/*- * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any * redistribution must be conditioned upon including a substantially * similar Disclaimer requirement for further binary redistribution. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGES. */ #include __FBSDID("$FreeBSD$"); /* * Driver for the Atheros Wireless LAN controller. * * This software is derived from work of Atsushi Onoe; his contribution * is greatly appreciated. */ #include "opt_inet.h" #include "opt_ath.h" #include "opt_wlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef IEEE80211_SUPPORT_SUPERG #include #endif #ifdef IEEE80211_SUPPORT_TDMA #include #endif #include #include #ifdef INET #include #include #endif #include #include /* XXX for softled */ #include #include #ifdef ATH_TX99_DIAG #include #endif #include #include #include /* * How many retries to perform in software */ #define SWMAX_RETRIES 10 static int ath_tx_ampdu_pending(struct ath_softc *sc, struct ath_node *an, int tid); static int ath_tx_ampdu_running(struct ath_softc *sc, struct ath_node *an, int tid); static ieee80211_seq ath_tx_tid_seqno_assign(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf, struct mbuf *m0); static int ath_tx_action_frame_override_queue(struct ath_softc *sc, struct ieee80211_node *ni, struct mbuf *m0, int *tid); /* * Whether to use the 11n rate scenario functions or not */ static inline int ath_tx_is_11n(struct ath_softc *sc) { return (sc->sc_ah->ah_magic == 0x20065416); } /* * Obtain the current TID from the given frame. * * Non-QoS frames need to go into TID 16 (IEEE80211_NONQOS_TID.) * This has implications for which AC/priority the packet is placed * in. */ static int ath_tx_gettid(struct ath_softc *sc, const struct mbuf *m0) { const struct ieee80211_frame *wh; int pri = M_WME_GETAC(m0); wh = mtod(m0, const struct ieee80211_frame *); if (! IEEE80211_QOS_HAS_SEQ(wh)) return IEEE80211_NONQOS_TID; else return WME_AC_TO_TID(pri); } /* * Determine what the correct AC queue for the given frame * should be. * * This code assumes that the TIDs map consistently to * the underlying hardware (or software) ath_txq. * Since the sender may try to set an AC which is * arbitrary, non-QoS TIDs may end up being put on * completely different ACs. There's no way to put a * TID into multiple ath_txq's for scheduling, so * for now we override the AC/TXQ selection and set * non-QOS TID frames into the BE queue. * * This may be completely incorrect - specifically, * some management frames may end up out of order * compared to the QoS traffic they're controlling. * I'll look into this later. */ static int ath_tx_getac(struct ath_softc *sc, const struct mbuf *m0) { const struct ieee80211_frame *wh; int pri = M_WME_GETAC(m0); wh = mtod(m0, const struct ieee80211_frame *); if (IEEE80211_QOS_HAS_SEQ(wh)) return pri; return WME_AC_BE; } void ath_txfrag_cleanup(struct ath_softc *sc, ath_bufhead *frags, struct ieee80211_node *ni) { struct ath_buf *bf, *next; ATH_TXBUF_LOCK_ASSERT(sc); TAILQ_FOREACH_SAFE(bf, frags, bf_list, next) { /* NB: bf assumed clean */ TAILQ_REMOVE(frags, bf, bf_list); ath_returnbuf_head(sc, bf); ieee80211_node_decref(ni); } } /* * Setup xmit of a fragmented frame. Allocate a buffer * for each frag and bump the node reference count to * reflect the held reference to be setup by ath_tx_start. */ int ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags, struct mbuf *m0, struct ieee80211_node *ni) { struct mbuf *m; struct ath_buf *bf; ATH_TXBUF_LOCK(sc); for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) { /* XXX non-management? */ bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL); if (bf == NULL) { /* out of buffers, cleanup */ device_printf(sc->sc_dev, "%s: no buffer?