #endif /* Export size information to userland */ SYSCTL_INT(_debug_sizeof, OID_AUTO, namecache, CTLFLAG_RD, SYSCTL_NULL_INT_PTR, sizeof(struct namecache), "sizeof(struct namecache)"); /* * The new name cache statistics */ static SYSCTL_NODE(_vfs_cache, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "Name cache statistics"); #define STATNODE_ULONG(name, varname, descr) \ SYSCTL_ULONG(_vfs_cache_stats, OID_AUTO, name, CTLFLAG_RD, &varname, 0, descr); #define STATNODE_COUNTER(name, varname, descr) \ static COUNTER_U64_DEFINE_EARLY(varname); \ SYSCTL_COUNTER_U64(_vfs_cache_stats, OID_AUTO, name, CTLFLAG_RD, &varname, \ descr); STATNODE_ULONG(neg, numneg, "Number of negative cache entries"); STATNODE_ULONG(count, numcache, "Number of cache entries"); STATNODE_COUNTER(heldvnodes, numcachehv, "Number of namecache entries with vnodes held"); STATNODE_COUNTER(drops, numdrops, "Number of dropped entries due to reaching the limit"); STATNODE_COUNTER(dothits, dothits, "Number of '.' hits"); STATNODE_COUNTER(dotdothis, dotdothits, "Number of '..' hits"); STATNODE_COUNTER(miss, nummiss, "Number of cache misses"); STATNODE_COUNTER(misszap, nummisszap, "Number of cache misses we do not want to cache"); STATNODE_COUNTER(posszaps, numposzaps, "Number of cache hits (positive) we do not want to cache"); STATNODE_COUNTER(poshits, numposhits, "Number of cache hits (positive)"); STATNODE_COUNTER(negzaps, numnegzaps, "Number of cache hits (negative) we do not want to cache"); STATNODE_COUNTER(neghits, numneghits, "Number of cache hits (negative)"); /* These count for vn_getcwd(), too. */ STATNODE_COUNTER(fullpathcalls, numfullpathcalls, "Number of fullpath search calls"); STATNODE_COUNTER(fullpathfail1, numfullpathfail1, "Number of fullpath search errors (ENOTDIR)"); STATNODE_COUNTER(fullpathfail2, numfullpathfail2, "Number of fullpath search errors (VOP_VPTOCNP failures)"); STATNODE_COUNTER(fullpathfail4, numfullpathfail4, "Number of fullpath search errors (ENOMEM)"); STATNODE_COUNTER(fullpathfound, numfullpathfound, "Number of successful fullpath calls"); STATNODE_COUNTER(symlinktoobig, symlinktoobig, "Number of times symlink did not fit the cache"); /* * Debug or developer statistics. */ static SYSCTL_NODE(_vfs_cache, OID_AUTO, debug, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "Name cache debugging"); #define DEBUGNODE_ULONG(name, varname, descr) \ SYSCTL_ULONG(_vfs_cache_debug, OID_AUTO, name, CTLFLAG_RD, &varname, 0, descr); #define DEBUGNODE_COUNTER(name, varname, descr) \ static COUNTER_U64_DEFINE_EARLY(varname); \ SYSCTL_COUNTER_U64(_vfs_cache_debug, OID_AUTO, name, CTLFLAG_RD, &varname, \ descr); DEBUGNODE_COUNTER(zap_bucket_relock_success, zap_bucket_relock_success, "Number of successful removals after relocking"); static long zap_bucket_fail; DEBUGNODE_ULONG(zap_bucket_fail, zap_bucket_fail, ""); static long zap_bucket_fail2; DEBUGNODE_ULONG(zap_bucket_fail2, zap_bucket_fail2, ""); static long cache_lock_vnodes_cel_3_failures; DEBUGNODE_ULONG(vnodes_cel_3_failures, cache_lock_vnodes_cel_3_failures, "Number of times 3-way vnode locking failed"); static void cache_zap_locked(struct namecache *ncp); static int vn_fullpath_hardlink(struct nameidata *ndp, char **retbuf, char **freebuf, size_t *buflen); static int vn_fullpath_any_smr(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf, size_t *buflen, size_t addend); static int vn_fullpath_any(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf, size_t *buflen); static int vn_fullpath_dir(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf, size_t *len, size_t addend); static MALLOC_DEFINE(M_VFSCACHE, "vfscache", "VFS name cache entries"); static inline void cache_assert_vlp_locked(struct mtx *vlp) { if (vlp != NULL) mtx_assert(vlp, MA_OWNED); } static inline void cache_assert_vnode_locked(struct vnode *vp) { struct mtx *vlp; vlp = VP2VNODELOCK(vp); cache_assert_vlp_locked(vlp); } /* * Directory vnodes with entries are held for two reasons: * 1. make them less of a target for reclamation in vnlru * 2. suffer smaller performance penalty in locked lookup as requeieing is avoided * * It will be feasible to stop doing it altogether if all filesystems start * supporting lockless lookup. */ static void cache_hold_vnode(struct vnode *vp) { cache_assert_vnode_locked(vp); VNPASS(LIST_EMPTY(&vp->v_cache_src), vp); vhold(vp); counter_u64_add(numcachehv, 1); } static void cache_drop_vnode(struct vnode *vp) { /* * Called after all locks are dropped, meaning we can't assert * on the state of v_cache_src. */ vdrop(vp); counter_u64_add(numcachehv, -1); } /* * UMA zones. */ static uma_zone_t __read_mostly cache_zone_small; static uma_zone_t __read_mostly cache_zone_small_ts; static uma_zone_t __read_mostly cache_zone_large; static uma_zone_t __read_mostly cache_zone_large_ts; char * cache_symlink_alloc(size_t size, int flags) { if (size < CACHE_ZONE_SMALL_SIZE) { return (uma_zalloc_smr(cache_zone_small, flags)); } if (size < CACHE_ZONE_LARGE_SIZE) { return (uma_zalloc_smr(cache_zone_large, flags)); } counter_u64_add(symlinktoobig, 1); SDT_PROBE1(vfs, namecache, symlink, alloc__fail, size); return (NULL); } void cache_symlink_free(char *string, size_t size) { MPASS(string != NULL); KASSERT(size < CACHE_ZONE_LARGE_SIZE, ("%s: size %zu too big", __func__, size)); if (size < CACHE_ZONE_SMALL_SIZE) { uma_zfree_smr(cache_zone_small, string); return; } if (size < CACHE_ZONE_LARGE_SIZE) { uma_zfree_smr(cache_zone_large, string); return; } __assert_unreachable(); } static struct namecache * cache_alloc_uma(int len, bool ts) { struct namecache_ts *ncp_ts; struct namecache *ncp; if (__predict_false(ts)) { if (len <= CACHE_PATH_CUTOFF) ncp_ts = uma_zalloc_smr(cache_zone_small_ts, M_WAITOK); else ncp_ts = uma_zalloc_smr(cache_zone_large_ts, M_WAITOK); ncp = &ncp_ts->nc_nc; } else { if (len <= CACHE_PATH_CUTOFF) ncp = uma_zalloc_smr(cache_zone_small, M_WAITOK); else ncp = uma_zalloc_smr(cache_zone_large, M_WAITOK); } return (ncp); } static void cache_free_uma(struct namecache *ncp) { struct namecache_ts *ncp_ts; if (__predict_false(ncp->nc_flag & NCF_TS)) { ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc); if (ncp->nc_nlen <= CACHE_PATH_CUTOFF) uma_zfree_smr(cache_zone_small_ts, ncp_ts); else uma_zfree_smr(cache_zone_large_ts, ncp_ts); } else { if (ncp->nc_nlen <= CACHE_PATH_CUTOFF) uma_zfree_smr(cache_zone_small, ncp); else uma_zfree_smr(cache_zone_large, ncp); } } static struct namecache * cache_alloc(int len, bool ts) { u_long lnumcache; /* * Avoid blowout in namecache entries. * * Bugs: * 1. filesystems may end up trying to add an already existing entry * (for example this can happen after a cache miss during concurrent * lookup), in which case we will call cache_neg_evict despite not * adding anything. * 2. the routine may fail to free anything and no provisions are made * to make it try harder (see the inside for failure modes) * 3. it only ever looks at negative entries. */ lnumcache = atomic_fetchadd_long(&numcache, 1) + 1; if (cache_neg_evict_cond(lnumcache)) { lnumcache = atomic_load_long(&numcache); } if (__predict_false(lnumcache >= ncsize)) { atomic_subtract_long(&numcache, 1); counter_u64_add(numdrops, 1); return (NULL); } return (cache_alloc_uma(len, ts)); } static void cache_free(struct namecache *ncp) { MPASS(ncp != NULL); if ((ncp->nc_flag & NCF_DVDROP) != 0) { cache_drop_vnode(ncp->nc_dvp); } cache_free_uma(ncp); atomic_subtract_long(&numcache, 1); } static void cache_free_batch(struct cache_freebatch *batch) { struct namecache *ncp, *nnp; int i; i = 0; if (TAILQ_EMPTY(batch)) goto out; TAILQ_FOREACH_SAFE(ncp, batch, nc_dst, nnp) { if ((ncp->nc_flag & NCF_DVDROP) != 0) { cache_drop_vnode(ncp->nc_dvp); } cache_free_uma(ncp); i++; } atomic_subtract_long(&numcache, i); out: SDT_PROBE1(vfs, namecache, purge, batch, i); } /* * Hashing. * * The code was made to use FNV in 2001 and this choice needs to be revisited. * * Short summary of the difficulty: * The longest name which can be inserted is NAME_MAX characters in length (or * 255 at the time of writing this comment), while majority of names used in * practice are significantly shorter (mostly below 10). More importantly * majority of lookups performed find names are even shorter than that. * * This poses a problem where hashes which do better than FNV past word size * (or so) tend to come with additional overhead when finalizing the result, * making them noticeably slower for the most commonly used range. * * Consider a path like: /usr/obj/usr/src/sys/amd64/GENERIC/vnode_if.c * * When looking it up the most time consuming part by a large margin (at least * on amd64) is hashing. Replacing FNV with something which pessimizes short * input would make the slowest part stand out even more. */ /* * TODO: With the value stored we can do better than computing the hash based * on the address. */ static void cache_prehash(struct vnode *vp) { vp->v_nchash = fnv_32_buf(&vp, sizeof(vp), FNV1_32_INIT); } static uint32_t cache_get_hash(char *name, u_char len, struct vnode *dvp) { return (fnv_32_buf(name, len, dvp->v_nchash)); } static uint32_t cache_get_hash_iter_start(struct vnode *dvp) { return (dvp->v_nchash); } static uint32_t cache_get_hash_iter(char c, uint32_t hash) { return (fnv_32_buf(&c, 1, hash)); } static uint32_t cache_get_hash_iter_finish(uint32_t hash) { return (hash); } static inline struct nchashhead * NCP2BUCKET(struct namecache *ncp) { uint32_t hash; hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp); return (NCHHASH(hash)); } static inline struct mtx * NCP2BUCKETLOCK(struct namecache *ncp) { uint32_t hash; hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp); return (HASH2BUCKETLOCK(hash)); } #ifdef INVARIANTS static void cache_assert_bucket_locked(struct namecache *ncp) { struct mtx *blp; blp = NCP2BUCKETLOCK(ncp); mtx_assert(blp, MA_OWNED); } static void cache_assert_bucket_unlocked(struct namecache *ncp) { struct mtx *blp; blp = NCP2BUCKETLOCK(ncp); mtx_assert(blp, MA_NOTOWNED); } #else #define cache_assert_bucket_locked(x) do { } while (0) #define cache_assert_bucket_unlocked(x) do { } while (0) #endif #define cache_sort_vnodes(x, y) _cache_sort_vnodes((void **)(x), (void **)(y)) static void _cache_sort_vnodes(void **p1, void **p2) { void *tmp; MPASS(*p1 != NULL || *p2 != NULL); if (*p1 > *p2) { tmp = *p2; *p2 = *p1; *p1 = tmp; } } static void cache_lock_all_buckets(void) { u_int i; for (i = 0; i < numbucketlocks; i++) mtx_lock(&bucketlocks[i]); } static void cache_unlock_all_buckets(void) { u_int i; for (i = 0; i < numbucketlocks; i++) mtx_unlock(&bucketlocks[i]); } static void cache_lock_all_vnodes(void) { u_int i; for (i = 0; i < numvnodelocks; i++) mtx_lock(&vnodelocks[i]); } static void cache_unlock_all_vnodes(void) { u_int i; for (i = 0; i < numvnodelocks; i++) mtx_unlock(&vnodelocks[i]); } static int cache_trylock_vnodes(struct mtx *vlp1, struct mtx *vlp2) { cache_sort_vnodes(&vlp1, &vlp2); if (vlp1 != NULL) { if (!mtx_trylock(vlp1)) return (EAGAIN); } if (!mtx_trylock(vlp2)) { if (vlp1 != NULL) mtx_unlock(vlp1); return (EAGAIN); } return (0); } static void cache_lock_vnodes(struct mtx *vlp1, struct mtx *vlp2) { MPASS(vlp1 != NULL || vlp2 != NULL); MPASS(vlp1 <= vlp2); if (vlp1 != NULL) mtx_lock(vlp1); if (vlp2 != NULL) mtx_lock(vlp2); } static void cache_unlock_vnodes(struct mtx *vlp1, struct mtx *vlp2) { MPASS(vlp1 != NULL || vlp2 != NULL); if (vlp1 != NULL) mtx_unlock(vlp1); if (vlp2 != NULL) mtx_unlock(vlp2); } static int sysctl_nchstats(SYSCTL_HANDLER_ARGS) { struct nchstats snap; if (req->oldptr == NULL) return (SYSCTL_OUT(req, 0, sizeof(snap))); snap = nchstats; snap.ncs_goodhits = counter_u64_fetch(numposhits); snap.ncs_neghits = counter_u64_fetch(numneghits); snap.ncs_badhits = counter_u64_fetch(numposzaps) + counter_u64_fetch(numnegzaps); snap.ncs_miss = counter_u64_fetch(nummisszap) + counter_u64_fetch(nummiss); return (SYSCTL_OUT(req, &snap, sizeof(snap))); } SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 0, sysctl_nchstats, "LU", "VFS cache effectiveness statistics"); static void cache_recalc_neg_min(u_int val) { neg_min = (ncsize * val) / 100; } static int sysctl_negminpct(SYSCTL_HANDLER_ARGS) { u_int val; int error; val = ncnegminpct; error = sysctl_handle_int(oidp, &val, 0, req); if (error != 0 || req->newptr == NULL) return (error); if (val == ncnegminpct) return (0); if (val < 0 || val > 99) return (EINVAL); ncnegminpct = val; cache_recalc_neg_min(val); return (0); } SYSCTL_PROC(_vfs_cache_param, OID_AUTO, negminpct, CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_negminpct, "I", "Negative entry \% of namecache capacity above which automatic eviction is allowed"); #ifdef DIAGNOSTIC /* * Grab an atomic snapshot of the name cache hash chain lengths */ static SYSCTL_NODE(_debug, OID_AUTO, hashstat, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, "hash table stats"); static int sysctl_debug_hashstat_rawnchash(SYSCTL_HANDLER_ARGS) { struct nchashhead *ncpp; struct namecache *ncp; int i, error, n_nchash, *cntbuf; retry: n_nchash = nchash + 1; /* nchash is max index, not count */ if (req->oldptr == NULL) return SYSCTL_OUT(req, 0, n_nchash * sizeof(int)); cntbuf = malloc(n_nchash * sizeof(int), M_TEMP, M_ZERO | M_WAITOK); cache_lock_all_buckets(); if (n_nchash != nchash + 1) { cache_unlock_all_buckets(); free(cntbuf, M_TEMP); goto retry; } /* Scan hash tables counting entries */ for (ncpp = nchashtbl, i = 0; i < n_nchash; ncpp++, i++) CK_SLIST_FOREACH(ncp, ncpp, nc_hash) cntbuf[i]++; cache_unlock_all_buckets(); for (error = 0, i = 0; i < n_nchash; i++) if ((error = SYSCTL_OUT(req, &cntbuf[i], sizeof(int))) != 0) break; free(cntbuf, M_TEMP); return (error); } SYSCTL_PROC(_debug_hashstat, OID_AUTO, rawnchash, CTLTYPE_INT|CTLFLAG_RD| CTLFLAG_MPSAFE, 0, 0, sysctl_debug_hashstat_rawnchash, "S,int", "nchash chain lengths"); static int sysctl_debug_hashstat_nchash(SYSCTL_HANDLER_ARGS) { int error; struct nchashhead *ncpp; struct namecache *ncp; int n_nchash; int count, maxlength, used, pct; if (!req->oldptr) return SYSCTL_OUT(req, 0, 4 * sizeof(int)); cache_lock_all_buckets(); n_nchash = nchash + 1; /* nchash is max index, not count */ used = 0; maxlength = 0; /* Scan hash tables for applicable entries */ for (ncpp = nchashtbl; n_nchash > 0; n_nchash--, ncpp++) { count = 0; CK_SLIST_FOREACH(ncp, ncpp, nc_hash) { count++; } if (count) used++; if (maxlength < count) maxlength = count; } n_nchash = nchash + 1; cache_unlock_all_buckets(); pct = (used * 100) / (n_nchash / 100); error = SYSCTL_OUT(req, &n_nchash, sizeof(n_nchash)); if (error) return (error); error = SYSCTL_OUT(req, &used, sizeof(used)); if (error) return (error); error = SYSCTL_OUT(req, &maxlength, sizeof(maxlength)); if (error) return (error); error = SYSCTL_OUT(req, &pct, sizeof(pct)); if (error) return (error); return (0); } SYSCTL_PROC(_debug_hashstat, OID_AUTO, nchash, CTLTYPE_INT|CTLFLAG_RD| CTLFLAG_MPSAFE, 0, 0, sysctl_debug_hashstat_nchash, "I", "nchash statistics (number of total/used buckets, maximum chain length, usage percentage)"); #endif /* * Negative entries management * * Various workloads create plenty of negative entries and barely use them * afterwards. Moreover malicious users can keep performing bogus lookups * adding even more entries. For example "make tinderbox" as of writing this * comment ends up with 2.6M namecache entries in total, 1.2M of which are * negative. * * As such, a rather aggressive eviction method is needed. The currently * employed method is a placeholder. * * Entries are split over numneglists separate lists, each of which is further * split into hot and cold entries. Entries get promoted after getting a hit. * Eviction happens on addition of new entry. */ static SYSCTL_NODE(_vfs_cache, OID_AUTO, neg, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "Name cache negative entry statistics"); SYSCTL_ULONG(_vfs_cache_neg, OID_AUTO, count, CTLFLAG_RD, &numneg, 0, "Number of negative cache entries"); static COUNTER_U64_DEFINE_EARLY(neg_created); SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, created, CTLFLAG_RD, &neg_created, "Number