\n", __func__); ath_txfrag_cleanup(sc, frags, ni); break; } ieee80211_node_incref(ni); TAILQ_INSERT_TAIL(frags, bf, bf_list); } ATH_TXBUF_UNLOCK(sc); return !TAILQ_EMPTY(frags); } /* * Reclaim mbuf resources. For fragmented frames we * need to claim each frag chained with m_nextpkt. */ void ath_freetx(struct mbuf *m) { struct mbuf *next; do { next = m->m_nextpkt; m->m_nextpkt = NULL; m_freem(m); } while ((m = next) != NULL); } static int ath_tx_dmasetup(struct ath_softc *sc, struct ath_buf *bf, struct mbuf *m0) { struct mbuf *m; int error; /* * Load the DMA map so any coalescing is done. This * also calculates the number of descriptors we need. */ error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0, bf->bf_segs, &bf->bf_nseg, BUS_DMA_NOWAIT); if (error == EFBIG) { /* XXX packet requires too many descriptors */ bf->bf_nseg = ATH_TXDESC+1; } else if (error != 0) { sc->sc_stats.ast_tx_busdma++; ath_freetx(m0); return error; } /* * Discard null packets and check for packets that * require too many TX descriptors. We try to convert * the latter to a cluster. */ if (bf->bf_nseg > ATH_TXDESC) { /* too many desc's, linearize */ sc->sc_stats.ast_tx_linear++; m = m_collapse(m0, M_DONTWAIT, ATH_TXDESC); if (m == NULL) { ath_freetx(m0); sc->sc_stats.ast_tx_nombuf++; return ENOMEM; } m0 = m; error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0, bf->bf_segs, &bf->bf_nseg, BUS_DMA_NOWAIT); if (error != 0) { sc->sc_stats.ast_tx_busdma++; ath_freetx(m0); return error; } KASSERT(bf->bf_nseg <= ATH_TXDESC, ("too many segments after defrag; nseg %u", bf->bf_nseg)); } else if (bf->bf_nseg == 0) { /* null packet, discard */ sc->sc_stats.ast_tx_nodata++; ath_freetx(m0); return EIO; } DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, m0->m_pkthdr.len); bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); bf->bf_m = m0; return 0; } /* * Chain together segments+descriptors for a non-11n frame. */ static void ath_tx_chaindesclist(struct ath_softc *sc, struct ath_buf *bf) { struct ath_hal *ah = sc->sc_ah; struct ath_desc *ds, *ds0; int i; HAL_DMA_ADDR bufAddrList[4]; uint32_t segLenList[4]; /* * XXX There's txdma and txdma_mgmt; the descriptor * sizes must match. */ struct ath_descdma *dd = &sc->sc_txdma; /* * Fillin the remainder of the descriptor info. */ ds0 = ds = bf->bf_desc; for (i = 0; i < bf->bf_nseg; i++, ds++) { bufAddrList[0] = bf->bf_segs[i].ds_addr; segLenList[0] = bf->bf_segs[i].ds_len; /* Blank this out until multi-buf support is added for AR9300 */ bufAddrList[1] = bufAddrList[2] = bufAddrList[3] = 0; segLenList[1] = segLenList[2] = segLenList[3] = 0; if (i == bf->bf_nseg - 1) ath_hal_settxdesclink(ah, ds, 0); else ath_hal_settxdesclink(ah, ds, bf->bf_daddr + dd->dd_descsize * (i + 1)); /* * XXX this assumes that bfs_txq is the actual destination * hardware queue at this point. It may not have been assigned, * it may actually be pointing to the multicast software * TXQ id. These must be fixed! */ ath_hal_filltxdesc(ah, ds , bufAddrList , segLenList , 0 /* XXX desc id */ , bf->bf_state.bfs_txq->axq_qnum /* XXX multicast? */ , i == 0 /* first segment */ , i == bf->bf_nseg - 1 /* last segment */ , ds0 /* first descriptor */ ); DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %d: %08x %08x %08x %08x %08x %08x\n", __func__, i, ds->ds_link, ds->ds_data, ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]); bf->bf_lastds = ds; } bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); } /* * Fill in the descriptor list for a aggregate subframe. * * The subframe is returned with the ds_link field in the last subframe * pointing to 0. */ static void ath_tx_chaindesclist_subframe(struct ath_softc *sc, struct ath_buf *bf) { struct ath_hal *ah = sc->sc_ah; struct ath_desc *ds, *ds0; int i; HAL_DMA_ADDR bufAddrList[4]; uint32_t segLenList[4]; /* * XXX There's txdma and txdma_mgmt; the descriptor * sizes must match. */ struct ath_descdma *dd = &sc->sc_txdma; ds0 = ds = bf->bf_desc; /* * There's no need to call ath_hal_setupfirsttxdesc here; * That's only going to occur for the first frame in an aggregate. */ for (i = 0; i < bf->bf_nseg; i++, ds++) { bzero(bufAddrList, sizeof(bufAddrList)); bzero(segLenList, sizeof(segLenList)); if (i == bf->bf_nseg - 1) ath_hal_settxdesclink(ah, ds, 0); else ath_hal_settxdesclink(ah, ds, bf->bf_daddr + dd->dd_descsize * (i + 1)); bufAddrList[0] = bf->bf_segs[i].ds_addr; segLenList[0] = bf->bf_segs[i].ds_len; /* * This performs the setup for an aggregate frame. * This includes enabling the aggregate flags if needed. */ ath_hal_chaintxdesc(ah, ds, bufAddrList, segLenList, bf->bf_state.bfs_pktlen, bf->bf_state.bfs_hdrlen, HAL_PKT_TYPE_AMPDU, /* forces aggregate bits to be set */ bf->bf_state.bfs_keyix, 0, /* cipher, calculated from keyix */ bf->bf_state.bfs_ndelim, i == 0, /* first segment */ i == bf->bf_nseg - 1, /* last segment */ bf->bf_next == NULL /* last sub-frame in aggr */ ); DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %d: %08x %08x %08x %08x %08x %08x\n", __func__, i, ds->ds_link, ds->ds_data, ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]); bf->bf_lastds = ds; bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); } } /* * Set the rate control fields in the given descriptor based on * the bf_state fields and node state. * * The bfs fields should already be set with the relevant rate * control information, including whether MRR is to be enabled. * * Since the FreeBSD HAL currently sets up the first TX rate * in ath_hal_setuptxdesc(), this will setup the MRR * conditionally for the pre-11n chips, and call ath_buf_set_rate * unconditionally for 11n chips. These require the 11n rate * scenario to be set if MCS rates are enabled, so it's easier * to just always call it. The caller can then only set rates 2, 3 * and 4 if multi-rate retry is needed. */ static void ath_tx_set_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf) { struct ath_rc_series *rc = bf->bf_state.bfs_rc; /* If mrr is disabled, blank tries 1, 2, 3 */ if (! bf->bf_state.bfs_ismrr) rc[1].tries = rc[2].tries = rc[3].tries = 0; /* * Always call - that way a retried descriptor will * have the MRR fields overwritten. * * XXX TODO: see if this is really needed - setting up * the first descriptor should set the MRR fields to 0 * for us anyway. */ if (ath_tx_is_11n(sc)) { ath_buf_set_rate(sc, ni, bf); } else { ath_hal_setupxtxdesc(sc->sc_ah, bf->bf_desc , rc[1].ratecode, rc[1].tries , rc[2].ratecode, rc[2].tries , rc[3].ratecode, rc[3].tries ); } } /* * Setup segments+descriptors for an 11n aggregate. * bf_first is the first buffer in the aggregate. * The descriptor list must already been linked together