of created negative entries"); static COUNTER_U64_DEFINE_EARLY(neg_evicted); SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evicted, CTLFLAG_RD, &neg_evicted, "Number of evicted negative entries"); static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_empty); SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_empty, CTLFLAG_RD, &neg_evict_skipped_empty, "Number of times evicting failed due to lack of entries"); static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_missed); SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_missed, CTLFLAG_RD, &neg_evict_skipped_missed, "Number of times evicting failed due to target entry disappearing"); static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_contended); SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_contended, CTLFLAG_RD, &neg_evict_skipped_contended, "Number of times evicting failed due to contention"); SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, hits, CTLFLAG_RD, &numneghits, "Number of cache hits (negative)"); static int sysctl_neg_hot(SYSCTL_HANDLER_ARGS) { int i, out; out = 0; for (i = 0; i < numneglists; i++) out += neglists[i].nl_hotnum; return (SYSCTL_OUT(req, &out, sizeof(out))); } SYSCTL_PROC(_vfs_cache_neg, OID_AUTO, hot, CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 0, sysctl_neg_hot, "I", "Number of hot negative entries"); static void cache_neg_init(struct namecache *ncp) { struct negstate *ns; ncp->nc_flag |= NCF_NEGATIVE; ns = NCP2NEGSTATE(ncp); ns->neg_flag = 0; ns->neg_hit = 0; counter_u64_add(neg_created, 1); } #define CACHE_NEG_PROMOTION_THRESH 2 static bool cache_neg_hit_prep(struct namecache *ncp) { struct negstate *ns; u_char n; ns = NCP2NEGSTATE(ncp); n = atomic_load_char(&ns->neg_hit); for (;;) { if (n >= CACHE_NEG_PROMOTION_THRESH) return (false); if (atomic_fcmpset_8(&ns->neg_hit, &n, n + 1)) break; } return (n + 1 == CACHE_NEG_PROMOTION_THRESH); } /* * Nothing to do here but it is provided for completeness as some * cache_neg_hit_prep callers may end up returning without even * trying to promote. */ #define cache_neg_hit_abort(ncp) do { } while (0) static void cache_neg_hit_finish(struct namecache *ncp) { SDT_PROBE2(vfs, namecache, lookup, hit__negative, ncp->nc_dvp, ncp->nc_name); counter_u64_add(numneghits, 1); } /* * Move a negative entry to the hot list. */ static void cache_neg_promote_locked(struct namecache *ncp) { struct neglist *nl; struct negstate *ns; ns = NCP2NEGSTATE(ncp); nl = NCP2NEGLIST(ncp); mtx_assert(&nl->nl_lock, MA_OWNED); if ((ns->neg_flag & NEG_HOT) == 0) { TAILQ_REMOVE(&nl->nl_list, ncp, nc_dst); TAILQ_INSERT_TAIL(&nl->nl_hotlist, ncp, nc_dst); nl->nl_hotnum++; ns->neg_flag |= NEG_HOT; } } /* * Move a hot negative entry to the cold list. */ static void cache_neg_demote_locked(struct namecache *ncp) { struct neglist *nl; struct negstate *ns; ns = NCP2NEGSTATE(ncp); nl = NCP2NEGLIST(ncp); mtx_assert(&nl->nl_lock, MA_OWNED); MPASS(ns->neg_flag & NEG_HOT); TAILQ_REMOVE(&nl->nl_hotlist, ncp, nc_dst); TAILQ_INSERT_TAIL(&nl->nl_list, ncp, nc_dst); nl->nl_hotnum--; ns->neg_flag &= ~NEG_HOT; atomic_store_char(&ns->neg_hit, 0); } /* * Move a negative entry to the hot list if it matches the lookup. * * We have to take locks, but they may be contended and in the worst * case we may need to go off CPU. We don't want to spin within the * smr section and we can't block with it. Exiting the section means * the found entry could have been evicted. We are going to look it * up again. */ static bool cache_neg_promote_cond(struct vnode *dvp, struct componentname *cnp, struct namecache *oncp, uint32_t hash) { struct namecache *ncp; struct neglist *nl; u_char nc_flag; nl = NCP2NEGLIST(oncp); mtx_lock(&nl->nl_lock); /* * For hash iteration. */ vfs_smr_enter(); /* * Avoid all surprises by only succeeding if we got the same entry and * bailing completely otherwise. * XXX There are no provisions to keep the vnode around, meaning we may * end up promoting a negative entry for a *new* vnode and returning * ENOENT on its account. This is the error we want to return anyway * and promotion is harmless. * * In particular at this point there can be a new ncp which matches the * search but hashes to a different neglist. */ CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) { if (ncp == oncp) break; } /* * No match to begin with. */ if (__predict_false(ncp == NULL)) { goto out_abort; } /* * The newly found entry may be something different... */ if (!(ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen && !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))) { goto out_abort; } /* * ... and not even negative. */ nc_flag = atomic_load_char(&ncp->nc_flag); if ((nc_flag & NCF_NEGATIVE) == 0) { goto out_abort; } if (!cache_ncp_canuse(ncp)) { goto out_abort; } cache_neg_promote_locked(ncp); cache_neg_hit_finish(ncp); vfs_smr_exit(); mtx_unlock(&nl->nl_lock); return (true); out_abort: vfs_smr_exit(); mtx_unlock(&nl->nl_lock); return (false); } static void cache_neg_promote(struct namecache *ncp) { struct neglist *nl; nl = NCP2NEGLIST(ncp); mtx_lock(&nl->nl_lock); cache_neg_promote_locked(ncp); mtx_unlock(&nl->nl_lock); } static void cache_neg_insert(struct namecache *ncp) { struct neglist *nl; MPASS(ncp->nc_flag & NCF_NEGATIVE); cache_assert_bucket_locked(ncp); nl = NCP2NEGLIST(ncp); mtx_lock(&nl->nl_lock); TAILQ_INSERT_TAIL(&nl->nl_list, ncp, nc_dst); mtx_unlock(&nl->nl_lock); atomic_add_long(&numneg, 1); } static void cache_neg_remove(struct namecache *ncp) { struct neglist *nl; struct negstate *ns; cache_assert_bucket_locked(ncp); nl = NCP2NEGLIST(ncp); ns = NCP2NEGSTATE(ncp); mtx_lock(&nl->nl_lock); if ((ns->neg_flag & NEG_HOT) != 0) { TAILQ_REMOVE(&nl->nl_hotlist, ncp, nc_dst); nl->nl_hotnum--; } else { TAILQ_REMOVE(&nl->nl_list, ncp, nc_dst); } mtx_unlock(&nl->nl_lock); atomic_subtract_long(&numneg, 1); } static struct neglist * cache_neg_evict_select_list(void) { struct neglist *nl; u_int c; c = atomic_fetchadd_int(&neg_cycle, 1) + 1; nl = &neglists[c % numneglists]; if (!mtx_trylock(&nl->nl_evict_lock)) { counter_u64_add(neg_evict_skipped_contended, 1); return (NULL); } return (nl); } static struct namecache * cache_neg_evict_select_entry(struct neglist *nl) { struct namecache *ncp, *lncp; struct negstate *ns, *lns; int i; mtx_assert(&nl->nl_evict_lock, MA_OWNED); mtx_assert(&nl->nl_lock, MA_OWNED); ncp = TAILQ_FIRST(&nl->nl_list); if (ncp == NULL) return (NULL); lncp = ncp; lns = NCP2NEGSTATE(lncp); for (i = 1; i < 4; i++) { ncp = TAILQ_NEXT(ncp, nc_dst); if (ncp == NULL) break; ns = NCP2NEGSTATE(ncp); if (ns->neg_hit < lns->neg_hit) { lncp = ncp; lns = ns; } } return (lncp); } static bool cache_neg_evict(void) { struct namecache *ncp, *ncp2; struct neglist *nl; struct vnode *dvp; struct mtx *dvlp; struct mtx *blp; uint32_t hash; u_char nlen; bool evicted; nl = cache_neg_evict_select_list(); if (nl == NULL) { return (false); } mtx_lock(&nl->nl_lock); ncp = TAILQ_FIRST(&nl->nl_hotlist); if (ncp != NULL) { cache_neg_demote_locked(ncp); } ncp = cache_neg_evict_select_entry(nl); if (ncp == NULL) { counter_u64_add(neg_evict_skipped_empty, 1); mtx_unlock(&nl->nl_lock); mtx_unlock(&nl->nl_evict_lock); return (false); } nlen = ncp->nc_nlen; dvp = ncp->nc_dvp; hash = cache_get_hash(ncp->nc_name, nlen, dvp); dvlp = VP2VNODELOCK(dvp); blp = HASH2BUCKETLOCK(hash); mtx_unlock(&nl->nl_lock); mtx_unlock(&nl->nl_evict_lock); mtx_lock(dvlp); mtx_lock(blp); /* * Note that since all locks were dropped above, the entry may be * gone or reallocated to be something else. */ CK_SLIST_FOREACH(ncp2, (NCHHASH(hash)), nc_hash) { if (ncp2 == ncp && ncp2->nc_dvp == dvp && ncp2->nc_nlen == nlen && (ncp2->nc_flag & NCF_NEGATIVE) != 0) break; } if (ncp2 == NULL) { counter_u64_add(neg_evict_skipped_missed, 1); ncp = NULL; evicted = false; } else { MPASS(dvlp == VP2VNODELOCK(ncp->nc_dvp)); MPASS(blp == NCP2BUCKETLOCK(ncp)); SDT_PROBE2(vfs, namecache, evict_negative, done, ncp->nc_dvp, ncp->nc_name); cache_zap_locked(ncp); counter_u64_add(neg_evicted, 1); evicted = true; } mtx_unlock(blp); mtx_unlock(dvlp); if (ncp != NULL) cache_free(ncp); return (evicted); } /* * Maybe evict a negative entry to create more room. * * The ncnegfactor parameter limits what fraction of the total count * can comprise of negative entries. However, if the cache is just * warming up this leads to excessive evictions. As such, ncnegminpct * (recomputed to neg_min) dictates whether the above should be * applied. * * Try evicting if the cache is close to full capacity regardless of * other considerations. */ static bool cache_neg_evict_cond(u_long lnumcache) { u_long lnumneg; if (ncsize - 1000 < lnumcache) goto out_evict; lnumneg = atomic_load_long(&numneg); if (lnumneg < neg_min) return (false); if (lnumneg * ncnegfactor < lnumcache) return (false); out_evict: return (cache_neg_evict()); } /* * cache_zap_locked(): * * Removes a namecache entry from cache, whether it contains an actual * pointer to a vnode or if it is just a negative cache entry. */ static void cache_zap_locked(struct namecache *ncp) { struct nchashhead *ncpp; struct vnode *dvp, *vp; dvp = ncp->nc_dvp; vp = ncp->nc_vp; if (!(ncp->nc_flag & NCF_NEGATIVE)) cache_assert_vnode_locked(vp); cache_assert_vnode_locked(dvp); cache_assert_bucket_locked(ncp); cache_ncp_invalidate(ncp); ncpp = NCP2BUCKET(ncp); CK_SLIST_REMOVE(ncpp, ncp, namecache, nc_hash); if (!(ncp->nc_flag & NCF_NEGATIVE)) { SDT_PROBE3(vfs, namecache, zap, done, dvp, ncp->nc_name, vp); TAILQ_REMOVE(&vp->v_cache_dst, ncp, nc_dst); if (ncp == vp->v_cache_dd) { atomic_store_ptr(&vp->v_cache_dd, NULL); } } else { SDT_PROBE2(vfs, namecache, zap_negative, done, dvp, ncp->nc_name); cache_neg_remove(ncp); } if (ncp->nc_flag & NCF_ISDOTDOT) { if (ncp == dvp->v_cache_dd) { atomic_store_ptr(&dvp->v_cache_dd, NULL); } } else { LIST_REMOVE(ncp, nc_src); if (LIST_EMPTY(&dvp->v_cache_src)) { ncp->nc_flag |= NCF_DVDROP; } } } static void cache_zap_negative_locked_vnode_kl(struct namecache *ncp, struct vnode *vp) { struct mtx *blp; MPASS(ncp->nc_dvp == vp); MPASS(ncp->nc_flag & NCF_NEGATIVE); cache_assert_vnode_locked(vp); blp = NCP2BUCKETLOCK(ncp); mtx_lock(blp); cache_zap_locked(ncp); mtx_unlock(blp); } static bool cache_zap_locked_vnode_kl2(struct namecache *ncp, struct vnode *vp, struct mtx **vlpp) { struct mtx *pvlp, *vlp1, *vlp2, *to_unlock; struct mtx *blp; MPASS(vp == ncp->nc_dvp || vp == ncp->nc_vp); cache_assert_vnode_locked(vp); if (ncp->nc_flag & NCF_NEGATIVE) { if (*vlpp != NULL) { mtx_unlock(*vlpp); *vlpp = NULL; } cache_zap_negative_locked_vnode_kl(ncp, vp); return (true); } pvlp = VP2VNODELOCK(vp); blp = NCP2BUCKETLOCK(ncp); vlp1 = VP2VNODELOCK(ncp->nc_dvp); vlp2 = VP2VNODELOCK(ncp->nc_vp); if (*vlpp == vlp1 || *vlpp == vlp2) { to_unlock = *vlpp; *vlpp = NULL; } else { if (*vlpp != NULL) { mtx_unlock(*vlpp); *vlpp = NULL; } cache_sort_vnodes(&vlp1, &vlp2); if (vlp1 == pvlp) { mtx_lock(vlp2); to_unlock = vlp2; } else { if (!mtx_trylock(vlp1)) goto out_relock; to_unlock = vlp1; } } mtx_lock(blp); cache_zap_locked(ncp); mtx_unlock(blp); if (to_unlock != NULL) mtx_unlock(to_unlock); return (true); out_relock: mtx_unlock(vlp2); mtx_lock(vlp1); mtx_lock(vlp2); MPASS(*vlpp == NULL); *vlpp = vlp1; return (false); } /* * If trylocking failed we can get here. We know enough to take all needed locks * in the right order and re-lookup the entry. */ static int cache_zap_unlocked_bucket(struct namecache *ncp, struct componentname *cnp, struct vnode *dvp, struct mtx *dvlp, struct mtx *vlp, uint32_t hash, struct mtx *blp) { struct namecache *rncp; cache_assert_bucket_unlocked(ncp); cache_sort_vnodes(&dvlp, &vlp); cache_lock_vnodes(dvlp, vlp); mtx_lock(blp); CK_SLIST_FOREACH(rncp, (NCHHASH(hash)), nc_hash) { if (rncp == ncp && rncp->nc_dvp == dvp && rncp->nc_nlen == cnp->cn_namelen && !bcmp(rncp->nc_name, cnp->cn_nameptr, rncp->nc_nlen)) break; } if (rncp != NULL) { cache_zap_locked(rncp); mtx_unlock(blp); cache_unlock_vnodes(dvlp, vlp); counter_u64_add(zap_bucket_relock_success, 1); return (0); } mtx_unlock(blp); cache_unlock_vnodes(dvlp, vlp); return (EAGAIN); } static int __noinline cache_zap_locked_bucket(struct namecache *ncp, struct componentname *cnp, uint32_t hash, struct mtx *blp) { struct mtx *dvlp, *vlp; struct vnode *dvp; cache_assert_bucket_locked(ncp); dvlp = VP2VNODELOCK(ncp->nc_dvp); vlp = NULL; if (!(ncp->nc_flag & NCF_NEGATIVE)) vlp = VP2VNODELOCK(ncp->nc_vp); if (cache_trylock_vnodes(dvlp, vlp) == 0) { cache_zap_locked(ncp); mtx_unlock(blp); cache_unlock_vnodes(dvlp, vlp); return (0); } dvp = ncp->nc_dvp; mtx_unlock(blp); return (cache_zap_unlocked_bucket(ncp, cnp, dvp, dvlp, vlp, hash, blp)); } static __noinline int cache_remove_cnp(struct vnode *dvp, struct componentname *cnp) { struct namecache *ncp; struct mtx *blp; struct mtx *dvlp, *dvlp2; uint32_t hash; int error; if (cnp->cn_namelen == 2 && cnp->cn_nameptr[0] == '.' && cnp->cn_nameptr[1] == '.') { dvlp = VP2VNODELOCK(dvp); dvlp2 = NULL; mtx_lock(dvlp); retry_dotdot: ncp = dvp->v_cache_dd; if (ncp == NULL) { mtx_unlock(dvlp); if (dvlp2 != NULL) mtx_unlock(dvlp2); SDT_PROBE2(vfs, namecache, removecnp, miss, dvp, cnp); return (0); } if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) { if (!cache_zap_locked_vnode_kl2(ncp, dvp, &dvlp2)) goto retry_dotdot; MPASS(dvp->v_cache_dd == NULL); mtx_unlock(dvlp); if (dvlp2 != NULL) mtx_unlock(dvlp2); cache_free(ncp); } else { atomic_store_ptr(&dvp->v_cache_dd, NULL); mtx_unlock(dvlp); if (dvlp2 != NULL) mtx_unlock(dvlp2); } SDT_PROBE2(vfs, namecache, removecnp, hit, dvp, cnp); return (1); } hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp); blp = HASH2BUCKETLOCK(hash); retry: if (CK_SLIST_EMPTY(NCHHASH(hash))) goto out_no_entry; mtx_lock(blp); CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) { if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen && !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen)) break; } if (ncp == NULL) { mtx_unlock(blp); goto out_no_entry; } error = cache_zap_locked_bucket(ncp, cnp, hash, blp); if (__predict_false(error != 0)) { zap_bucket_fail++; goto retry; } counter_u64_add(numposzaps, 1); SDT_PROBE2(vfs, namecache, removecnp, hit, dvp, cnp); cache_free(ncp); return (1); out_no_entry: counter_u64_add(nummisszap, 1); SDT_PROBE2(vfs, namecache, removecnp, miss, dvp, cnp); return (0); } static int __noinline cache_lookup_dot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp, struct timespec *tsp, int *ticksp) { int ltype; *vpp = dvp; counter_u64_add(dothits, 1); SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ".", *vpp); if (tsp != NULL) timespecclear(tsp); if (ticksp != NULL) *ticksp = ticks; vrefact(*vpp); /* * When we lookup "." we still can be asked to lock it * differently... */ ltype = cnp->cn_lkflags & LK_TYPE_MASK; if (ltype != VOP_ISLOCKED(*vpp)) { if (ltype == LK_EXCLUSIVE) { vn_lock(*vpp, LK_UPGRADE | LK_RETRY); if (VN_IS_DOOMED((*vpp))) { /* forced unmount */ vrele(*vpp); *vpp = NULL; return (ENOENT); } } else vn_lock(*vpp, LK_DOWNGRADE | LK_RETRY); } return (-1); } static int __noinline cache_lookup_dotdot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp, struct timespec *tsp, int *ticksp) { struct namecache_ts *ncp_ts; struct namecache *ncp; struct mtx *dvlp; enum vgetstate vs; int error, ltype; bool whiteout; MPASS((cnp->cn_flags & ISDOTDOT) != 0); if ((cnp->cn_flags & MAKEENTRY) == 0) { cache_remove_cnp(dvp, cnp); return (0); } counter_u64_add(dotdothits, 1); retry: dvlp = VP2VNODELOCK(dvp); mtx_lock(dvlp); ncp = dvp->v_cache_dd; if (ncp == NULL) { SDT_PROBE2(vfs, namecache, lookup, miss, dvp, ".."); mtx_unlock(dvlp); return (0); } if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) { if (ncp->nc_flag & NCF_NEGATIVE) *vpp = NULL; else *vpp = ncp->nc_vp; } else *vpp = ncp->nc_dvp; if (*vpp == NULL) goto negative_success; SDT_PROBE3(vfs, namecache, lookup, hit, dvp, "..", *vpp); cache_out_ts(ncp, tsp, ticksp); if ((ncp->nc_flag & (NCF_ISDOTDOT | NCF_DTS)) == NCF_DTS && tsp != NULL) { ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc); *tsp = ncp_ts->nc_dotdottime; } MPASS(dvp != *vpp); ltype = VOP_ISLOCKED(dvp); VOP_UNLOCK(dvp); vs = vget_prep(*vpp); mtx_unlock(dvlp); error = vget_finish(*vpp, cnp->cn_lkflags, vs); vn_lock(dvp, ltype | LK_RETRY); if (VN_IS_DOOMED(dvp)) { if (error == 0) vput(*vpp); *vpp = NULL; return (ENOENT); } if (error) { *vpp = NULL; goto retry; } return (-1); negative_success: if (__predict_false(cnp->cn_nameiop == CREATE)) { if (cnp->cn_flags & ISLASTCN) { counter_u64_add(numnegzaps, 1); cache_zap_negative_locked_vnode_kl(ncp, dvp); mtx_unlock(dvlp); cache_free(ncp); return (0); } } whiteout = (ncp->nc_flag & NCF_WHITE); cache_out_ts(ncp, tsp, ticksp); if (cache_neg_hit_prep(ncp)) cache_neg_promote(ncp); else cache_neg_hit_finish(ncp); mtx_unlock(dvlp); if (whiteout) cnp->cn_flags |= ISWHITEOUT; return (ENOENT); } /** * Lookup a name in the name cache * * # Arguments * * - dvp: Parent directory in which to search. * - vpp: Return argument. Will contain desired vnode on cache hit. * - cnp: Parameters of the name search. The most interesting bits of * the cn_flags field have the following meanings: * - MAKEENTRY: If clear, free an entry from the cache rather than look * it up. * - ISDOTDOT: Must be set if and only if cn_nameptr == ".." * - tsp: Return storage for cache timestamp. On a successful (positive * or negative) lookup, tsp will be filled with any timespec that * was stored when this cache entry was created. However, it will * be clear for "." entries. * - ticks: Return storage for alternate cache timestamp. On a successful * (positive or negative) lookup, it will contain the ticks value * that was current when the cache entry was created, unless cnp * was ".". * * Either both tsp and ticks have to be provided or neither of them. * * # Returns * * - -1: A positive cache hit. vpp will contain the desired vnode. * - ENOENT: A negative cache hit, or dvp was recycled out from under us due * to a forced unmount. vpp will not be modified. If the entry * is a whiteout, then the ISWHITEOUT flag will be set in * cnp->cn_flags. * - 0: A cache miss. vpp will not be modified. * * # Locking * * On a cache hit, vpp will be returned locked and ref'd. If we're looking up * .., dvp is unlocked. If we're looking up . an extra ref is taken, but the * lock is not recursively acquired. */ static int __noinline cache_lookup_fallback(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp, struct timespec *tsp, int *ticksp) { struct namecache *ncp; struct mtx *blp; uint32_t hash; enum vgetstate vs; int error; bool whiteout; MPASS((cnp->cn_flags & ISDOTDOT) == 0); MPASS((cnp->cn_flags & (MAKEENTRY | NC_KEEPPOSENTRY)) != 0); retry: hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp); blp = HASH2BUCKETLOCK(hash); mtx_lock(blp); CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) { if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen && !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen)) break; } if (__predict_false(ncp == NULL)) { mtx_unlock(blp); SDT_PROBE2(vfs, namecache, lookup, miss, dvp, cnp->cn_nameptr); counter_u64_add(nummiss, 1); return (0); } if (ncp->nc_flag & NCF_NEGATIVE) goto negative_success; counter_u64_add(numposhits, 1); *vpp = ncp->nc_vp; SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, *vpp); cache_out_ts(ncp, tsp, ticksp); MPASS(dvp != *vpp); vs = vget_prep(*vpp); mtx_unlock(blp); error = vget_finish(*vpp, cnp->cn_lkflags, vs); if (error) { *vpp = NULL; goto retry; } return (-1); negative_success: /* * We don't get here with regular lookup apart from corner cases. */ if (__predict_true(cnp->cn_nameiop == CREATE)) { if (cnp->cn_flags & ISLASTCN) { counter_u64_add(numnegzaps, 1); error = cache_zap_locked_bucket(ncp, cnp, hash, blp); if (__predict_false(error != 0)) { zap_bucket_fail2++; goto retry; } cache_free(ncp); return (0); } } whiteout = (ncp->nc_flag & NCF_WHITE); cache_out_ts(ncp, tsp, ticksp); if (cache_neg_hit_prep(ncp)) cache_neg_promote(ncp); else cache_neg_hit_finish(ncp); mtx_unlock(blp); if (whiteout) cnp->cn_flags |= ISWHITEOUT; return (ENOENT); } int cache_lookup(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp, struct timespec *tsp, int *ticksp) { struct namecache *ncp; uint32_t hash; enum vgetstate vs; int error; bool whiteout, neg_promote; u_short nc_flag; MPASS((tsp == NULL && ticksp == NULL) || (tsp != NULL && ticksp != NULL)); #ifdef DEBUG_CACHE if (__predict_false(!doingcache)) { cnp->cn_flags &= ~MAKEENTRY; return (0); } #endif if (__predict_false(cnp->cn_nameptr[0] == '.')) { if (cnp->cn_namelen == 1) return (cache_lookup_dot(dvp, vpp, cnp, tsp, ticksp)); if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') return (cache_lookup_dotdot(dvp, vpp, cnp, tsp, ticksp)); } MPASS((cnp->cn_flags & ISDOTDOT) == 0); if ((cnp->cn_flags & (MAKEENTRY | NC_KEEPPOSENTRY)) == 0) { cache_remove_cnp(dvp, cnp); return (0); } hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp); vfs_smr_enter(); CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) { if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen && !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen)) break; } if (__predict_false(ncp == NULL)) { vfs_smr_exit(); SDT_PROBE2(vfs, namecache, lookup, miss, dvp, cnp->cn_nameptr); counter_u64_add(nummiss, 1); return (0); } nc_flag = atomic_load_char(&ncp->nc_flag); if (nc_flag & NCF_NEGATIVE) goto negative_success; counter_u64_add(numposhits, 1); *vpp = ncp->nc_vp; SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, *vpp); cache_out_ts(ncp, tsp, ticksp); MPASS(dvp != *vpp); if (!cache_ncp_canuse(ncp)) { vfs_smr_exit(); *vpp = NULL; goto out_fallback; } vs = vget_prep_smr(*vpp); vfs_smr_exit(); if (__predict_false(vs == VGET_NONE)) { *vpp = NULL; goto out_fallback; } error = vget_finish(*vpp, cnp->cn_lkflags, vs); if (error) { *vpp = NULL; goto out_fallback; } return (-1); negative_success: if (cnp->cn_nameiop == CREATE) { if (cnp->cn_flags & ISLASTCN) { vfs_smr_exit(); goto out_fallback; } } cache_out_ts(ncp, tsp, ticksp); whiteout = (atomic_load_char(&ncp->nc_flag) & NCF_WHITE); neg_promote = cache_neg_hit_prep(ncp); if (!cache_ncp_canuse(ncp)) { cache_neg_hit_abort(ncp); vfs_smr_exit(); goto out_fallback; } if (neg_promote) { vfs_smr_exit(); if (!cache_neg_promote_cond(dvp, cnp, ncp, hash)) goto out_fallback; } else { cache_neg_hit_finish(ncp); vfs_smr_exit(); } if (whiteout) cnp->cn_flags |= ISWHITEOUT; return (ENOENT); out_fallback: return (cache_lookup_fallback(dvp, vpp, cnp, tsp, ticksp)); } struct celockstate { struct mtx *vlp[3]; struct mtx *blp[2]; }; CTASSERT((nitems(((struct celockstate *)0)->vlp) == 3)); CTASSERT((nitems(((struct celockstate *)0)->blp) == 2)); static inline void cache_celockstate_init(struct celockstate *cel) { bzero(cel, sizeof(*cel)); } static void cache_lock_vnodes_cel(struct celockstate *cel, struct vnode *vp, struct vnode *dvp) { struct mtx *vlp1, *vlp2; MPASS(cel->vlp[0] == NULL); MPASS(cel->vlp[1] == NULL); MPASS(cel->vlp[2] == NULL); MPASS(vp != NULL || dvp != NULL); vlp1 = VP2VNODELOCK(vp); vlp2 = VP2VNODELOCK(dvp); cache_sort_vnodes(&vlp1, &vlp2); if (vlp1 != NULL) { mtx_lock(vlp1); cel->vlp[0] = vlp1; } mtx_lock(vlp2); cel->vlp[1] = vlp2; } static void cache_unlock_vnodes_cel(struct celockstate *cel) { MPASS(cel->vlp[0] != NULL || cel->vlp[1] != NULL); if (cel->vlp[0] != NULL) mtx_unlock(cel->vlp[0]); if (cel->vlp[1] != NULL) mtx_unlock(cel->vlp[1]); if (cel->vlp[2] != NULL) mtx_unlock(cel->vlp[2]); } static bool cache_lock_vnodes_cel_3(struct celockstate *cel, struct vnode *vp) { struct mtx *vlp; bool ret; cache_assert_vlp_locked(cel->vlp[0]); cache_assert_vlp_locked(cel->vlp[1]); MPASS(cel->vlp[2] == NULL); MPASS(vp != NULL); vlp = VP2VNODELOCK(vp); ret = true; if (vlp >= cel->vlp[1]) { mtx_lock(vlp); } else { if (mtx_trylock(vlp)) goto out; cache_lock_vnodes_cel_3_failures++; cache_unlock_vnodes_cel(cel); if (vlp < cel->vlp[0]) { mtx_lock(vlp); mtx_lock(cel->vlp[0]); mtx_lock(cel->vlp[1]); } else { if (cel->vlp[0] != NULL) mtx_lock(cel->vlp[0]); mtx_lock(vlp); mtx_lock(cel->vlp[1]); } ret = false; } out: cel->vlp[2] = vlp; return (ret); } static void cache_lock_buckets_cel(struct celockstate *cel, struct mtx *blp1, struct mtx *blp2) { MPASS(cel->blp[0] == NULL); MPASS(cel->blp[1] == NULL); cache_sort_vnodes(&blp1, &blp2); if (blp1 != NULL) { mtx_lock(blp1); cel->blp[0] = blp1; } mtx_lock(blp2); cel->blp[1] = blp2; } static void cache_unlock_buckets_cel(struct celockstate *cel) { if (cel->blp[0] != NULL) mtx_unlock(cel->blp[0]); mtx_unlock(cel->blp[1]); } /* * Lock part of the cache affected by the insertion. * * This means vnodelocks for dvp, vp and the relevant bucketlock. * However, insertion can result in removal of an old entry. In this * case we have an additional vnode and bucketlock pair to lock. * * That is, in the worst case we have to lock 3 vnodes and 2 bucketlocks, while * preserving the locking order (smaller address first). */ static void cache_enter_lock(struct celockstate *cel, struct vnode *dvp, struct vnode *vp, uint32_t hash) { struct namecache *ncp; struct mtx *blps[2]; u_char nc_flag; blps[0] = HASH2BUCKETLOCK(hash); for (;;) { blps[1] = NULL; cache_lock_vnodes_cel(cel, dvp, vp); if (vp == NULL || vp->v_type != VDIR) break; ncp = atomic_load_consume_ptr(&vp->v_cache_dd); if (ncp == NULL) break; nc_flag = atomic_load_char(&ncp->nc_flag); if ((nc_flag & NCF_ISDOTDOT) == 0) break; MPASS(ncp->nc_dvp == vp); blps[1] = NCP2BUCKETLOCK(ncp); if ((nc_flag & NCF_NEGATIVE) != 0) break; if (cache_lock_vnodes_cel_3(cel, ncp->nc_vp)) break; /* * All vnodes got re-locked. Re-validate the state and if * nothing changed we are done. Otherwise restart. */ if (ncp == vp->v_cache_dd && (ncp->nc_flag & NCF_ISDOTDOT) != 0 && blps[1] == NCP2BUCKETLOCK(ncp) && VP2VNODELOCK(ncp->nc_vp) == cel->vlp[2]) break; cache_unlock_vnodes_cel(cel); cel->vlp[0] = NULL; cel->vlp[1] = NULL; cel->vlp[2] = NULL; } cache_lock_buckets_cel(cel, blps[0], blps[1]); } static void cache_enter_lock_dd(struct celockstate *cel, struct vnode *dvp, struct vnode *vp, uint32_t hash) { struct namecache *ncp; struct mtx *blps[2]; u_char nc_flag; blps[0] = HASH2BUCKETLOCK(hash); for (;;) { blps[1] = NULL; cache_lock_vnodes_cel(cel, dvp, vp); ncp = atomic_load_consume_ptr(&dvp->v_cache_dd); if (ncp == NULL) break; nc_flag = atomic_load_char(&ncp->nc_flag); if ((nc_flag & NCF_ISDOTDOT) == 0) break; MPASS(ncp->nc_dvp == dvp); blps[1] = NCP2BUCKETLOCK(ncp); if ((nc_flag & NCF_NEGATIVE) != 0) break; if (cache_lock_vnodes_cel_3(cel, ncp->nc_vp)) break; if (ncp == dvp->v_cache_dd && (ncp->nc_flag & NCF_ISDOTDOT) != 0 && blps[1] == NCP2BUCKETLOCK(ncp) && VP2VNODELOCK(ncp->nc_vp) == cel->vlp[2]) break; cache_unlock_vnodes_cel(cel); cel->vlp[0] = NULL; cel->vlp[1] = NULL; cel->vlp[2] = NULL; } cache_lock_buckets_cel(cel, blps[0], blps[1]); } static void cache_enter_unlock(struct celockstate *cel) { cache_unlock_buckets_cel(cel); cache_unlock_vnodes_cel(cel); } static void __noinline cache_enter_dotdot_prep(struct vnode *dvp, struct vnode *vp, struct componentname *cnp) { struct celockstate cel; struct namecache *ncp; uint32_t hash; int len; if (atomic_load_ptr(&dvp->v_cache_dd) == NULL) return; len = cnp->cn_namelen; cache_celockstate_init(&cel); hash = cache_get_hash(cnp->cn_nameptr, len, dvp); cache_enter_lock_dd(&cel, dvp, vp, hash); ncp = dvp->v_cache_dd; if (ncp != NULL && (ncp->nc_flag & NCF_ISDOTDOT)) { KASSERT(ncp->nc_dvp == dvp, ("wrong isdotdot parent")); cache_zap_locked(ncp); } else { ncp = NULL; } atomic_store_ptr(&dvp->v_cache_dd, NULL); cache_enter_unlock(&cel); if (ncp != NULL) cache_free(ncp); } /* * Add an entry to the cache. */ void cache_enter_time(struct vnode *dvp, struct vnode *vp, struct componentname *cnp, struct timespec *tsp, struct timespec *dtsp) { struct celockstate cel; struct namecache *ncp, *n2, *ndd; struct namecache_ts *ncp_ts; struct nchashhead *ncpp; uint32_t hash; int flag; int len; KASSERT(cnp->cn_namelen <= NAME_MAX, ("%s: passed len %ld exceeds NAME_MAX (%d)", __func__, cnp->cn_namelen, NAME_MAX)); #ifdef notyet /* * Not everything doing this is weeded out yet. */ VNPASS(dvp != vp, dvp); #endif VNPASS(!VN_IS_DOOMED(dvp), dvp); VNPASS(dvp->v_type != VNON, dvp); if (vp != NULL) { VNPASS(!VN_IS_DOOMED(vp), vp); VNPASS(vp->v_type != VNON, vp); } #ifdef DEBUG_CACHE if (__predict_false(!doingcache)) return; #endif flag = 0; if (__predict_false(cnp->cn_nameptr[0] == '.')) { if (cnp->cn_namelen == 1) return; if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') { cache_enter_dotdot_prep(dvp, vp, cnp); flag = NCF_ISDOTDOT; } } ncp = cache_alloc(cnp->cn_namelen, tsp != NULL); if (ncp == NULL) return; cache_celockstate_init(&cel); ndd = NULL; ncp_ts = NULL; /* * Calculate the hash key and setup as much of the new * namecache entry as possible before acquiring the lock. */ ncp->nc_flag = flag | NCF_WIP; ncp->nc_vp = vp; if (vp == NULL) cache_neg_init(ncp); ncp->nc_dvp = dvp; if (tsp != NULL) { ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc); ncp_ts->nc_time = *tsp; ncp_ts->nc_ticks = ticks; ncp_ts->nc_nc.nc_flag |= NCF_TS; if (dtsp != NULL) { ncp_ts->nc_dotdottime = *dtsp; ncp_ts->nc_nc.nc_flag |= NCF_DTS; } } len = ncp->nc_nlen = cnp->cn_namelen; hash = cache_get_hash(cnp->cn_nameptr, len, dvp); memcpy(ncp->nc_name, cnp->cn_nameptr, len); ncp->nc_name[len] = '\0'; cache_enter_lock(&cel, dvp, vp, hash); /* * See if this vnode or negative entry is already in the cache * with this name. This can happen with concurrent lookups of * the same path name. */ ncpp = NCHHASH(hash); CK_SLIST_FOREACH(n2, ncpp, nc_hash) { if (n2->nc_dvp == dvp && n2->nc_nlen == cnp->cn_namelen && !bcmp(n2->nc_name, cnp->cn_nameptr, n2->nc_nlen)) { MPASS(cache_ncp_canuse(n2)); if ((n2->nc_flag & NCF_NEGATIVE) != 0) KASSERT(vp == NULL, ("%s: found entry pointing to a different vnode (%p != %p) ; name [%s]", __func__, NULL, vp, cnp->cn_nameptr)); else KASSERT(n2->nc_vp == vp, ("%s: found entry pointing to a different vnode (%p != %p) ; name [%s]", __func__, n2->nc_vp, vp, cnp->cn_nameptr)); /* * Entries are supposed to be immutable unless in the * process of getting destroyed. Accommodating for * changing timestamps is possible but not worth it. * This should be harmless in terms of correctness, in * the worst case resulting in an earlier expiration. * Alternatively, the found entry can be replaced * altogether. */ MPASS((n2->nc_flag & (NCF_TS | NCF_DTS)) == (ncp->nc_flag & (NCF_TS | NCF_DTS))); #if 0 if (tsp != NULL) { KASSERT((n2->nc_flag & NCF_TS) != 0, ("no NCF_TS")); n2_ts = __containerof(n2, struct namecache_ts, nc_nc); n2_ts->nc_time = ncp_ts->nc_time; n2_ts->nc_ticks = ncp_ts->nc_ticks; if (dtsp != NULL) { n2_ts->nc_dotdottime = ncp_ts->nc_dotdottime; n2_ts->nc_nc.nc_flag |= NCF_DTS; } } #endif SDT_PROBE3(vfs, namecache, enter, duplicate, dvp, ncp->nc_name, vp); goto out_unlock_free; } } if (flag == NCF_ISDOTDOT) { /* * See if we are trying to add .. entry, but some other lookup * has populated v_cache_dd pointer already. */ if (dvp->v_cache_dd != NULL) goto out_unlock_free; KASSERT(vp == NULL || vp->v_type == VDIR, ("wrong vnode type %p", vp)); atomic_thread_fence_rel(); atomic_store_ptr(&dvp->v_cache_dd, ncp); } if (vp != NULL) { if (flag != NCF_ISDOTDOT) { /* * For this case, the cache entry maps both the * directory name in it and the name ".." for the * directory's parent. */ if ((ndd = vp->v_cache_dd) != NULL) { if ((ndd->nc_flag & NCF_ISDOTDOT) != 0) cache_zap_locked(ndd); else ndd = NULL; } atomic_thread_fence_rel(); atomic_store_ptr(&vp->v_cache_dd, ncp); } else if (vp->v_type != VDIR) { if (vp->v_cache_dd != NULL) { atomic_store_ptr(&vp->v_cache_dd, NULL); } } } if (flag != NCF_ISDOTDOT) { if (LIST_EMPTY(&dvp->v_cache_src)) { cache_hold_vnode(dvp); } LIST_INSERT_HEAD(&dvp->v_cache_src, ncp, nc_src); } /* * If the entry is "negative", we place it into the * "negative" cache queue, otherwise, we place it into the * destination vnode's cache entries queue. */ if (vp != NULL) { TAILQ_INSERT_HEAD(&vp->v_cache_dst, ncp, nc_dst); SDT_PROBE3(vfs, namecache, enter, done, dvp, ncp->nc_name, vp); } else { if (cnp->cn_flags & ISWHITEOUT) atomic_store_char(&ncp->nc_flag, ncp->nc_flag | NCF_WHITE); cache_neg_insert(ncp); SDT_PROBE2(vfs, namecache, enter_negative, done, dvp, ncp->nc_name); } /* * Insert the new namecache entry into the appropriate chain * within the cache entries table. */ CK_SLIST_INSERT_HEAD(ncpp, ncp, nc_hash); atomic_thread_fence_rel(); /* * Mark the entry as fully constructed. * It is immutable past this point until its removal. */ atomic_store_char(&ncp->nc_flag, ncp->nc_flag & ~NCF_WIP); cache_enter_unlock(&cel); if (ndd != NULL) cache_free(ndd); return; out_unlock_free: cache_enter_unlock(&cel); cache_free(ncp); return; } /* * A variant of the above accepting flags. * * - VFS_CACHE_DROPOLD -- if a conflicting entry is found, drop it. * * TODO: this routine is a hack. It blindly removes the old entry, even if it * happens to match and it is doing it in an inefficient manner. It was added * to accomodate NFS which runs into a case where the target for a given name * may change from under it. Note this does nothing to solve the following * race: 2 callers of cache_enter_time_flags pass a different target vnode for * the same [dvp, cnp]. It may be argued that code doing this is broken. */ void cache_enter_time_flags(struct vnode *dvp, struct vnode *vp, struct componentname *cnp, struct timespec *tsp, struct timespec *dtsp, int flags) { MPASS((flags & ~(VFS_CACHE_DROPOLD)) == 0); if (flags & VFS_CACHE_DROPOLD) cache_remove_cnp(dvp, cnp); cache_enter_time(dvp, vp, cnp, tsp, dtsp); } static u_int cache_roundup_2(u_int val) { u_int res; for (res = 1; res <= val; res <<= 1) continue; return (res); } static struct nchashhead * nchinittbl(u_long elements, u_long *hashmask) { struct nchashhead *hashtbl; u_long hashsize, i; hashsize = cache_roundup_2(elements) / 2; hashtbl = malloc((u_long)hashsize * sizeof(*hashtbl), M_VFSCACHE, M_WAITOK); for (i = 0; i < hashsize; i++) CK_SLIST_INIT(&hashtbl[i]); *hashmask = hashsize - 1; return (hashtbl); } static void ncfreetbl(struct nchashhead *hashtbl) { free(hashtbl, M_VFSCACHE); } /* * Name cache initialization, from vfs_init() when we are booting */ static void nchinit(void *dummy __unused) { u_int i; cache_zone_small = uma_zcreate("S VFS Cache", CACHE_ZONE_SMALL_SIZE, NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT); cache_zone_small_ts = uma_zcreate("STS VFS Cache", CACHE_ZONE_SMALL_TS_SIZE, NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT); cache_zone_large = uma_zcreate("L VFS Cache", CACHE_ZONE_LARGE_SIZE, NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT); cache_zone_large_ts = uma_zcreate("LTS VFS Cache", CACHE_ZONE_LARGE_TS_SIZE, NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT); VFS_SMR_ZONE_SET(cache_zone_small); VFS_SMR_ZONE_SET(cache_zone_small_ts); VFS_SMR_ZONE_SET(cache_zone_large); VFS_SMR_ZONE_SET(cache_zone_large_ts); ncsize = desiredvnodes * ncsizefactor; cache_recalc_neg_min(ncnegminpct); nchashtbl = nchinittbl(desiredvnodes * 2, &nchash); ncbuckethash = cache_roundup_2(mp_ncpus * mp_ncpus) - 1; if (ncbuckethash < 7) /* arbitrarily chosen to avoid having one lock */ ncbuckethash = 7; if (ncbuckethash > nchash) ncbuckethash = nchash; bucketlocks = malloc(sizeof(*bucketlocks) * numbucketlocks, M_VFSCACHE, M_WAITOK | M_ZERO); for (i = 0; i < numbucketlocks; i++) mtx_init(&bucketlocks[i], "ncbuc", NULL, MTX_DUPOK | MTX_RECURSE); ncvnodehash = ncbuckethash; vnodelocks = malloc(sizeof(*vnodelocks) * numvnodelocks, M_VFSCACHE, M_WAITOK | M_ZERO); for (i = 0; i < numvnodelocks; i++) mtx_init(&vnodelocks[i], "ncvn", NULL, MTX_DUPOK | MTX_RECURSE); for (i = 0; i < numneglists; i++) { mtx_init(&neglists[i].nl_evict_lock, "ncnege", NULL, MTX_DEF); mtx_init(&neglists[i].nl_lock, "ncnegl", NULL, MTX_DEF); TAILQ_INIT(&neglists[i].nl_list); TAILQ_INIT(&neglists[i].nl_hotlist); } } SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_SECOND, nchinit, NULL); void cache_vnode_init(struct vnode *vp) { LIST_INIT(&vp->v_cache_src); TAILQ_INIT(&vp->v_cache_dst); vp->v_cache_dd = NULL; cache_prehash(vp); } /* * Induce transient cache misses for lockless operation in cache_lookup() by * using a temporary hash table. * * This will force a fs lookup. * * Synchronisation is done in 2 steps, calling vfs_smr_synchronize each time * to observe all CPUs not performing the lookup. */ static void cache_changesize_set_temp(struct nchashhead *temptbl, u_long temphash) { MPASS(temphash < nchash); /* * Change the size. The new size is smaller and can safely be used * against the existing table. All lookups which now hash wrong will * result in a cache miss, which all callers are supposed to know how * to handle. */ atomic_store_long(&nchash, temphash); atomic_thread_fence_rel(); vfs_smr_synchronize(); /* * At this point everyone sees the updated hash value, but they still * see the old table. */ atomic_store_ptr(&nchashtbl, temptbl); atomic_thread_fence_rel(); vfs_smr_synchronize(); /* * At this point everyone sees the updated table pointer and size pair. */ } /* * Set the new hash table. * * Similarly to cache_changesize_set_temp(), this has to synchronize against * lockless operation in cache_lookup(). */ static void cache_changesize_set_new(struct nchashhead *new_tbl, u_long new_hash) { MPASS(nchash < new_hash); /* * Change the pointer first. This wont result in out of bounds access * since the temporary table is guaranteed to be smaller. */ atomic_store_ptr(&nchashtbl, new_tbl); atomic_thread_fence_rel(); vfs_smr_synchronize(); /* * At this point everyone sees the updated pointer value, but they * still see the old size. */ atomic_store_long(&nchash, new_hash); atomic_thread_fence_rel(); vfs_smr_synchronize(); /* * At this point everyone sees the updated table pointer and size pair. */ } void cache_changesize(u_long newmaxvnodes) { struct nchashhead *new_nchashtbl, *old_nchashtbl, *temptbl; u_long new_nchash, old_nchash, temphash; struct namecache *ncp; uint32_t hash; u_long newncsize; int i; newncsize = newmaxvnodes * ncsizefactor; newmaxvnodes = cache_roundup_2(newmaxvnodes * 2); if (newmaxvnodes < numbucketlocks) newmaxvnodes = numbucketlocks; new_nchashtbl = nchinittbl(newmaxvnodes, &new_nchash); /* If same hash table size, nothing to do */ if (nchash == new_nchash) { ncfreetbl(new_nchashtbl); return; } temptbl = nchinittbl(1, &temphash); /* * Move everything from the old hash table to the new table. * None of the namecache entries in the table can be removed * because to do so, they have to be removed from the hash table. */ cache_lock_all_vnodes(); cache_lock_all_buckets(); old_nchashtbl = nchashtbl; old_nchash = nchash; cache_changesize_set_temp(temptbl, temphash); for (i = 0; i <= old_nchash; i++) { while ((ncp = CK_SLIST_FIRST(&old_nchashtbl[i])) != NULL) { hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp); CK_SLIST_REMOVE(&old_nchashtbl[i], ncp, namecache, nc_hash); CK_SLIST_INSERT_HEAD(&new_nchashtbl[hash & new_nchash], ncp, nc_hash); } } ncsize = newncsize; cache_recalc_neg_min(ncnegminpct); cache_changesize_set_new(new_nchashtbl, new_nchash); cache_unlock_all_buckets(); cache_unlock_all_vnodes(); ncfreetbl(old_nchashtbl); ncfreetbl(temptbl); } /* * Remove all entries from and to a particular vnode. */ static void cache_purge_impl(struct vnode *vp) { struct cache_freebatch batch; struct namecache *ncp; struct mtx *vlp, *vlp2; TAILQ_INIT(&batch); vlp = VP2VNODELOCK(vp); vlp2 = NULL; mtx_lock(vlp); retry: while (!LIST_EMPTY(&vp->v_cache_src)) { ncp = LIST_FIRST(&vp->v_cache_src); if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2)) goto retry; TAILQ_INSERT_TAIL(&batch, ncp, nc_dst); } while (!TAILQ_EMPTY(&vp->v_cache_dst)) { ncp = TAILQ_FIRST(&vp->v_cache_dst); if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2)) goto retry; TAILQ_INSERT_TAIL(&batch, ncp, nc_dst); } ncp = vp->v_cache_dd; if (ncp != NULL) { KASSERT(ncp->nc_flag & NCF_ISDOTDOT, ("lost dotdot link")); if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2)) goto retry; TAILQ_INSERT_TAIL(&batch, ncp, nc_dst); } KASSERT(vp->v_cache_dd == NULL, ("incomplete purge")); mtx_unlock(vlp); if (vlp2 != NULL) mtx_unlock(vlp2); cache_free_batch(&batch); } /* * Opportunistic check to see if there is anything to do. */ static bool cache_has_entries(struct vnode *vp) { if (LIST_EMPTY(&vp->v_cache_src) && TAILQ_EMPTY(&vp->v_cache_dst) && atomic_load_ptr(&vp->v_cache_dd) == NULL) return (false); return (true); } void cache_purge(struct vnode *vp) { SDT_PROBE1(vfs, namecache, purge, done, vp); if (!cache_has_entries(vp)) return; cache_purge_impl(vp); } /* * Only to be used by vgone. */ void cache_purge_vgone(struct vnode *vp) { struct mtx *vlp; VNPASS(VN_IS_DOOMED(vp), vp); if (cache_has_entries(vp)) { cache_purge_impl(vp); return; } /* * Serialize against a potential thread doing cache_purge. */ vlp = VP2VNODELOCK(vp); mtx_wait_unlocked(vlp); if (cache_has_entries(vp)) { cache_purge_impl(vp); return; } return; } /* * Remove all negative entries for a particular directory vnode. */ void cache_purge_negative(struct vnode *vp) { struct cache_freebatch batch; struct namecache *ncp, *nnp; struct mtx *vlp; SDT_PROBE1(vfs, namecache, purge_negative, done, vp); if (LIST_EMPTY(&vp->v_cache_src)) return; TAILQ_INIT(&batch); vlp = VP2VNODELOCK(vp); mtx_lock(vlp); LIST_FOREACH_SAFE(ncp, &vp->v_cache_src, nc_src, nnp) { if (!(ncp->nc_flag & NCF_NEGATIVE)) continue; cache_zap_negative_locked_vnode_kl(ncp, vp); TAILQ_INSERT_TAIL(&batch, ncp, nc_dst); } mtx_unlock(vlp); cache_free_batch(&batch); } /* * Entry points for modifying VOP operations. */ void cache_vop_rename(struct vnode *fdvp, struct vnode *fvp, struct vnode *tdvp, struct vnode *tvp, struct componentname *fcnp, struct componentname *tcnp) { ASSERT_VOP_IN_SEQC(fdvp); ASSERT_VOP_IN_SEQC(fvp); ASSERT_VOP_IN_SEQC(tdvp); if (tvp != NULL) ASSERT_VOP_IN_SEQC(tvp); cache_purge(fvp); if (tvp != NULL) { cache_purge(tvp); KASSERT(!cache_remove_cnp(tdvp, tcnp), ("%s: lingering negative entry", __func__)); } else { cache_remove_cnp(tdvp, tcnp); } /* * TODO * * Historically renaming was always purging all revelang entries, * but that's quite wasteful. In particular turns out that in many cases * the target file is immediately accessed after rename, inducing a cache * miss. * * Recode this to reduce relocking and reuse the existing entry (if any) * instead of just removing it above and allocating a new one here. */ if (cache_rename_add) { cache_enter(tdvp, fvp, tcnp); } } void cache_vop_rmdir(struct vnode *dvp, struct vnode *vp) { ASSERT_VOP_IN_SEQC(dvp); ASSERT_VOP_IN_SEQC(vp); cache_purge(vp); } #ifdef INVARIANTS /* * Validate that if an entry exists it matches. */ void cache_validate(struct vnode *dvp, struct vnode *vp, struct componentname *cnp) { struct namecache *ncp; struct mtx *blp; uint32_t hash; hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp); if (CK_SLIST_EMPTY(NCHHASH(hash))) return; blp = HASH2BUCKETLOCK(hash); mtx_lock(blp); CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) { if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen && !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen)) { if (ncp->nc_vp != vp) panic("%s: mismatch (%p != %p); ncp %p [%s] dvp %p\n", __func__, vp, ncp->nc_vp, ncp, ncp->nc_name, ncp->nc_dvp); } } mtx_unlock(blp); } #endif /* * Flush all entries referencing a particular filesystem. */ void cache_purgevfs(struct mount *mp) { struct vnode *vp, *mvp; SDT_PROBE1(vfs, namecache, purgevfs, done, mp); /* * Somewhat wasteful iteration over all vnodes. Would be better to * support filtering and avoid the interlock to begin with. */ MNT_VNODE_FOREACH_ALL(vp, mp, mvp) { if (!cache_has_entries(vp)) { VI_UNLOCK(vp); continue; } vholdl(vp); VI_UNLOCK(vp); cache_purge(vp); vdrop(vp); } } /* * Perform canonical checks and cache lookup and pass on to filesystem * through the vop_cachedlookup only if needed. */ int vfs_cache_lookup(struct vop_lookup_args *ap) { struct vnode *dvp; int error; struct vnode **vpp = ap->a_vpp; struct componentname *cnp = ap->a_cnp; int flags = cnp->cn_flags; *vpp = NULL; dvp = ap->a_dvp; if (dvp->v_type != VDIR) return (ENOTDIR); if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) && (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)) return (EROFS); error = vn_dir_check_exec(dvp, cnp); if (error != 0) return (error); error = cache_lookup(dvp, vpp, cnp, NULL, NULL); if (error == 0) return (VOP_CACHEDLOOKUP(dvp, vpp, cnp)); if (error == -1) return (0); return (error); } /* Implementation of the getcwd syscall. */ int sys___getcwd(struct thread *td, struct __getcwd_args *uap) { char *buf, *retbuf; size_t buflen; int error; buflen = uap->buflen; if (__predict_false(buflen < 2)) return (EINVAL); if (buflen > MAXPATHLEN) buflen = MAXPATHLEN; buf = uma_zalloc(namei_zone, M_WAITOK); error = vn_getcwd(buf, &retbuf, &buflen); if (error == 0) error = copyout(retbuf, uap->buf, buflen); uma_zfree(namei_zone, buf); return (error); } int vn_getcwd(char *buf, char **retbuf, size_t *buflen) { struct pwd *pwd; int error; vfs_smr_enter(); pwd = pwd_get_smr(); error = vn_fullpath_any_smr(pwd->pwd_cdir, pwd->pwd_rdir, buf, retbuf, buflen, 0); VFS_SMR_ASSERT_NOT_ENTERED(); if (error < 0) { pwd = pwd_hold(curthread); error = vn_fullpath_any(pwd->pwd_cdir, pwd->pwd_rdir, buf, retbuf, buflen); pwd_drop(pwd); } #ifdef KTRACE if (KTRPOINT(curthread, KTR_NAMEI) && error == 0) ktrnamei(*retbuf); #endif return (error); } static int kern___realpathat(struct thread *td, int fd, const char *path, char *buf, size_t size, int flags, enum uio_seg pathseg) { struct nameidata nd; char *retbuf, *freebuf; int error; if (flags != 0) return (EINVAL); NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | SAVENAME | WANTPARENT | AUDITVNODE1, pathseg, path, fd, &cap_fstat_rights, td); if ((error = namei(&nd)) != 0) return (error); error = vn_fullpath_hardlink(&nd, &retbuf, &freebuf, &size); if (error == 0) { error = copyout(retbuf, buf, size); free(freebuf, M_TEMP); } NDFREE(&nd, 0); return (error); } int sys___realpathat(struct thread *td, struct __realpathat_args *uap) { return (kern___realpathat(td, uap->fd, uap->path, uap->buf, uap->size, uap->flags, UIO_USERSPACE)); } /* * Retrieve the full filesystem path that correspond to a vnode from the name * cache (if available) */ int vn_fullpath(struct vnode *vp, char **retbuf, char **freebuf) { struct pwd *pwd; char *buf; size_t buflen; int error; if (__predict_false(vp == NULL)) return (EINVAL); buflen = MAXPATHLEN; buf = malloc(buflen, M_TEMP, M_WAITOK); vfs_smr_enter(); pwd = pwd_get_smr(); error = vn_fullpath_any_smr(vp, pwd->pwd_rdir, buf, retbuf, &buflen, 0); VFS_SMR_ASSERT_NOT_ENTERED(); if (error < 0) { pwd = pwd_hold(curthread); error = vn_fullpath_any(vp, pwd->pwd_rdir, buf, retbuf, &buflen); pwd_drop(pwd); } if (error == 0) *freebuf = buf; else free(buf, M_TEMP); return (error); } /* * This function is similar to vn_fullpath, but it attempts to lookup the * pathname relative to the global root mount point. This is required for the * auditing sub-system, as audited pathnames must be absolute, relative to the * global root mount point. */ int vn_fullpath_global(struct vnode *vp, char **retbuf, char **freebuf) { char *buf; size_t buflen; int error; if (__predict_false(vp == NULL)) return (EINVAL); buflen = MAXPATHLEN; buf = malloc(buflen, M_TEMP, M_WAITOK); vfs_smr_enter(); error = vn_fullpath_any_smr(vp, rootvnode, buf, retbuf, &buflen, 0); VFS_SMR_ASSERT_NOT_ENTERED(); if (error < 0) { error = vn_fullpath_any(vp, rootvnode, buf, retbuf, &buflen); } if (error == 0) *freebuf = buf; else free(buf, M_TEMP); return (error); } static struct namecache * vn_dd_from_dst(struct vnode *vp) { struct namecache *ncp; cache_assert_vnode_locked(vp); TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst) { if ((ncp->nc_flag & NCF_ISDOTDOT) == 0) return (ncp); } return (NULL); } int vn_vptocnp(struct vnode **vp, char *buf, size_t *buflen) { struct vnode *dvp; struct namecache *ncp; struct mtx *vlp; int error; vlp = VP2VNODELOCK(*vp); mtx_lock(vlp); ncp = (*vp)->v_cache_dd; if (ncp != NULL && (ncp->nc_flag & NCF_ISDOTDOT) == 0) { KASSERT(ncp == vn_dd_from_dst(*vp), ("%s: mismatch for dd entry (%p != %p)", __func__, ncp, vn_dd_from_dst(*vp))); } else { ncp = vn_dd_from_dst(*vp); } if (ncp != NULL) { if (*buflen < ncp->nc_nlen) { mtx_unlock(vlp); vrele(*vp); counter_u64_add(numfullpathfail4, 1); error = ENOMEM; SDT_PROBE3(vfs, namecache, fullpath, return, error, vp, NULL); return (error); } *buflen -= ncp->nc_nlen; memcpy(buf + *buflen, ncp->nc_name, ncp->nc_nlen); SDT_PROBE3(vfs, namecache, fullpath, hit, ncp->nc_dvp, ncp->nc_name, vp); dvp = *vp; *vp = ncp->nc_dvp; vref(*vp); mtx_unlock(vlp); vrele(dvp); return (0); } SDT_PROBE1(vfs, namecache, fullpath, miss, vp); mtx_unlock(vlp); vn_lock(*vp, LK_SHARED | LK_RETRY); error = VOP_VPTOCNP(*vp, &dvp, buf, buflen); vput(*vp); if (error) { counter_u64_add(numfullpathfail2, 1); SDT_PROBE3(vfs, namecache, fullpath, return, error, vp, NULL); return (error); } *vp = dvp; if (VN_IS_DOOMED(dvp)) { /* forced unmount */ vrele(dvp); error = ENOENT; SDT_PROBE3(vfs, namecache, fullpath, return, error, vp, NULL); return (error); } /* * *vp has its use count incremented still. */ return (0); } /* * Resolve a directory to a pathname. * * The name of the directory can always be found in the namecache or fetched * from the filesystem. There is also guaranteed to be only one parent, meaning * we can just follow vnodes up until we find the root. * * The vnode must be referenced. */ static int vn_fullpath_dir(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf, size_t *len, size_t addend) { #ifdef KDTRACE_HOOKS struct vnode *startvp = vp; #endif struct vnode *vp1; size_t buflen; int error; bool slash_prefixed; VNPASS(vp->v_type == VDIR || VN_IS_DOOMED(vp), vp); VNPASS(vp->v_usecount > 0, vp); buflen = *len; slash_prefixed = true; if (addend == 0) { MPASS(*len >= 2); buflen--; buf[buflen] = '\0'; slash_prefixed = false; } error = 0; SDT_PROBE1(vfs, namecache, fullpath, entry, vp); counter_u64_add(numfullpathcalls, 1); while (vp != rdir && vp != rootvnode) { /* * The vp vnode must be already fully constructed, * since it is either found in namecache or obtained * from VOP_VPTOCNP(). We may test for VV_ROOT safely * without obtaining the vnode lock. */ if ((vp->v_vflag & VV_ROOT) != 0) { vn_lock(vp, LK_RETRY | LK_SHARED); /* * With the vnode locked, check for races with * unmount, forced or not. Note that we * already verified that vp is not equal to * the root vnode, which means that * mnt_vnodecovered can be NULL only for the * case of unmount. */ if (VN_IS_DOOMED(vp) || (vp1 = vp->v_mount->mnt_vnodecovered) == NULL || vp1->v_mountedhere != vp->v_mount) { vput(vp); error = ENOENT; SDT_PROBE3(vfs, namecache, fullpath, return, error, vp, NULL); break; } vref(vp1); vput(vp); vp = vp1; continue; } if (vp->v_type != VDIR) { vrele(vp); counter_u64_add(numfullpathfail1, 1); error = ENOTDIR; SDT_PROBE3(vfs, namecache, fullpath, return, error, vp, NULL); break; } error = vn_vptocnp(&vp, buf, &buflen); if (error) break; if (buflen == 0) { vrele(vp); error = ENOMEM; SDT_PROBE3(vfs, namecache, fullpath, return, error, startvp, NULL); break; } buf[--buflen] = '/'; slash_prefixed = true; } if (error) return (error); if (!slash_prefixed) { if (buflen == 0) { vrele(vp); counter_u64_add(numfullpathfail4, 1); SDT_PROBE3(vfs, namecache, fullpath, return, ENOMEM, startvp, NULL); return (ENOMEM); } buf[--buflen] = '/'; } counter_u64_add(numfullpathfound, 1); vrele(vp); *retbuf = buf + buflen; SDT_PROBE3(vfs, namecache, fullpath, return, 0, startvp, *retbuf); *len -= buflen; *len += addend; return (0); } /* * Resolve an arbitrary vnode to a pathname. * * Note 2 caveats: * - hardlinks are not tracked, thus if the vnode is not a directory this can * resolve to a different path than the one used to find it * - namecache is not mandatory, meaning names are not guaranteed to be added * (in which case resolving fails) */ static void __inline cache_rev_failed_impl(int *reason, int line) { *reason = line; } #define cache_rev_failed(var) cache_rev_failed_impl((var), __LINE__) static int vn_fullpath_any_smr(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf, size_t *buflen, size_t addend) { #ifdef KDTRACE_HOOKS struct vnode *startvp = vp; #endif struct vnode *tvp; struct mount *mp; struct namecache *ncp; size_t orig_buflen; int reason; int error; #ifdef KDTRACE_HOOKS int i; #endif seqc_t vp_seqc, tvp_seqc; u_char nc_flag; VFS_SMR_ASSERT_ENTERED(); if (!atomic_load_char(&cache_fast_lookup_enabled)) { vfs_smr_exit(); return (-1); } orig_buflen = *buflen; if (addend == 0) { MPASS(*buflen >= 2); *buflen -= 1; buf[*buflen] = '\0'; } if (vp == rdir || vp == rootvnode) { if (addend == 0) { *buflen -= 1; buf[*buflen] = '/'; } goto out_ok; } #ifdef KDTRACE_HOOKS i = 0; #endif error = -1; ncp = NULL; /* for sdt probe down below */ vp_seqc = vn_seqc_read_any(vp); if (seqc_in_modify(vp_seqc)) { cache_rev_failed(&reason); goto out_abort; } for (;;) { #ifdef KDTRACE_HOOKS i++; #endif if ((vp->v_vflag & VV_ROOT) != 0) { mp = atomic_load_ptr(&vp->v_mount); if (mp == NULL) { cache_rev_failed(&reason); goto out_abort; } tvp = atomic_load_ptr(&mp->mnt_vnodecovered); tvp_seqc = vn_seqc_read_any(tvp); if (seqc_in_modify(tvp_seqc)) { cache_rev_failed(&reason); goto out_abort; } if (!vn_seqc_consistent(vp, vp_seqc)) { cache_rev_failed(&reason); goto out_abort; } vp = tvp; vp_seqc = tvp_seqc; continue; } ncp = atomic_load_consume_ptr(&vp->v_cache_dd); if (ncp == NULL) { cache_rev_failed(&reason); goto out_abort; } nc_flag = atomic_load_char(&ncp->nc_flag); if ((nc_flag & NCF_ISDOTDOT) != 0) { cache_rev_failed(&reason); goto out_abort; } if (ncp->nc_nlen >= *buflen) { cache_rev_failed(&reason); error = ENOMEM; goto out_abort; } *buflen -= ncp->nc_nlen; memcpy(buf + *buflen, ncp->nc_name, ncp->nc_nlen); *buflen -= 1; buf[*buflen] = '/'; tvp = ncp->nc_dvp; tvp_seqc = vn_seqc_read_any(tvp); if (seqc_in_modify(tvp_seqc)) { cache_rev_failed(&reason); goto out_abort; } if (!vn_seqc_consistent(vp, vp_seqc)) { cache_rev_failed(&reason); goto out_abort; } /* * Acquire fence provided by vn_seqc_read_any above. */ if (__predict_false(atomic_load_ptr(&vp->v_cache_dd) != ncp)) { cache_rev_failed(&reason); goto out_abort; } if (!cache_ncp_canuse(ncp)) { cache_rev_failed(&reason); goto out_abort; } vp = tvp; vp_seqc = tvp_seqc; if (vp == rdir || vp == rootvnode) break; } out_ok: vfs_smr_exit(); *retbuf = buf + *buflen; *buflen = orig_buflen - *buflen + addend; SDT_PROBE2(vfs, namecache, fullpath_smr, hit, startvp, *retbuf); return (0); out_abort: *buflen = orig_buflen; SDT_PROBE4(vfs, namecache, fullpath_smr, miss, startvp, ncp, reason, i); vfs_smr_exit(); return (error); } static int vn_fullpath_any(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf, size_t *buflen) { size_t orig_buflen, addend; int error; if (*buflen < 2) return (EINVAL); orig_buflen = *buflen; vref(vp); addend = 0; if (vp->v_type != VDIR) { *buflen -= 1; buf[*buflen] = '\0'; error = vn_vptocnp(&vp, buf, buflen); if (error) return (error); if (*buflen == 0) { vrele(vp); return (ENOMEM); } *buflen -= 1; buf[*buflen] = '/'; addend = orig_buflen - *buflen; } return (vn_fullpath_dir(vp, rdir, buf, retbuf, buflen, addend)); } /* * Resolve an arbitrary vnode to a pathname (taking care of hardlinks). * * Since the namecache does not track hardlinks, the caller is expected to first * look up the target vnode with SAVENAME | WANTPARENT flags passed to namei. * * Then we have 2 cases: * - if the found vnode is a directory, the path can be constructed just by * following names up the chain * - otherwise we populate the buffer with the saved name and start resolving * from the parent */ static int vn_fullpath_hardlink(struct nameidata *ndp, char **retbuf, char **freebuf, size_t *buflen) { char *buf, *tmpbuf; struct pwd *pwd; struct componentname *cnp; struct vnode *vp; size_t addend; int error; enum vtype type; if (*buflen < 2) return (EINVAL); if (*buflen > MAXPATHLEN) *buflen = MAXPATHLEN; buf = malloc(*buflen, M_TEMP, M_WAITOK); addend = 0; vp = ndp->ni_vp; /* * Check for VBAD to work around the vp_crossmp bug in lookup(). * * For example consider tmpfs on /tmp and realpath /tmp. ni_vp will be * set to mount point's root vnode while ni_dvp will be vp_crossmp. * If the type is VDIR (like in this very case) we can skip looking * at ni_dvp in the first place. However, since vnodes get passed here * unlocked the target may transition to doomed state (type == VBAD) * before we get to evaluate the condition. If this happens, we will * populate part of the buffer and descend to vn_fullpath_dir with * vp == vp_crossmp. Prevent the problem by checking for VBAD. * * This should be atomic_load(&vp->v_type) but it is illegal to take * an address of a bit field, even if said field is sized to char. * Work around the problem by reading the value into a full-sized enum * and then re-reading it with atomic_load which will still prevent * the compiler from re-reading down the road. */ type = vp->v_type; type = atomic_load_int(&type); if (type == VBAD) { error = ENOENT; goto out_bad; } if (type != VDIR) { cnp = &ndp->ni_cnd; addend = cnp->cn_namelen + 2; if (*buflen < addend) { error = ENOMEM; goto out_bad; } *buflen -= addend; tmpbuf = buf + *buflen; tmpbuf[0] = '/'; memcpy(&tmpbuf[1], cnp->cn_nameptr, cnp->cn_namelen); tmpbuf[addend - 1] = '\0'; vp = ndp->ni_dvp; } vfs_smr_enter(); pwd = pwd_get_smr(); error = vn_fullpath_any_smr(vp, pwd->pwd_rdir, buf, retbuf, buflen, addend); VFS_SMR_ASSERT_NOT_ENTERED(); if (error < 0) { pwd = pwd_hold(curthread); vref(vp); error = vn_fullpath_dir(vp, pwd->pwd_rdir, buf, retbuf, buflen, addend); pwd_drop(pwd); } if (error != 0) goto out_bad; *freebuf = buf; return (0); out_bad: free(buf, M_TEMP); return (error); } struct vnode * vn_dir_dd_ino(struct vnode *vp) { struct namecache *ncp; struct vnode *ddvp; struct mtx *vlp; enum vgetstate vs; ASSERT_VOP_LOCKED(vp, "vn_dir_dd_ino"); vlp = VP2VNODELOCK(vp); mtx_lock(vlp); TAILQ_FOREACH(ncp, &(vp->v_cache_dst), nc_dst) { if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) continue; ddvp = ncp->nc_dvp; vs = vget_prep(ddvp); mtx_unlock(vlp); if (vget_finish(ddvp, LK_SHARED | LK_NOWAIT, vs)) return (NULL); return (ddvp); } mtx_unlock(vlp); return (NULL); } int vn_commname(struct vnode *vp, char *buf, u_int buflen) { struct namecache *ncp; struct mtx *vlp; int l; vlp = VP2VNODELOCK(vp); mtx_lock(vlp); TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst) if ((ncp->nc_flag & NCF_ISDOTDOT) == 0) break; if (ncp == NULL) { mtx_unlock(vlp); return (ENOENT); } l = min(ncp->nc_nlen, buflen - 1); memcpy(buf, ncp->nc_name, l); mtx_unlock(vlp); buf[l] = '\0'; return (0); } /* * This function updates path string to vnode's full global path * and checks the size of the new path string against the pathlen argument. * * Requires a locked, referenced vnode. * Vnode is re-locked on success or ENODEV, otherwise unlocked. * * If vp is a directory, the call to vn_fullpath_global() always succeeds * because it falls back to the ".." lookup if the namecache lookup fails. */ int vn_path_to_global_path(struct thread *td, struct vnode *vp, char *path, u_int pathlen) { struct nameidata nd; struct vnode *vp1; char *rpath, *fbuf; int error; ASSERT_VOP_ELOCKED(vp, __func__); /* Construct global filesystem path from vp. */ VOP_UNLOCK(vp); error = vn_fullpath_global(vp, &rpath, &fbuf); if (error != 0) { vrele(vp); return (error); } if (strlen(rpath) >= pathlen) { vrele(vp); error = ENAMETOOLONG; goto out; } /* * Re-lookup the vnode by path to detect a possible rename. * As a side effect, the vnode is relocked. * If vnode was renamed, return ENOENT. */ NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1, UIO_SYSSPACE, path, td); error = namei(&nd); if (error != 0) { vrele(vp); goto out; } NDFREE(&nd, NDF_ONLY_PNBUF); vp1 = nd.ni_vp; vrele(vp); if (vp1 == vp) strcpy(path, rpath); else { vput(vp1); error = ENOENT; } out: free(fbuf, M_TEMP); return (error); } #ifdef DDB static void db_print_vpath(struct vnode *vp) { while (vp != NULL) { db_printf("%p: ", vp); if (vp == rootvnode) { db_printf("/"); vp = NULL; } else { if (vp->v_vflag & VV_ROOT) { db_printf(""); vp = vp->v_mount->mnt_vnodecovered; } else { struct namecache *ncp; char *ncn; int i; ncp = TAILQ_FIRST(&vp->v_cache_dst); if (ncp != NULL) { ncn = ncp->nc_name; for (i = 0; i < ncp->nc_nlen; i++) db_printf("%c", *ncn++); vp = ncp->nc_dvp; } else { vp = NULL; } } } db_printf("\n"); } return; } DB_SHOW_COMMAND(vpath, db_show_vpath) { struct vnode *vp; if (!have_addr) { db_printf("usage: show vpath \n"); return; } vp = (struct vnode *)addr; db_print_vpath(vp); } #endif static int cache_fast_lookup = 1; #define CACHE_FPL_FAILED -2020 void cache_fast_lookup_enabled_recalc(void) { int lookup_flag; int mac_on; #ifdef MAC mac_on = mac_vnode_check_lookup_enabled(); mac_on |= mac_vnode_check_readlink_enabled(); #else mac_on = 0; #endif lookup_flag = atomic_load_int(&cache_fast_lookup); if (lookup_flag && !mac_on) { atomic_store_char(&cache_fast_lookup_enabled, true); } else { atomic_store_char(&cache_fast_lookup_enabled, false); } } static int syscal_vfs_cache_fast_lookup(SYSCTL_HANDLER_ARGS) { int error, old; old = atomic_load_int(&cache_fast_lookup); error = sysctl_handle_int(oidp, arg1, arg2, req); if (error == 0 && req->newptr && old != atomic_load_int(&cache_fast_lookup)) cache_fast_lookup_enabled_recalc(); return (error); } SYSCTL_PROC(_vfs, OID_AUTO, cache_fast_lookup, CTLTYPE_INT|CTLFLAG_RW|CTLFLAG_MPSAFE, &cache_fast_lookup, 0, syscal_vfs_cache_fast_lookup, "IU", ""); /* * Components of nameidata (or objects it can point to) which may * need restoring in case fast path lookup fails. */ struct nameidata_outer { size_t ni_pathlen; int cn_flags; }; struct nameidata_saved { #ifdef INVARIANTS char *cn_nameptr; size_t ni_pathlen; #endif }; #ifdef INVARIANTS struct cache_fpl_debug { size_t ni_pathlen; }; #endif struct cache_fpl { struct nameidata *ndp; struct componentname *cnp; char *nulchar; struct vnode *dvp; struct vnode *tvp; seqc_t dvp_seqc; seqc_t tvp_seqc; uint32_t hash; struct nameidata_saved snd; struct nameidata_outer snd_outer; int line; enum cache_fpl_status status:8; bool in_smr; bool fsearch; bool savename; struct pwd **pwd; #ifdef INVARIANTS struct cache_fpl_debug debug; #endif }; static bool cache_fplookup_mp_supported(struct mount *mp); static bool cache_fplookup_is_mp(struct cache_fpl *fpl); static int cache_fplookup_cross_mount(struct cache_fpl *fpl); static int cache_fplookup_partial_setup(struct cache_fpl *fpl); static int cache_fplookup_skip_slashes(struct cache_fpl *fpl); static int cache_fplookup_trailingslash(struct cache_fpl *fpl); static void cache_fpl_pathlen_dec(struct cache_fpl *fpl); static void cache_fpl_pathlen_inc(struct cache_fpl *fpl); static void cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n); static void cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n); static void cache_fpl_cleanup_cnp(struct componentname *cnp) { uma_zfree(namei_zone, cnp->cn_pnbuf); #ifdef DIAGNOSTIC cnp->cn_pnbuf = NULL; cnp->cn_nameptr = NULL; #endif } static struct vnode * cache_fpl_handle_root(struct cache_fpl *fpl) { struct nameidata *ndp; struct componentname *cnp; ndp = fpl->ndp; cnp = fpl->cnp; MPASS(*(cnp->cn_nameptr) == '/'); cnp->cn_nameptr++; cache_fpl_pathlen_dec(fpl); if (__predict_false(*(cnp->cn_nameptr) == '/')) { do { cnp->cn_nameptr++; cache_fpl_pathlen_dec(fpl); } while (*(cnp->cn_nameptr) == '/'); } return (ndp->ni_rootdir); } static void cache_fpl_checkpoint_outer(struct cache_fpl *fpl) { fpl->snd_outer.ni_pathlen = fpl->ndp->ni_pathlen; fpl->snd_outer.cn_flags = fpl->ndp->ni_cnd.cn_flags; } static void cache_fpl_checkpoint(struct cache_fpl *fpl) { #ifdef INVARIANTS fpl->snd.cn_nameptr = fpl->ndp->ni_cnd.cn_nameptr; fpl->snd.ni_pathlen = fpl->debug.ni_pathlen; #endif } static void cache_fpl_restore_partial(struct cache_fpl *fpl) { fpl->ndp->ni_cnd.cn_flags = fpl->snd_outer.cn_flags; #ifdef INVARIANTS fpl->debug.ni_pathlen = fpl->snd.ni_pathlen; #endif } static void cache_fpl_restore_abort(struct cache_fpl *fpl) { cache_fpl_restore_partial(fpl); /* * It is 0 on entry by API contract. */ fpl->ndp->ni_resflags = 0; fpl->ndp->ni_cnd.cn_nameptr = fpl->ndp->ni_cnd.cn_pnbuf; fpl->ndp->ni_pathlen = fpl->snd_outer.ni_pathlen; } #ifdef INVARIANTS #define cache_fpl_smr_assert_entered(fpl) ({ \ struct cache_fpl *_fpl = (fpl); \ MPASS(_fpl->in_smr == true); \ VFS_SMR_ASSERT_ENTERED(); \ }) #define cache_fpl_smr_assert_not_entered(fpl) ({ \ struct cache_fpl *_fpl = (fpl); \ MPASS(_fpl->in_smr == false); \ VFS_SMR_ASSERT_NOT_ENTERED(); \ }) static void cache_fpl_assert_status(struct cache_fpl *fpl) { switch (fpl->status) { case CACHE_FPL_STATUS_UNSET: __assert_unreachable(); break; case CACHE_FPL_STATUS_DESTROYED: case CACHE_FPL_STATUS_ABORTED: case CACHE_FPL_STATUS_PARTIAL: case CACHE_FPL_STATUS_HANDLED: break; } } #else #define cache_fpl_smr_assert_entered(fpl) do { } while (0) #define cache_fpl_smr_assert_not_entered(fpl) do { } while (0) #define cache_fpl_assert_status(fpl) do { } while (0) #endif #define cache_fpl_smr_enter_initial(fpl) ({ \ struct cache_fpl *_fpl = (fpl); \ vfs_smr_enter(); \ _fpl->in_smr = true; \ }) #define cache_fpl_smr_enter(fpl) ({ \ struct cache_fpl *_fpl = (fpl); \ MPASS(_fpl->in_smr == false); \ vfs_smr_enter(); \ _fpl->in_smr = true; \ }) #define cache_fpl_smr_exit(fpl) ({ \ struct cache_fpl *_fpl = (fpl); \ MPASS(_fpl->in_smr == true); \ vfs_smr_exit(); \ _fpl->in_smr = false; \ }) static int cache_fpl_aborted_early_impl(struct cache_fpl *fpl, int line) { if (fpl->status != CACHE_FPL_STATUS_UNSET) { KASSERT(fpl->status == CACHE_FPL_STATUS_PARTIAL, ("%s: converting to abort from %d at %d, set at %d\n", __func__, fpl->status, line, fpl->line)); } cache_fpl_smr_assert_not_entered(fpl); fpl->status = CACHE_FPL_STATUS_ABORTED; fpl->line = line; return (CACHE_FPL_FAILED); } #define cache_fpl_aborted_early(x) cache_fpl_aborted_early_impl((x), __LINE__) static int __noinline cache_fpl_aborted_impl(struct cache_fpl *fpl, int line) { struct nameidata *ndp; struct componentname *cnp; ndp = fpl->ndp; cnp = fpl->cnp; if (fpl->status != CACHE_FPL_STATUS_UNSET) { KASSERT(fpl->status == CACHE_FPL_STATUS_PARTIAL, ("%s: converting to abort from %d at %d, set at %d\n", __func__, fpl->status, line, fpl->line)); } fpl->status = CACHE_FPL_STATUS_ABORTED; fpl->line = line; if (fpl->in_smr) cache_fpl_smr_exit(fpl); cache_fpl_restore_abort(fpl); /* * Resolving symlinks overwrites data passed by the caller. * Let namei know. */ if (ndp->ni_loopcnt > 0) { fpl->status = CACHE_FPL_STATUS_DESTROYED; cache_fpl_cleanup_cnp(cnp); } return (CACHE_FPL_FAILED); } #define cache_fpl_aborted(x) cache_fpl_aborted_impl((x), __LINE__) static int __noinline cache_fpl_partial_impl(struct cache_fpl *fpl, int line) { KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET, ("%s: setting to partial at %d, but already set to %d at %d\n", __func__, line, fpl->status, fpl->line)); cache_fpl_smr_assert_entered(fpl); fpl->status = CACHE_FPL_STATUS_PARTIAL; fpl->line = line; return (cache_fplookup_partial_setup(fpl)); } #define cache_fpl_partial(x) cache_fpl_partial_impl((x), __LINE__) static int cache_fpl_handled_impl(struct cache_fpl *fpl, int line) { KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET, ("%s: setting to handled at %d, but already set to %d at %d\n", __func__, line, fpl->status, fpl->line)); cache_fpl_smr_assert_not_entered(fpl); fpl->status = CACHE_FPL_STATUS_HANDLED; fpl->line = line; return (0); } #define cache_fpl_handled(x) cache_fpl_handled_impl((x), __LINE__) static int cache_fpl_handled_error_impl(struct cache_fpl *fpl, int error, int line) { KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET, ("%s: setting to handled at %d, but already set to %d at %d\n", __func__, line, fpl->status, fpl->line)); MPASS(error != 0); MPASS(error != CACHE_FPL_FAILED); cache_fpl_smr_assert_not_entered(fpl); fpl->status = CACHE_FPL_STATUS_HANDLED; fpl->line = line; fpl->dvp = NULL; fpl->tvp = NULL; fpl->savename = false; return (error); } #define cache_fpl_handled_error(x, e) cache_fpl_handled_error_impl((x), (e), __LINE__) static bool cache_fpl_terminated(struct cache_fpl *fpl) { return (fpl->status != CACHE_FPL_STATUS_UNSET); } #define CACHE_FPL_SUPPORTED_CN_FLAGS \ (NC_NOMAKEENTRY | NC_KEEPPOSENTRY | LOCKLEAF | LOCKPARENT | WANTPARENT | \ FAILIFEXISTS | FOLLOW | LOCKSHARED | SAVENAME | SAVESTART | WILLBEDIR | \ ISOPEN | NOMACCHECK | AUDITVNODE1 | AUDITVNODE2 | NOCAPCHECK | OPENREAD | \ OPENWRITE) #define CACHE_FPL_INTERNAL_CN_FLAGS \ (ISDOTDOT | MAKEENTRY | ISLASTCN) _Static_assert((CACHE_FPL_SUPPORTED_CN_FLAGS & CACHE_FPL_INTERNAL_CN_FLAGS) == 0, "supported and internal flags overlap"); static bool cache_fpl_islastcn(struct nameidata *ndp) { return (*ndp->ni_next == 0); } static bool cache_fpl_istrailingslash(struct cache_fpl *fpl) { return (*(fpl->nulchar - 1) == '/'); } static bool cache_fpl_isdotdot(struct componentname *cnp) { if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.' && cnp->cn_nameptr[0] == '.') return (true); return (false); } static bool cache_can_fplookup(struct cache_fpl *fpl) { struct nameidata *ndp; struct componentname *cnp; struct thread *td; ndp = fpl->ndp; cnp = fpl->cnp; td = cnp->cn_thread; if (!atomic_load_char(&cache_fast_lookup_enabled)) { cache_fpl_aborted_early(fpl); return (false); } if ((cnp->cn_flags & ~CACHE_FPL_SUPPORTED_CN_FLAGS) != 0) { cache_fpl_aborted_early(fpl); return (false); } if (IN_CAPABILITY_MODE(td)) { cache_fpl_aborted_early(fpl); return (false); } if (AUDITING_TD(td)) { cache_fpl_aborted_early(fpl); return (false); } if (ndp->ni_startdir != NULL) { cache_fpl_aborted_early(fpl); return (false); } return (true); } static int cache_fplookup_dirfd(struct cache_fpl *fpl, struct vnode **vpp) { struct nameidata *ndp; int error; bool fsearch; ndp = fpl->ndp; error = fgetvp_lookup_smr(ndp->ni_dirfd, ndp, vpp, &fsearch); if (__predict_false(error != 0)) { return (cache_fpl_aborted(fpl)); } fpl->fsearch = fsearch; return (0); } static int __noinline cache_fplookup_negative_promote(struct cache_fpl *fpl, struct namecache *oncp, uint32_t hash) { struct componentname *cnp; struct vnode *dvp; cnp = fpl->cnp; dvp = fpl->dvp; cache_fpl_smr_exit(fpl); if (cache_neg_promote_cond(dvp, cnp, oncp, hash)) return (cache_fpl_handled_error(fpl, ENOENT)); else return (cache_fpl_aborted(fpl)); } /* * The target vnode is not supported, prepare for the slow path to take over. */ static int __noinline cache_fplookup_partial_setup(struct cache_fpl *fpl) { struct nameidata *ndp; struct componentname *cnp; enum vgetstate dvs; struct vnode *dvp; struct pwd *pwd; seqc_t dvp_seqc; ndp = fpl->ndp; cnp = fpl->cnp; pwd = *(fpl->pwd); dvp = fpl->dvp; dvp_seqc = fpl->dvp_seqc; if (!pwd_hold_smr(pwd)) { return (cache_fpl_aborted(fpl)); } /* * Note that seqc is checked before the vnode is locked, so by * the time regular lookup gets to it it may have moved. * * Ultimately this does not affect correctness, any lookup errors * are userspace racing with itself. It is guaranteed that any * path which ultimately gets found could also have been found * by regular lookup going all the way in absence of concurrent * modifications. */ dvs = vget_prep_smr(dvp); cache_fpl_smr_exit(fpl); if (__predict_false(dvs == VGET_NONE)) { pwd_drop(pwd); return (cache_fpl_aborted(fpl)); } vget_finish_ref(dvp, dvs); if (!vn_seqc_consistent(dvp, dvp_seqc)) { vrele(dvp); pwd_drop(pwd); return (cache_fpl_aborted(fpl)); } cache_fpl_restore_partial(fpl); #ifdef INVARIANTS if (cnp->cn_nameptr != fpl->snd.cn_nameptr) { panic("%s: cn_nameptr mismatch (%p != %p) full [%s]\n", __func__, cnp->cn_nameptr, fpl->snd.cn_nameptr, cnp->cn_pnbuf); } #endif ndp->ni_startdir = dvp; cnp->cn_flags |= MAKEENTRY; if (cache_fpl_islastcn(ndp)) cnp->cn_flags |= ISLASTCN; if (cache_fpl_isdotdot(cnp)) cnp->cn_flags |= ISDOTDOT; /* * Skip potential extra slashes parsing did not take care of. * cache_fplookup_skip_slashes explains the mechanism. */ if (__predict_false(*(cnp->cn_nameptr) == '/')) { do { cnp->cn_nameptr++; cache_fpl_pathlen_dec(fpl); } while (*(cnp->cn_nameptr) == '/'); } ndp->ni_pathlen = fpl->nulchar - cnp->cn_nameptr + 1; #ifdef INVARIANTS if (ndp->ni_pathlen != fpl->debug.ni_pathlen) { panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n", __func__, ndp->ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar, cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf); } #endif return (0); } static int cache_fplookup_final_child(struct cache_fpl *fpl, enum vgetstate tvs) { struct componentname *cnp; struct vnode *tvp; seqc_t tvp_seqc; int error, lkflags; cnp = fpl->cnp; tvp = fpl->tvp; tvp_seqc = fpl->tvp_seqc; if ((cnp->cn_flags & LOCKLEAF) != 0) { lkflags = LK_SHARED; if ((cnp->cn_flags & LOCKSHARED) == 0) lkflags = LK_EXCLUSIVE; error = vget_finish(tvp, lkflags, tvs); if (__predict_false(error != 0)) { return (cache_fpl_aborted(fpl)); } } else { vget_finish_ref(tvp, tvs); } if (!vn_seqc_consistent(tvp, tvp_seqc)) { if ((cnp->cn_flags & LOCKLEAF) != 0) vput(tvp); else vrele(tvp); return (cache_fpl_aborted(fpl)); } return (cache_fpl_handled(fpl)); } /* * They want to possibly modify the state of the namecache. */ static int __noinline cache_fplookup_final_modifying(struct cache_fpl *fpl) { struct nameidata *ndp; struct componentname *cnp; enum vgetstate dvs; struct vnode *dvp, *tvp; struct mount *mp; seqc_t dvp_seqc; int error; bool docache; ndp = fpl->ndp; cnp = fpl->cnp; dvp = fpl->dvp; dvp_seqc = fpl->dvp_seqc; MPASS(*(cnp->cn_nameptr) != '/'); MPASS(cache_fpl_islastcn(ndp)); if ((cnp->cn_flags & LOCKPARENT) == 0) MPASS((cnp->cn_flags & WANTPARENT) != 0); MPASS((cnp->cn_flags & TRAILINGSLASH) == 0); MPASS(cnp->cn_nameiop == CREATE || cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME); MPASS((cnp->cn_flags & MAKEENTRY) == 0); MPASS((cnp->cn_flags & ISDOTDOT) == 0); docache = (cnp->cn_flags & NOCACHE) ^ NOCACHE; if (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME) docache = false; /* * Regular lookup nulifies the slash, which we don't do here. * Don't take chances with filesystem routines seeing it for * the last entry. */ if (cache_fpl_istrailingslash(fpl)) { return (cache_fpl_partial(fpl)); } mp = atomic_load_ptr(&dvp->v_mount); if (__predict_false(mp == NULL)) { return (cache_fpl_aborted(fpl)); } if (__predict_false(mp->mnt_flag & MNT_RDONLY)) { cache_fpl_smr_exit(fpl); /* * Original code keeps not checking for CREATE which * might be a bug. For now let the old lookup decide. */ if (cnp->cn_nameiop == CREATE) { return (cache_fpl_aborted(fpl)); } return (cache_fpl_handled_error(fpl, EROFS)); } if (fpl->tvp != NULL && (cnp->cn_flags & FAILIFEXISTS) != 0) { cache_fpl_smr_exit(fpl); return (cache_fpl_handled_error(fpl, EEXIST)); } /* * Secure access to dvp; check cache_fplookup_partial_setup for * reasoning. * * XXX At least UFS requires its lookup routine to be called for * the last path component, which leads to some level of complication * and inefficiency: * - the target routine always locks the target vnode, but our caller * may not need it locked * - some of the VOP machinery asserts that the parent is locked, which * once more may be not required * * TODO: add a flag for filesystems which don't need this. */ dvs = vget_prep_smr(dvp); cache_fpl_smr_exit(fpl); if (__predict_false(dvs == VGET_NONE)) { return (cache_fpl_aborted(fpl)); } vget_finish_ref(dvp, dvs); if (!vn_seqc_consistent(dvp, dvp_seqc)) { vrele(dvp); return (cache_fpl_aborted(fpl)); } error = vn_lock(dvp, LK_EXCLUSIVE); if (__predict_false(error != 0)) { vrele(dvp); return (cache_fpl_aborted(fpl)); } tvp = NULL; cnp->cn_flags |= ISLASTCN; if (docache) cnp->cn_flags |= MAKEENTRY; if (cache_fpl_isdotdot(cnp)) cnp->cn_flags |= ISDOTDOT; cnp->cn_lkflags = LK_EXCLUSIVE; error = VOP_LOOKUP(dvp, &tvp, cnp); switch (error) { case EJUSTRETURN: case 0: break; case ENOTDIR: case ENOENT: vput(dvp); return (cache_fpl_handled_error(fpl, error)); default: vput(dvp); return (cache_fpl_aborted(fpl)); } fpl->tvp = tvp; fpl->savename = (cnp->cn_flags & SAVENAME) != 0; if (tvp == NULL) { if ((cnp->cn_flags & SAVESTART) != 0) { ndp->ni_startdir = dvp; vrefact(ndp->ni_startdir); cnp->cn_flags |= SAVENAME; fpl->savename = true; } MPASS(error == EJUSTRETURN); if ((cnp->cn_flags & LOCKPARENT) == 0) { VOP_UNLOCK(dvp); } return (cache_fpl_handled(fpl)); } /* * There are very hairy corner cases concerning various flag combinations * and locking state. In particular here we only hold one lock instead of * two. * * Skip the complexity as it is of no significance for normal workloads. */ if (__predict_false(tvp == dvp)) { vput(dvp); vrele(tvp); return (cache_fpl_aborted(fpl)); } /* * If they want the symlink itself we are fine, but if they want to * follow it regular lookup has to be engaged. */ if (tvp->v_type == VLNK) { if ((cnp->cn_flags & FOLLOW) != 0) { vput(dvp); vput(tvp); return (cache_fpl_aborted(fpl)); } } /* * Since we expect this to be the terminal vnode it should almost never * be a mount point. */ if (__predict_false(cache_fplookup_is_mp(fpl))) { vput(dvp); vput(tvp); return (cache_fpl_aborted(fpl)); } if ((cnp->cn_flags & FAILIFEXISTS) != 0) { vput(dvp); vput(tvp); return (cache_fpl_handled_error(fpl, EEXIST)); } if ((cnp->cn_flags & LOCKLEAF) == 0) { VOP_UNLOCK(tvp); } if ((cnp->cn_flags & LOCKPARENT) == 0) { VOP_UNLOCK(dvp); } if ((cnp->cn_flags & SAVESTART) != 0) { ndp->ni_startdir = dvp; vrefact(ndp->ni_startdir); cnp->cn_flags |= SAVENAME; fpl->savename = true; } return (cache_fpl_handled(fpl)); } static int __noinline cache_fplookup_modifying(struct cache_fpl *fpl) { struct nameidata *ndp; ndp = fpl->ndp; if (!cache_fpl_islastcn(ndp)) { return (cache_fpl_partial(fpl)); } return (cache_fplookup_final_modifying(fpl)); } static int __noinline cache_fplookup_final_withparent(struct cache_fpl *fpl) { struct componentname *cnp; enum vgetstate dvs, tvs; struct vnode *dvp, *tvp; seqc_t dvp_seqc; int error; cnp = fpl->cnp; dvp = fpl->dvp; dvp_seqc = fpl->dvp_seqc; tvp = fpl->tvp; MPASS((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0); /* * This is less efficient than it can be for simplicity. */ dvs = vget_prep_smr(dvp); if (__predict_false(dvs == VGET_NONE)) { return (cache_fpl_aborted(fpl)); } tvs = vget_prep_smr(tvp); if (__predict_false(tvs == VGET_NONE)) { cache_fpl_smr_exit(fpl); vget_abort(dvp, dvs); return (cache_fpl_aborted(fpl)); } cache_fpl_smr_exit(fpl); if ((cnp->cn_flags & LOCKPARENT) != 0) { error = vget_finish(dvp, LK_EXCLUSIVE, dvs); if (__predict_false(error != 0)) { vget_abort(tvp, tvs); return (cache_fpl_aborted(fpl)); } } else { vget_finish_ref(dvp, dvs); } if (!vn_seqc_consistent(dvp, dvp_seqc)) { vget_abort(tvp, tvs); if ((cnp->cn_flags & LOCKPARENT) != 0) vput(dvp); else vrele(dvp); return (cache_fpl_aborted(fpl)); } error = cache_fplookup_final_child(fpl, tvs); if (__predict_false(error != 0)) { MPASS(fpl->status == CACHE_FPL_STATUS_ABORTED || fpl->status == CACHE_FPL_STATUS_DESTROYED); if ((cnp->cn_flags & LOCKPARENT) != 0) vput(dvp); else vrele(dvp); return (error); } MPASS(fpl->status == CACHE_FPL_STATUS_HANDLED); return (0); } static int cache_fplookup_final(struct cache_fpl *fpl) { struct componentname *cnp; enum vgetstate tvs; struct vnode *dvp, *tvp; seqc_t dvp_seqc; cnp = fpl->cnp; dvp = fpl->dvp; dvp_seqc = fpl->dvp_seqc; tvp = fpl->tvp; MPASS(*(cnp->cn_nameptr) != '/'); if (cnp->cn_nameiop != LOOKUP) { return (cache_fplookup_final_modifying(fpl)); } if ((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0) return (cache_fplookup_final_withparent(fpl)); tvs = vget_prep_smr(tvp); if (__predict_false(tvs == VGET_NONE)) { return (cache_fpl_partial(fpl)); } if (!vn_seqc_consistent(dvp, dvp_seqc)) { cache_fpl_smr_exit(fpl); vget_abort(tvp, tvs); return (cache_fpl_aborted(fpl)); } cache_fpl_smr_exit(fpl); return (cache_fplookup_final_child(fpl, tvs)); } /* * Comment from locked lookup: * Check for degenerate name (e.g. / or "") which is a way of talking about a * directory, e.g. like "/." or ".". */ static int __noinline cache_fplookup_degenerate(struct cache_fpl *fpl) { struct componentname *cnp; struct vnode *dvp; enum vgetstate dvs; int error, lkflags; #ifdef INVARIANTS char *cp; #endif fpl->tvp = fpl->dvp; fpl->tvp_seqc = fpl->dvp_seqc; cnp = fpl->cnp; dvp = fpl->dvp; #ifdef INVARIANTS for (cp = cnp->cn_pnbuf; *cp != '\0'; cp++) { KASSERT(*cp == '/', ("%s: encountered non-slash; string [%s]\n", __func__, cnp->cn_pnbuf)); } #endif if (__predict_false(cnp->cn_nameiop != LOOKUP)) { cache_fpl_smr_exit(fpl); return (cache_fpl_handled_error(fpl, EISDIR)); } MPASS((cnp->cn_flags & SAVESTART) == 0); if ((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0) { return (cache_fplookup_final_withparent(fpl)); } dvs = vget_prep_smr(dvp); cache_fpl_smr_exit(fpl); if (__predict_false(dvs == VGET_NONE)) { return (cache_fpl_aborted(fpl)); } if ((cnp->cn_flags & LOCKLEAF) != 0) { lkflags = LK_SHARED; if ((cnp->cn_flags & LOCKSHARED) == 0) lkflags = LK_EXCLUSIVE; error = vget_finish(dvp, lkflags, dvs); if (__predict_false(error != 0)) { return (cache_fpl_aborted(fpl)); } } else { vget_finish_ref(dvp, dvs); } return (cache_fpl_handled(fpl)); } static int __noinline cache_fplookup_noentry(struct cache_fpl *fpl) { struct nameidata *ndp; struct componentname *cnp; enum vgetstate dvs; struct vnode *dvp, *tvp; seqc_t dvp_seqc; int error; bool docache; ndp = fpl->ndp; cnp = fpl->cnp; dvp = fpl->dvp; dvp_seqc = fpl->dvp_seqc; MPASS((cnp->cn_flags & MAKEENTRY) == 0); MPASS((cnp->cn_flags & ISDOTDOT) == 0); MPASS(!cache_fpl_isdotdot(cnp)); /* * Hack: delayed name len checking. */ if (__predict_false(cnp->cn_namelen > NAME_MAX)) { cache_fpl_smr_exit(fpl); return (cache_fpl_handled_error(fpl, ENAMETOOLONG)); } if (cnp->cn_nameptr[0] == '/') { return (cache_fplookup_skip_slashes(fpl)); } if (cnp->cn_nameptr[0] == '\0') { if (fpl->tvp == NULL) { return (cache_fplookup_degenerate(fpl)); } return (cache_fplookup_trailingslash(fpl)); } if (cnp->cn_nameiop != LOOKUP) { fpl->tvp = NULL; return (cache_fplookup_modifying(fpl)); } MPASS((cnp->cn_flags & SAVESTART) == 0); /* * Only try to fill in the component if it is the last one, * otherwise not only there may be several to handle but the * walk may be complicated. */ if (!cache_fpl_islastcn(ndp)) { return (cache_fpl_partial(fpl)); } /* * Regular lookup nulifies the slash, which we don't do here. * Don't take chances with filesystem routines seeing it for * the last entry. */ if (cache_fpl_istrailingslash(fpl)) { return (cache_fpl_partial(fpl)); } /* * Secure access to dvp; check cache_fplookup_partial_setup for * reasoning. */ dvs = vget_prep_smr(dvp); cache_fpl_smr_exit(fpl); if (__predict_false(dvs == VGET_NONE)) { return (cache_fpl_aborted(fpl)); } vget_finish_ref(dvp, dvs); if (!vn_seqc_consistent(dvp, dvp_seqc)) { vrele(dvp); return (cache_fpl_aborted(fpl)); } error = vn_lock(dvp, LK_SHARED); if (__predict_false(error != 0)) { vrele(dvp); return (cache_fpl_aborted(fpl)); } tvp = NULL; /* * TODO: provide variants which don't require locking either vnode. */ cnp->cn_flags |= ISLASTCN; docache = (cnp->cn_flags & NOCACHE) ^ NOCACHE; if (docache) cnp->cn_flags |= MAKEENTRY; cnp->cn_lkflags = LK_SHARED; if ((cnp->cn_flags & LOCKSHARED) == 0) { cnp->cn_lkflags = LK_EXCLUSIVE; } error = VOP_LOOKUP(dvp, &tvp, cnp); switch (error) { case EJUSTRETURN: case 0: break; case ENOTDIR: case ENOENT: vput(dvp); return (cache_fpl_handled_error(fpl, error)); default: vput(dvp); return (cache_fpl_aborted(fpl)); } fpl->tvp = tvp; if (!fpl->savename) { MPASS((cnp->cn_flags & SAVENAME) == 0); } if (tvp == NULL) { MPASS(error == EJUSTRETURN); if ((cnp->cn_flags & (WANTPARENT | LOCKPARENT)) == 0) { vput(dvp); } else if ((cnp->cn_flags & LOCKPARENT) == 0) { VOP_UNLOCK(dvp); } return (cache_fpl_handled(fpl)); } if (tvp->v_type == VLNK) { if ((cnp->cn_flags & FOLLOW) != 0) { vput(dvp); vput(tvp); return (cache_fpl_aborted(fpl)); } } if (__predict_false(cache_fplookup_is_mp(fpl))) { vput(dvp); vput(tvp); return (cache_fpl_aborted(fpl)); } if ((cnp->cn_flags & LOCKLEAF) == 0) { VOP_UNLOCK(tvp); } if ((cnp->cn_flags & (WANTPARENT | LOCKPARENT)) == 0) { vput(dvp); } else if ((cnp->cn_flags & LOCKPARENT) == 0) { VOP_UNLOCK(dvp); } return (cache_fpl_handled(fpl)); } static int __noinline cache_fplookup_dot(struct cache_fpl *fpl) { int error; MPASS(!seqc_in_modify(fpl->dvp_seqc)); /* * Just re-assign the value. seqc will be checked later for the first * non-dot path component in line and/or before deciding to return the * vnode. */ fpl->tvp = fpl->dvp; fpl->tvp_seqc = fpl->dvp_seqc; counter_u64_add(dothits, 1); SDT_PROBE3(vfs, namecache, lookup, hit, fpl->dvp, ".", fpl->dvp); error = 0; if (cache_fplookup_is_mp(fpl)) { error = cache_fplookup_cross_mount(fpl); } return (error); } static int __noinline cache_fplookup_dotdot(struct cache_fpl *fpl) { struct nameidata *ndp; struct componentname *cnp; struct namecache *ncp; struct vnode *dvp; struct prison *pr; u_char nc_flag; ndp = fpl->ndp; cnp = fpl->cnp; dvp = fpl->dvp; MPASS(cache_fpl_isdotdot(cnp)); /* * XXX this is racy the same way regular lookup is */ for (pr = cnp->cn_cred->cr_prison; pr != NULL; pr = pr->pr_parent) if (dvp == pr->pr_root) break; if (dvp == ndp->ni_rootdir || dvp == ndp->ni_topdir || dvp == rootvnode || pr != NULL) { fpl->tvp = dvp; fpl->tvp_seqc = vn_seqc_read_any(dvp); if (seqc_in_modify(fpl->tvp_seqc)) { return (cache_fpl_aborted(fpl)); } return (0); } if ((dvp->v_vflag & VV_ROOT) != 0) { /* * TODO * The opposite of climb mount is needed here. */ return (cache_fpl_partial(fpl)); } ncp = atomic_load_consume_ptr(&dvp->v_cache_dd); if (ncp == NULL) { return (cache_fpl_aborted(fpl)); } nc_flag = atomic_load_char(&ncp->nc_flag); if ((nc_flag & NCF_ISDOTDOT) != 0) { if ((nc_flag & NCF_NEGATIVE) != 0) return (cache_fpl_aborted(fpl)); fpl->tvp = ncp->nc_vp; } else { fpl->tvp = ncp->nc_dvp; } fpl->tvp_seqc = vn_seqc_read_any(fpl->tvp); if (seqc_in_modify(fpl->tvp_seqc)) { return (cache_fpl_partial(fpl)); } /* * Acquire fence provided by vn_seqc_read_any above. */ if (__predict_false(atomic_load_ptr(&dvp->v_cache_dd) != ncp)) { return (cache_fpl_aborted(fpl)); } if (!cache_ncp_canuse(ncp)) { return (cache_fpl_aborted(fpl)); } counter_u64_add(dotdothits, 1); return (0); } static int __noinline cache_fplookup_neg(struct cache_fpl *fpl, struct namecache *ncp, uint32_t hash) { u_char nc_flag; bool neg_promote; nc_flag = atomic_load_char(&ncp->nc_flag); MPASS((nc_flag & NCF_NEGATIVE) != 0); /* * If they want to create an entry we need to replace this one. */ if (__predict_false(fpl->cnp->cn_nameiop != LOOKUP)) { fpl->tvp = NULL; return (cache_fplookup_modifying(fpl)); } neg_promote = cache_neg_hit_prep(ncp); if (!cache_fpl_neg_ncp_canuse(ncp)) { cache_neg_hit_abort(ncp); return (cache_fpl_partial(fpl)); } if (neg_promote) { return (cache_fplookup_negative_promote(fpl, ncp, hash)); } cache_neg_hit_finish(ncp); cache_fpl_smr_exit(fpl); return (cache_fpl_handled_error(fpl, ENOENT)); } /* * Resolve a symlink. Called by filesystem-specific routines. * * Code flow is: * ... -> cache_fplookup_symlink -> VOP_FPLOOKUP_SYMLINK -> cache_symlink_resolve */ int cache_symlink_resolve(struct cache_fpl *fpl, const char *string, size_t len) { struct nameidata *ndp; struct componentname *cnp; size_t adjust; ndp = fpl->ndp; cnp = fpl->cnp; if (__predict_false(len == 0)) { return (ENOENT); } if (__predict_false(len > MAXPATHLEN - 2)) { if (cache_fpl_istrailingslash(fpl)) { return (EAGAIN); } } ndp->ni_pathlen = fpl->nulchar - cnp->cn_nameptr - cnp->cn_namelen + 1; #ifdef INVARIANTS if (ndp->ni_pathlen != fpl->debug.ni_pathlen) { panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n", __func__, ndp->ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar, cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf); } #endif if (__predict_false(len + ndp->ni_pathlen > MAXPATHLEN)) { return (ENAMETOOLONG); } if (__predict_false(ndp->ni_loopcnt++ >= MAXSYMLINKS)) { return (ELOOP); } adjust = len; if (ndp->ni_pathlen > 1) { bcopy(ndp->ni_next, cnp->cn_pnbuf + len, ndp->ni_pathlen); } else { if (cache_fpl_istrailingslash(fpl)) { adjust = len + 1; cnp->cn_pnbuf[len] = '/'; cnp->cn_pnbuf[len + 1] = '\0'; } else { cnp->cn_pnbuf[len] = '\0'; } } bcopy(string, cnp->cn_pnbuf, len); ndp->ni_pathlen += adjust; cache_fpl_pathlen_add(fpl, adjust); cnp->cn_nameptr = cnp->cn_pnbuf; fpl->nulchar = &cnp->cn_nameptr[ndp->ni_pathlen - 1]; fpl->tvp = NULL; return (0); } static int __noinline cache_fplookup_symlink(struct cache_fpl *fpl) { struct mount *mp; struct nameidata *ndp; struct componentname *cnp; struct vnode *dvp, *tvp; int error; ndp = fpl->ndp; cnp = fpl->cnp; dvp = fpl->dvp; tvp = fpl->tvp; if (cache_fpl_islastcn(ndp)) { if ((cnp->cn_flags & FOLLOW) == 0) { return (cache_fplookup_final(fpl)); } } mp = atomic_load_ptr(&dvp->v_mount); if (__predict_false(mp == NULL)) { return (cache_fpl_aborted(fpl)); } /* * Note this check races against setting the flag just like regular * lookup. */ if (__predict_false((mp->mnt_flag & MNT_NOSYMFOLLOW) != 0)) { cache_fpl_smr_exit(fpl); return (cache_fpl_handled_error(fpl, EACCES)); } error = VOP_FPLOOKUP_SYMLINK(tvp, fpl); if (__predict_false(error != 0)) { switch (error) { case EAGAIN: return (cache_fpl_partial(fpl)); case ENOENT: case ENAMETOOLONG: case ELOOP: cache_fpl_smr_exit(fpl); return (cache_fpl_handled_error(fpl, error)); default: return (cache_fpl_aborted(fpl)); } } if (*(cnp->cn_nameptr) == '/') { fpl->dvp = cache_fpl_handle_root(fpl); fpl->dvp_seqc = vn_seqc_read_any(fpl->dvp); if (seqc_in_modify(fpl->dvp_seqc)) { return (cache_fpl_aborted(fpl)); } /* * The main loop assumes that ->dvp points to a vnode belonging * to a filesystem which can do lockless lookup, but the absolute * symlink can be wandering off to one which does not. */ mp = atomic_load_ptr(&fpl->dvp->v_mount); if (__predict_false(mp == NULL)) { return (cache_fpl_aborted(fpl)); } if (!cache_fplookup_mp_supported(mp)) { cache_fpl_checkpoint(fpl); return (cache_fpl_partial(fpl)); } } return (0); } static int cache_fplookup_next(struct cache_fpl *fpl) { struct componentname *cnp; struct namecache *ncp; struct vnode *dvp, *tvp; u_char nc_flag; uint32_t hash; int error; cnp = fpl->cnp; dvp = fpl->dvp; hash = fpl->hash; if (__predict_false(cnp->cn_nameptr[0] == '.')) { if (cnp->cn_namelen == 1) { return (cache_fplookup_dot(fpl)); } if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') { return (cache_fplookup_dotdot(fpl)); } } MPASS(!cache_fpl_isdotdot(cnp)); CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) { if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen && !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen)) break; } if (__predict_false(ncp == NULL)) { return (cache_fplookup_noentry(fpl)); } tvp = atomic_load_ptr(&ncp->nc_vp); nc_flag = atomic_load_char(&ncp->nc_flag); if ((nc_flag & NCF_NEGATIVE) != 0) { return (cache_fplookup_neg(fpl, ncp, hash)); } if (!cache_ncp_canuse(ncp)) { return (cache_fpl_partial(fpl)); } fpl->tvp = tvp; fpl->tvp_seqc = vn_seqc_read_any(tvp); if (seqc_in_modify(fpl->tvp_seqc)) { return (cache_fpl_partial(fpl)); } counter_u64_add(numposhits, 1); SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, tvp); error = 0; if (cache_fplookup_is_mp(fpl)) { error = cache_fplookup_cross_mount(fpl); } return (error); } static bool cache_fplookup_mp_supported(struct mount *mp) { MPASS(mp != NULL); if ((mp->mnt_kern_flag & MNTK_FPLOOKUP) == 0) return (false); return (true); } /* * Walk up the mount stack (if any). * * Correctness is provided in the following ways: * - all vnodes are protected from freeing with SMR * - struct mount objects are type stable making them always safe to access * - stability of the particular mount is provided by busying it * - relationship between the vnode which is mounted on and the mount is * verified with the vnode sequence counter after busying * - association between root vnode of the mount and the mount is protected * by busy * * From that point on we can read the sequence counter of the root vnode * and get the next mount on the stack (if any) using the same protection. * * By the end of successful walk we are guaranteed the reached state was * indeed present at least at some point which matches the regular lookup. */ static int __noinline cache_fplookup_climb_mount(struct cache_fpl *fpl) { struct mount *mp, *prev_mp; struct mount_pcpu *mpcpu, *prev_mpcpu; struct vnode *vp; seqc_t vp_seqc; vp = fpl->tvp; vp_seqc = fpl->tvp_seqc; VNPASS(vp->v_type == VDIR || vp->v_type == VBAD, vp); mp = atomic_load_ptr(&vp->v_mountedhere); if (__predict_false(mp == NULL)) { return (0); } prev_mp = NULL; for (;;) { if (!vfs_op_thread_enter_crit(mp, mpcpu)) { if (prev_mp != NULL) vfs_op_thread_exit_crit(prev_mp, prev_mpcpu); return (cache_fpl_partial(fpl)); } if (prev_mp != NULL) vfs_op_thread_exit_crit(prev_mp, prev_mpcpu); if (!vn_seqc_consistent(vp, vp_seqc)) { vfs_op_thread_exit_crit(mp, mpcpu); return (cache_fpl_partial(fpl)); } if (!cache_fplookup_mp_supported(mp)) { vfs_op_thread_exit_crit(mp, mpcpu); return (cache_fpl_partial(fpl)); } vp = atomic_load_ptr(&mp->mnt_rootvnode); if (vp == NULL) { vfs_op_thread_exit_crit(mp, mpcpu); return (cache_fpl_partial(fpl)); } vp_seqc = vn_seqc_read_any(vp); if (seqc_in_modify(vp_seqc)) { vfs_op_thread_exit_crit(mp, mpcpu); return (cache_fpl_partial(fpl)); } prev_mp = mp; prev_mpcpu = mpcpu; mp = atomic_load_ptr(&vp->v_mountedhere); if (mp == NULL) break; } vfs_op_thread_exit_crit(prev_mp, prev_mpcpu); fpl->tvp = vp; fpl->tvp_seqc = vp_seqc; return (0); } static int __noinline cache_fplookup_cross_mount(struct cache_fpl *fpl) { struct mount *mp; struct mount_pcpu *mpcpu; struct vnode *vp; seqc_t vp_seqc; vp = fpl->tvp; vp_seqc = fpl->tvp_seqc; VNPASS(vp->v_type == VDIR || vp->v_type == VBAD, vp); mp = atomic_load_ptr(&vp->v_mountedhere); if (__predict_false(mp == NULL)) { return (0); } if (!vfs_op_thread_enter_crit(mp, mpcpu)) { return (cache_fpl_partial(fpl)); } if (!vn_seqc_consistent(vp, vp_seqc)) { vfs_op_thread_exit_crit(mp, mpcpu); return (cache_fpl_partial(fpl)); } if (!cache_fplookup_mp_supported(mp)) { vfs_op_thread_exit_crit(mp, mpcpu); return (cache_fpl_partial(fpl)); } vp = atomic_load_ptr(&mp->mnt_rootvnode); if (__predict_false(vp == NULL)) { vfs_op_thread_exit_crit(mp, mpcpu); return (cache_fpl_partial(fpl)); } vp_seqc = vn_seqc_read_any(vp); vfs_op_thread_exit_crit(mp, mpcpu); if (seqc_in_modify(vp_seqc)) { return (cache_fpl_partial(fpl)); } mp = atomic_load_ptr(&vp->v_mountedhere); if (__predict_false(mp != NULL)) { /* * There are possibly more mount points on top. * Normally this does not happen so for simplicity just start * over. */ return (cache_fplookup_climb_mount(fpl)); } fpl->tvp = vp; fpl->tvp_seqc = vp_seqc; return (0); } /* * Check if a vnode is mounted on. */ static bool cache_fplookup_is_mp(struct cache_fpl *fpl) { struct vnode *vp; vp = fpl->tvp; return ((vn_irflag_read(vp) & VIRF_MOUNTPOINT) != 0); } /* * Parse the path. * * The code was originally copy-pasted from regular lookup and despite * clean ups leaves performance on the table. Any modifications here * must take into account that in case off fallback the resulting * nameidata state has to be compatible with the original. */ /* * Debug ni_pathlen tracking. */ #ifdef INVARIANTS static void cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n) { fpl->debug.ni_pathlen += n; KASSERT(fpl->debug.ni_pathlen <= PATH_MAX, ("%s: pathlen overflow to %zd\n", __func__, fpl->debug.ni_pathlen)); } static void cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n) { fpl->debug.ni_pathlen -= n; KASSERT(fpl->debug.ni_pathlen <= PATH_MAX, ("%s: pathlen underflow to %zd\n", __func__, fpl->debug.ni_pathlen)); } static void cache_fpl_pathlen_inc(struct cache_fpl *fpl) { cache_fpl_pathlen_add(fpl, 1); } static void cache_fpl_pathlen_dec(struct cache_fpl *fpl) { cache_fpl_pathlen_sub(fpl, 1); } #else static void cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n) { } static void cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n) { } static void cache_fpl_pathlen_inc(struct cache_fpl *fpl) { } static void cache_fpl_pathlen_dec(struct cache_fpl *fpl) { } #endif static void cache_fplookup_parse(struct cache_fpl *fpl) { struct nameidata *ndp; struct componentname *cnp; struct vnode *dvp; char *cp; uint32_t hash; ndp = fpl->ndp; cnp = fpl->cnp; dvp = fpl->dvp; /* * Find the end of this path component, it is either / or nul. * * Store / as a temporary sentinel so that we only have one character * to test for. Pathnames tend to be short so this should not be * resulting in cache misses. * * TODO: fix this to be word-sized. */ KASSERT(&cnp->cn_nameptr[fpl->debug.ni_pathlen - 1] == fpl->nulchar, ("%s: mismatch between pathlen (%zu) and nulchar (%p != %p), string [%s]\n", __func__, fpl->debug.ni_pathlen, &cnp->cn_nameptr[fpl->debug.ni_pathlen - 1], fpl->nulchar, cnp->cn_pnbuf)); KASSERT(*fpl->nulchar == '\0', ("%s: expected nul at %p; string [%s]\n", __func__, fpl->nulchar, cnp->cn_pnbuf)); hash = cache_get_hash_iter_start(dvp); *fpl->nulchar = '/'; for (cp = cnp->cn_nameptr; *cp != '/'; cp++) { KASSERT(*cp != '\0', ("%s: encountered unexpected nul; string [%s]\n", __func__, cnp->cn_nameptr)); hash = cache_get_hash_iter(*cp, hash); continue; } *fpl->nulchar = '\0'; fpl->hash = cache_get_hash_iter_finish(hash); cnp->cn_namelen = cp - cnp->cn_nameptr; cache_fpl_pathlen_sub(fpl, cnp->cn_namelen); #ifdef INVARIANTS /* * cache_get_hash only accepts lengths up to NAME_MAX. This is fine since * we are going to fail this lookup with ENAMETOOLONG (see below). */ if (cnp->cn_namelen <= NAME_MAX) { if (fpl->hash != cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp)) { panic("%s: mismatched hash for [%s] len %ld", __func__, cnp->cn_nameptr, cnp->cn_namelen); } } #endif /* * Hack: we have to check if the found path component's length exceeds * NAME_MAX. However, the condition is very rarely true and check can * be elided in the common case -- if an entry was found in the cache, * then it could not have been too long to begin with. */ ndp->ni_next = cp; } static void cache_fplookup_parse_advance(struct cache_fpl *fpl) { struct nameidata *ndp; struct componentname *cnp; ndp = fpl->ndp; cnp = fpl->cnp; cnp->cn_nameptr = ndp->ni_next; KASSERT(*(cnp->cn_nameptr) == '/', ("%s: should have seen slash at %p ; buf %p [%s]\n", __func__, cnp->cn_nameptr, cnp->cn_pnbuf, cnp->cn_pnbuf)); cnp->cn_nameptr++; cache_fpl_pathlen_dec(fpl); } /* * Skip spurious slashes in a pathname (e.g., "foo///bar") and retry. * * Lockless lookup tries to elide checking for spurious slashes and should they * be present is guaranteed to fail to find an entry. In this case the caller * must check if the name starts with a slash and call this routine. It is * going to fast forward across the spurious slashes and set the state up for * retry. */ static int __noinline cache_fplookup_skip_slashes(struct cache_fpl *fpl) { struct nameidata *ndp; struct componentname *cnp; ndp = fpl->ndp; cnp = fpl->cnp; MPASS(*(cnp->cn_nameptr) == '/'); do { cnp->cn_nameptr++; cache_fpl_pathlen_dec(fpl); } while (*(cnp->cn_nameptr) == '/'); /* * Go back to one slash so that cache_fplookup_parse_advance has * something to skip. */ cnp->cn_nameptr--; cache_fpl_pathlen_inc(fpl); /* * cache_fplookup_parse_advance starts from ndp->ni_next */ ndp->ni_next = cnp->cn_nameptr; /* * See cache_fplookup_dot. */ fpl->tvp = fpl->dvp; fpl->tvp_seqc = fpl->dvp_seqc; return (0); } /* * Handle trailing slashes (e.g., "foo/"). * * If a trailing slash is found the terminal vnode must be a directory. * Regular lookup shortens the path by nulifying the first trailing slash and * sets the TRAILINGSLASH flag to denote this took place. There are several * checks on it performed later. * * Similarly to spurious slashes, lockless lookup handles this in a speculative * manner relying on an invariant that a non-directory vnode will get a miss. * In this case cn_nameptr[0] == '\0' and cn_namelen == 0. * * Thus for a path like "foo/bar/" the code unwinds the state back to "bar/" * and denotes this is the last path component, which avoids looping back. * * Only plain lookups are supported for now to restrict corner cases to handle. */ static int __noinline cache_fplookup_trailingslash(struct cache_fpl *fpl) { #ifdef INVARIANTS size_t ni_pathlen; #endif struct nameidata *ndp; struct componentname *cnp; struct namecache *ncp; struct vnode *tvp; char *cn_nameptr_orig, *cn_nameptr_slash; seqc_t tvp_seqc; u_char nc_flag; ndp = fpl->ndp; cnp = fpl->cnp; tvp = fpl->tvp; tvp_seqc = fpl->tvp_seqc; MPASS(fpl->dvp == fpl->tvp); KASSERT(cache_fpl_istrailingslash(fpl), ("%s: expected trailing slash at %p; string [%s]\n", __func__, fpl->nulchar - 1, cnp->cn_pnbuf)); KASSERT(cnp->cn_nameptr[0] == '\0', ("%s: expected nul char at %p; string [%s]\n", __func__, &cnp->cn_nameptr[0], cnp->cn_pnbuf)); KASSERT(cnp->cn_namelen == 0, ("%s: namelen 0 but got %ld; string [%s]\n", __func__, cnp->cn_namelen, cnp->cn_pnbuf)); MPASS(cnp->cn_nameptr > cnp->cn_pnbuf); if (cnp->cn_nameiop != LOOKUP) { return (cache_fpl_aborted(fpl)); } if (__predict_false(tvp->v_type != VDIR)) { if (!vn_seqc_consistent(tvp, tvp_seqc)) { return (cache_fpl_aborted(fpl)); } cache_fpl_smr_exit(fpl); return (cache_fpl_handled_error(fpl, ENOTDIR)); } /* * Denote the last component. */ ndp->ni_next = &cnp->cn_nameptr[0]; MPASS(cache_fpl_islastcn(ndp)); /* * Unwind trailing slashes. */ cn_nameptr_orig = cnp->cn_nameptr; while (cnp->cn_nameptr >= cnp->cn_pnbuf) { cnp->cn_nameptr--; if (cnp->cn_nameptr[0] != '/') { break; } } /* * Unwind to the beginning of the path component. * * Note the path may or may not have started with a slash. */ cn_nameptr_slash = cnp->cn_nameptr; while (cnp->cn_nameptr > cnp->cn_pnbuf) { cnp->cn_nameptr--; if (cnp->cn_nameptr[0] == '/') { break; } } if (cnp->cn_nameptr[0] == '/') { cnp->cn_nameptr++; } cnp->cn_namelen = cn_nameptr_slash - cnp->cn_nameptr + 1; cache_fpl_pathlen_add(fpl, cn_nameptr_orig - cnp->cn_nameptr); cache_fpl_checkpoint(fpl); #ifdef INVARIANTS ni_pathlen = fpl->nulchar - cnp->cn_nameptr + 1; if (ni_pathlen != fpl->debug.ni_pathlen) { panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n", __func__, ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar, cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf); } #endif /* * If this was a "./" lookup the parent directory is already correct. */ if (cnp->cn_nameptr[0] == '.' && cnp->cn_namelen == 1) { return (0); } /* * Otherwise we need to look it up. */ tvp = fpl->tvp; ncp = atomic_load_consume_ptr(&tvp->v_cache_dd); if (__predict_false(ncp == NULL)) { return (cache_fpl_aborted(fpl)); } nc_flag = atomic_load_char(&ncp->nc_flag); if ((nc_flag & NCF_ISDOTDOT) != 0) { return (cache_fpl_aborted(fpl)); } fpl->dvp = ncp->nc_dvp; fpl->dvp_seqc = vn_seqc_read_any(fpl->dvp); if (seqc_in_modify(fpl->dvp_seqc)) { return (cache_fpl_aborted(fpl)); } return (0); } /* * See the API contract for VOP_FPLOOKUP_VEXEC. */ static int __noinline cache_fplookup_failed_vexec(struct cache_fpl *fpl, int error) { struct componentname *cnp; struct vnode *dvp; seqc_t dvp_seqc; cnp = fpl->cnp; dvp = fpl->dvp; dvp_seqc = fpl->dvp_seqc; /* * TODO: Due to ignoring trailing slashes lookup will perform a * permission check on the last dir when it should not be doing it. It * may fail, but said failure should be ignored. It is possible to fix * it up fully without resorting to regular lookup, but for now just * abort. */ if (cache_fpl_istrailingslash(fpl)) { return (cache_fpl_aborted(fpl)); } /* * Hack: delayed degenerate path checking. */ if (cnp->cn_nameptr[0] == '\0' && fpl->tvp == NULL) { return (cache_fplookup_degenerate(fpl)); } /* * Hack: delayed name len checking. */ if (__predict_false(cnp->cn_namelen > NAME_MAX)) { cache_fpl_smr_exit(fpl); return (cache_fpl_handled_error(fpl, ENAMETOOLONG)); } /* * Hack: they may be looking up foo/bar, where foo is not a directory. * In such a case we need to return ENOTDIR, but we may happen to get * here with a different error. */ if (dvp->v_type != VDIR) { error = ENOTDIR; } /* * Hack: handle O_SEARCH. * * Open Group Base Specifications Issue 7, 2018 edition states: * * If the access mode of the open file description associated with the * file descriptor is not O_SEARCH, the function shall check whether * directory searches are permitted using the current permissions of * the directory underlying the file descriptor. If the access mode is * O_SEARCH, the function shall not perform the check. * * * Regular lookup tests for the NOEXECCHECK flag for every path * component to decide whether to do the permission check. However, * since most lookups never have the flag (and when they do it is only * present for the first path component), lockless lookup only acts on * it if there is a permission problem. Here the flag is represented * with a boolean so that we don't have to clear it on the way out. * * For simplicity this always aborts. * TODO: check if this is the first lookup and ignore the permission * problem. Note the flag has to survive fallback (if it happens to be * performed). */ if (fpl->fsearch) { return (cache_fpl_aborted(fpl)); } switch (error) { case EAGAIN: if (!vn_seqc_consistent(dvp, dvp_seqc)) { error = cache_fpl_aborted(fpl); } else { cache_fpl_partial(fpl); } break; default: if (!vn_seqc_consistent(dvp, dvp_seqc)) { error = cache_fpl_aborted(fpl); } else { cache_fpl_smr_exit(fpl); cache_fpl_handled_error(fpl, error); } break; } return (error); } static int cache_fplookup_impl(struct vnode *dvp, struct cache_fpl *fpl) { struct nameidata *ndp; struct componentname *cnp; struct mount *mp; int error; ndp = fpl->ndp; cnp = fpl->cnp; cache_fpl_checkpoint(fpl); /* * The vnode at hand is almost always stable, skip checking for it. * Worst case this postpones the check towards the end of the iteration * of the main loop. */ fpl->dvp = dvp; fpl->dvp_seqc = vn_seqc_read_notmodify(fpl->dvp); mp = atomic_load_ptr(&dvp->v_mount); if (__predict_false(mp == NULL || !cache_fplookup_mp_supported(mp))) { return (cache_fpl_aborted(fpl)); } MPASS(fpl->tvp == NULL); for (;;) { cache_fplookup_parse(fpl); error = VOP_FPLOOKUP_VEXEC(fpl->dvp, cnp->cn_cred); if (__predict_false(error != 0)) { error = cache_fplookup_failed_vexec(fpl, error); break; } error = cache_fplookup_next(fpl); if (__predict_false(cache_fpl_terminated(fpl))) { break; } VNPASS(!seqc_in_modify(fpl->tvp_seqc), fpl->tvp); if (fpl->tvp->v_type == VLNK) { error = cache_fplookup_symlink(fpl); if (cache_fpl_terminated(fpl)) { break; } } else { if (cache_fpl_islastcn(ndp)) { error = cache_fplookup_final(fpl); break; } if (!vn_seqc_consistent(fpl->dvp, fpl->dvp_seqc)) { error = cache_fpl_aborted(fpl); break; } fpl->dvp = fpl->tvp; fpl->dvp_seqc = fpl->tvp_seqc; cache_fplookup_parse_advance(fpl); } cache_fpl_checkpoint(fpl); } return (error); } /* * Fast path lookup protected with SMR and sequence counters. * * Note: all VOP_FPLOOKUP_VEXEC routines have a comment referencing this one. * * Filesystems can opt in by setting the MNTK_FPLOOKUP flag and meeting criteria * outlined below. * * Traditional vnode lookup conceptually looks like this: * * vn_lock(current); * for (;;) { * next = find(); * vn_lock(next); * vn_unlock(current); * current = next; * if (last) * break; * } * return (current); * * Each jump to the next vnode is safe memory-wise and atomic with respect to * any modifications thanks to holding respective locks. * * The same guarantee can be provided with a combination of safe memory * reclamation and sequence counters instead. If all operations which affect * the relationship between the current vnode and the one we are looking for * also modify the counter, we can verify whether all the conditions held as * we made the jump. This includes things like permissions, mount points etc. * Counter modification is provided by enclosing relevant places in * vn_seqc_write_begin()/end() calls. * * Thus this translates to: * * vfs_smr_enter(); * dvp_seqc = seqc_read_any(dvp); * if (seqc_in_modify(dvp_seqc)) // someone is altering the vnode * abort(); * for (;;) { * tvp = find(); * tvp_seqc = seqc_read_any(tvp); * if (seqc_in_modify(tvp_seqc)) // someone is altering the target vnode * abort(); * if (!seqc_consistent(dvp, dvp_seqc) // someone is altering the vnode * abort(); * dvp = tvp; // we know nothing of importance has changed * dvp_seqc = tvp_seqc; // store the counter for the tvp iteration * if (last) * break; * } * vget(); // secure the vnode * if (!seqc_consistent(tvp, tvp_seqc) // final check * abort(); * // at this point we know nothing has changed for any parent<->child pair * // as they were crossed during the lookup, meaning we matched the guarantee * // of the locked variant * return (tvp); * * The API contract for VOP_FPLOOKUP_VEXEC routines is as follows: * - they are called while within vfs_smr protection which they must never exit * - EAGAIN can be returned to denote checking could not be performed, it is * always valid to return it * - if the sequence counter has not changed the result must be valid * - if the sequence counter has changed both false positives and false negatives * are permitted (since the result will be rejected later) * - for simple cases of unix permission checks vaccess_vexec_smr can be used * * Caveats to watch out for: * - vnodes are passed unlocked and unreferenced with nothing stopping * VOP_RECLAIM, in turn meaning that ->v_data can become NULL. It is advised * to use atomic_load_ptr to fetch it. * - the aforementioned object can also get freed, meaning absent other means it * should be protected with vfs_smr * - either safely checking permissions as they are modified or guaranteeing * their stability is left to the routine */ int cache_fplookup(struct nameidata *ndp, enum cache_fpl_status *status, struct pwd **pwdp) { struct cache_fpl fpl; struct pwd *pwd; struct vnode *dvp; struct componentname *cnp; int error; fpl.status = CACHE_FPL_STATUS_UNSET; fpl.in_smr = false; fpl.ndp = ndp; fpl.cnp = cnp = &ndp->ni_cnd; MPASS(ndp->ni_lcf == 0); MPASS(curthread == cnp->cn_thread); KASSERT ((cnp->cn_flags & CACHE_FPL_INTERNAL_CN_FLAGS) == 0, ("%s: internal flags found in cn_flags %" PRIx64, __func__, cnp->cn_flags)); if ((cnp->cn_flags & SAVESTART) != 0) { MPASS(cnp->cn_nameiop != LOOKUP); } MPASS(cnp->cn_nameptr == cnp->cn_pnbuf); if (__predict_false(!cache_can_fplookup(&fpl))) { *status = fpl.status; SDT_PROBE3(vfs, fplookup, lookup, done, ndp, fpl.line, fpl.status); return (EOPNOTSUPP); } cache_fpl_checkpoint_outer(&fpl); cache_fpl_smr_enter_initial(&fpl); #ifdef INVARIANTS fpl.debug.ni_pathlen = ndp->ni_pathlen; #endif fpl.nulchar = &cnp->cn_nameptr[ndp->ni_pathlen - 1]; fpl.fsearch = false; fpl.savename = (cnp->cn_flags & SAVENAME) != 0; fpl.tvp = NULL; /* for degenerate path handling */ fpl.pwd = pwdp; pwd = pwd_get_smr(); *(fpl.pwd) = pwd; ndp->ni_rootdir = pwd->pwd_rdir; ndp->ni_topdir = pwd->pwd_jdir; if (cnp->cn_pnbuf[0] == '/') { dvp = cache_fpl_handle_root(&fpl); MPASS(ndp->ni_resflags == 0); ndp->ni_resflags = NIRES_ABS; } else { if (ndp->ni_dirfd == AT_FDCWD) { dvp = pwd->pwd_cdir; } else { error = cache_fplookup_dirfd(&fpl, &dvp); if (__predict_false(error != 0)) { goto out; } } } SDT_PROBE4(vfs, namei, lookup, entry, dvp, cnp->cn_pnbuf, cnp->cn_flags, true); error = cache_fplookup_impl(dvp, &fpl); out: cache_fpl_smr_assert_not_entered(&fpl); cache_fpl_assert_status(&fpl); *status = fpl.status; if (SDT_PROBES_ENABLED()) { SDT_PROBE3(vfs, fplookup, lookup, done, ndp, fpl.line, fpl.status); if (fpl.status == CACHE_FPL_STATUS_HANDLED) SDT_PROBE4(vfs, namei, lookup, return, error, ndp->ni_vp, true, ndp); } if (__predict_true(fpl.status == CACHE_FPL_STATUS_HANDLED)) { MPASS(error != CACHE_FPL_FAILED); if (error != 0) { MPASS(fpl.dvp == NULL); MPASS(fpl.tvp == NULL); MPASS(fpl.savename == false); } ndp->ni_dvp = fpl.dvp; ndp->ni_vp = fpl.tvp; if (fpl.savename) { cnp->cn_flags |= HASBUF; } else { cache_fpl_cleanup_cnp(cnp); } } return (error); }