using * bf->bf_next. */ static void ath_tx_setds_11n(struct ath_softc *sc, struct ath_buf *bf_first) { struct ath_buf *bf, *bf_prev = NULL; DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: nframes=%d, al=%d\n", __func__, bf_first->bf_state.bfs_nframes, bf_first->bf_state.bfs_al); /* * Setup all descriptors of all subframes. */ bf = bf_first; while (bf != NULL) { DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: bf=%p, nseg=%d, pktlen=%d, seqno=%d\n", __func__, bf, bf->bf_nseg, bf->bf_state.bfs_pktlen, SEQNO(bf->bf_state.bfs_seqno)); /* Sub-frame setup */ ath_tx_chaindesclist_subframe(sc, bf); /* * Link the last descriptor of the previous frame * to the beginning descriptor of this frame. */ if (bf_prev != NULL) ath_hal_settxdesclink(sc->sc_ah, bf_prev->bf_lastds, bf->bf_daddr); /* Save a copy so we can link the next descriptor in */ bf_prev = bf; bf = bf->bf_next; } /* * Setup first descriptor of first frame. * chaintxdesc() overwrites the descriptor entries; * setupfirsttxdesc() merges in things. * Otherwise various fields aren't set correctly (eg flags). */ ath_hal_setupfirsttxdesc(sc->sc_ah, bf_first->bf_desc, bf_first->bf_state.bfs_al, bf_first->bf_state.bfs_txflags | HAL_TXDESC_INTREQ, bf_first->bf_state.bfs_txpower, bf_first->bf_state.bfs_txrate0, bf_first->bf_state.bfs_try0, bf_first->bf_state.bfs_txantenna, bf_first->bf_state.bfs_ctsrate, bf_first->bf_state.bfs_ctsduration); /* * Set the first descriptor bf_lastds field to point to * the last descriptor in the last subframe, that's where * the status update will occur. */ bf_first->bf_lastds = bf_prev->bf_lastds; /* * And bf_last in the first descriptor points to the end of * the aggregate list. */ bf_first->bf_last = bf_prev; /* * setup first desc with rate and aggr info */ ath_tx_set_ratectrl(sc, bf_first->bf_node, bf_first); /* * Setup the last descriptor in the list. * * bf_first->bf_lastds already points to it; the rate * control information needs to be squirreled away here * as well ans clearing the moreaggr/paddelim fields. */ ath_hal_setuplasttxdesc(sc->sc_ah, bf_first->bf_lastds, bf_first->bf_desc); DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: end\n", __func__); } /* * Hand-off a frame to the multicast TX queue. * * This is a software TXQ which will be appended to the CAB queue * during the beacon setup code. * * XXX TODO: since the AR9300 EDMA TX queue support wants the QCU ID * as part of the TX descriptor, bf_state.bfs_txq must be updated * with the actual hardware txq, or all of this will fall apart. * * XXX It may not be a bad idea to just stuff the QCU ID into bf_state * and retire bfs_txq; then make sure the CABQ QCU ID is populated * correctly. */ static void ath_tx_handoff_mcast(struct ath_softc *sc, struct ath_txq *txq, struct ath_buf *bf) { ATH_TXQ_LOCK_ASSERT(txq); KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0, ("%s: busy status 0x%x", __func__, bf->bf_flags)); if (txq->axq_link != NULL) { struct ath_buf *last = ATH_TXQ_LAST(txq, axq_q_s); struct ieee80211_frame *wh; /* mark previous frame */ wh = mtod(last->bf_m, struct ieee80211_frame *); wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; bus_dmamap_sync(sc->sc_dmat, last->bf_dmamap, BUS_DMASYNC_PREWRITE); /* link descriptor */ *txq->axq_link = bf->bf_daddr; } ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); ath_hal_gettxdesclinkptr(sc->sc_ah, bf->bf_lastds, &txq->axq_link); } /* * Hand-off packet to a hardware queue. */ static void ath_tx_handoff_hw(struct ath_softc *sc, struct ath_txq *txq, struct ath_buf *bf) { struct ath_hal *ah = sc->sc_ah; /* * Insert the frame on the outbound list and pass it on * to the hardware. Multicast frames buffered for power * save stations and transmit from the CAB queue are stored * on a s/w only queue and loaded on to the CAB queue in * the SWBA handler since frames only go out on DTIM and * to avoid possible races. */ ATH_TXQ_LOCK_ASSERT(txq); KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0, ("%s: busy status 0x%x", __func__, bf->bf_flags)); KASSERT(txq->axq_qnum != ATH_TXQ_SWQ, ("ath_tx_handoff_hw called for mcast queue")); #if 0 /* * This causes a LOR. Find out where the PCU lock is being * held whilst the TXQ lock is grabbed - that shouldn't * be occuring. */ ATH_PCU_LOCK(sc); if (sc->sc_inreset_cnt) { ATH_PCU_UNLOCK(sc); DPRINTF(sc, ATH_DEBUG_RESET, "%s: called with sc_in_reset != 0\n", __func__); DPRINTF(sc, ATH_DEBUG_XMIT, "%s: queued: TXDP[%u] = %p (%p) depth %d\n", __func__, txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth); ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); if (bf->bf_state.bfs_aggr) txq->axq_aggr_depth++; /* * There's no need to update axq_link; the hardware * is in reset and once the reset is complete, any * non-empty queues will simply have DMA restarted. */ return; } ATH_PCU_UNLOCK(sc); #endif /* For now, so not to generate whitespace diffs */ if (1) { #ifdef IEEE80211_SUPPORT_TDMA int qbusy; ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); qbusy = ath_hal_txqenabled(ah, txq->axq_qnum); if (txq->axq_link == NULL) { /* * Be careful writing the address to TXDP. If * the tx q is enabled then this write will be * ignored. Normally this is not an issue but * when tdma is in use and the q is beacon gated * this race can occur. If the q is busy then * defer the work to later--either when another * packet comes along or when we prepare a beacon * frame at SWBA. */ if (!qbusy) { ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); txq->axq_flags &= ~ATH_TXQ_PUTPENDING; DPRINTF(sc, ATH_DEBUG_XMIT, "%s: TXDP[%u] = %p (%p) depth %d\n", __func__, txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth); } else { txq->axq_flags |= ATH_TXQ_PUTPENDING; DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT, "%s: Q%u busy, defer enable\n", __func__, txq->axq_qnum); } } else { *txq->axq_link = bf->bf_daddr; DPRINTF(sc, ATH_DEBUG_XMIT, "%s: link[%u](%p)=%p (%p) depth %d\n", __func__, txq->axq_qnum, txq->axq_link, (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth); if ((txq->axq_flags & ATH_TXQ_PUTPENDING) && !qbusy) { /* * The q was busy when we previously tried * to write the address of the first buffer * in the chain. Since it's not busy now * handle this chore. We are certain the * buffer at the front is the right one since * axq_link is NULL only when the buffer list * is/was empty. */ ath_hal_puttxbuf(ah, txq->axq_qnum, TAILQ_FIRST(&txq->axq_q)->bf_daddr); txq->axq_flags &= ~ATH_TXQ_PUTPENDING; DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT, "%s: Q%u restarted\n", __func__, txq->axq_qnum); } } #else ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); if (txq->axq_link == NULL) { ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); DPRINTF(sc, ATH_DEBUG_XMIT, "%s: TXDP[%u] = %p (%p) depth %d\n", __func__, txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth); } else { *txq->axq_link = bf->bf_daddr; DPRINTF(sc, ATH_DEBUG_XMIT, "%s: link[%u](%p)=%p (%p) depth %d\n", __func__, txq->axq_qnum, txq->axq_link, (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth); } #endif /* IEEE80211_SUPPORT_TDMA */ if (bf->bf_state.bfs_aggr) txq->axq_aggr_depth++; ath_hal_gettxdesclinkptr(ah, bf->bf_lastds, &txq->axq_link); ath_hal_txstart(ah, txq->axq_qnum); } } /* * Restart TX DMA for the given TXQ. * * This must be called whether the queue is empty or not. */ static void ath_legacy_tx_dma_restart(struct ath_softc *sc, struct ath_txq *txq) { struct ath_hal *ah = sc->sc_ah; struct ath_buf *bf, *bf_last; ATH_TXQ_LOCK_ASSERT(txq); /* This is always going to be cleared, empty or not */ txq->axq_flags &= ~ATH_TXQ_PUTPENDING; /* XXX make this ATH_TXQ_FIRST */ bf = TAILQ_FIRST(&txq->axq_q); bf_last = ATH_TXQ_LAST(txq, axq_q_s); if (bf == NULL) return; ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); ath_hal_gettxdesclinkptr(ah, bf_last->bf_lastds, &txq->axq_link); ath_hal_txstart(ah, txq->axq_qnum); } /* * Hand off a packet to the hardware (or mcast queue.) * * The relevant hardware txq should be locked. */ static void ath_legacy_xmit_handoff(struct ath_softc *sc, struct ath_txq *txq, struct ath_buf *bf) { ATH_TXQ_LOCK_ASSERT(txq); if (txq->axq_qnum == ATH_TXQ_SWQ) ath_tx_handoff_mcast(sc, txq, bf); else ath_tx_handoff_hw(sc, txq, bf); } static int ath_tx_tag_crypto(struct ath_softc *sc, struct ieee80211_node *ni, struct mbuf *m0, int iswep, int isfrag, int *hdrlen, int *pktlen, int *keyix) { DPRINTF(sc, ATH_DEBUG_XMIT, "%s: hdrlen=%d, pktlen=%d, isfrag=%d, iswep=%d, m0=%p\n", __func__, *hdrlen, *pktlen, isfrag, iswep, m0); if (iswep) { const struct ieee80211_cipher *cip; struct ieee80211_key *k; /* * Construct the 802.11 header+trailer for an encrypted * frame. The only reason this can fail is because of an * unknown or unsupported cipher/key type. */ k = ieee80211_crypto_encap(ni, m0); if (k == NULL) { /* * This can happen when the key is yanked after the * frame was queued. Just discard the frame; the * 802.11 layer counts failures and provides * debugging/diagnostics. */ return (0); } /* * Adjust the packet + header lengths for the crypto * additions and calculate the h/w key index. When * a s/w mic is done the frame will have had any mic * added to it prior to entry so m0->m_pkthdr.len will * account for it. Otherwise we need to add it to the * packet length. */ cip = k->wk_cipher; (*hdrlen) += cip->ic_header; (*pktlen) += cip->ic_header + cip->ic_trailer; /* NB: frags always have any TKIP MIC done in s/w */ if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag) (*pktlen) += cip->ic_miclen; (*keyix) = k->wk_keyix; } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) { /* * Use station key cache slot, if assigned. */ (*keyix) = ni->ni_ucastkey.wk_keyix; if ((*keyix) == IEEE80211_KEYIX_NONE) (*keyix) = HAL_TXKEYIX_INVALID; } else (*keyix) = HAL_TXKEYIX_INVALID; return (1); } /* * Calculate whether interoperability protection is required for * this frame. * * This requires the rate control information be filled in, * as the protection requirement depends upon the current * operating mode / PHY. */ static void ath_tx_calc_protection(struct ath_softc *sc, struct ath_buf *bf) { struct ieee80211_frame *wh; uint8_t rix; uint16_t flags; int shortPreamble; const HAL_RATE_TABLE *rt = sc->sc_currates; struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; flags = bf->bf_state.bfs_txflags; rix = bf->bf_state.bfs_rc[0].rix; shortPreamble = bf->bf_state.bfs_shpream; wh = mtod(bf->bf_m, struct ieee80211_frame *); /* * If 802.11g protection is enabled, determine whether * to use RTS/CTS or just CTS. Note that this is only * done for OFDM unicast frames. */ if ((ic->ic_flags & IEEE80211_F_USEPROT) && rt->info[rix].phy == IEEE80211_T_OFDM && (flags & HAL_TXDESC_NOACK) == 0) { bf->bf_state.bfs_doprot = 1; /* XXX fragments must use CCK rates w/ protection */ if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) { flags |= HAL_TXDESC_RTSENA; } else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) { flags |= HAL_TXDESC_CTSENA; } /* * For frags it would be desirable to use the * highest CCK rate for RTS/CTS. But stations * farther away may detect it at a lower CCK rate * so use the configured protection rate instead * (for now). */ sc->sc_stats.ast_tx_protect++; } /* * If 11n protection is enabled and it's a HT frame, * enable RTS. * * XXX ic_htprotmode or ic_curhtprotmode? * XXX should it_htprotmode only matter if ic_curhtprotmode * XXX indicates it's not a HT pure environment? */ if ((ic->ic_htprotmode == IEEE80211_PROT_RTSCTS) && rt->info[rix].phy == IEEE80211_T_HT && (flags & HAL_TXDESC_NOACK) == 0) { flags |= HAL_TXDESC_RTSENA; sc->sc_stats.ast_tx_htprotect++; } bf->bf_state.bfs_txflags = flags; } /* * Update the frame duration given the currently selected rate. * * This also updates the frame duration value, so it will require * a DMA flush. */ static void ath_tx_calc_duration(struct ath_softc *sc, struct ath_buf *bf) { struct ieee80211_frame *wh; uint8_t rix; uint16_t flags; int shortPreamble; struct ath_hal *ah = sc->sc_ah; const HAL_RATE_TABLE *rt = sc->sc_currates; int isfrag = bf->bf_m->m_flags & M_FRAG; flags = bf->bf_state.bfs_txflags; rix = bf->bf_state.bfs_rc[0].rix; shortPreamble = bf->bf_state.bfs_shpream; wh = mtod(bf->bf_m, struct ieee80211_frame *); /* * Calculate duration. This logically belongs in the 802.11 * layer but it lacks sufficient information to calculate it. */ if ((flags & HAL_TXDESC_NOACK) == 0 && (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) { u_int16_t dur; if (shortPreamble) dur = rt->info[rix].spAckDuration; else dur = rt->info[rix].lpAckDuration; if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) { dur += dur; /* additional SIFS+ACK */ KASSERT(bf->bf_m->m_nextpkt != NULL, ("no fragment")); /* * Include the size of next fragment so NAV is * updated properly. The last fragment uses only * the ACK duration */ dur += ath_hal_computetxtime(ah, rt, bf->bf_m->m_nextpkt->m_pkthdr.len, rix, shortPreamble); } if (isfrag) { /* * Force hardware to use computed duration for next * fragment by disabling multi-rate retry which updates * duration based on the multi-rate duration table. */ bf->bf_state.bfs_ismrr = 0; bf->bf_state.bfs_try0 = ATH_TXMGTTRY; /* XXX update bfs_rc[0].try? */ } /* Update the duration field itself */ *(u_int16_t *)wh->i_dur = htole16(dur); } } static uint8_t ath_tx_get_rtscts_rate(struct ath_hal *ah, const HAL_RATE_TABLE *rt, int cix, int shortPreamble) { uint8_t ctsrate; /* * CTS transmit rate is derived from the transmit rate * by looking in the h/w rate table. We must also factor * in whether or not a short preamble is to be used. */ /* NB: cix is set above where RTS/CTS is enabled */ KASSERT(cix != 0xff, ("cix not setup")); ctsrate = rt->info[cix].rateCode; /* XXX this should only matter for legacy rates */ if (shortPreamble) ctsrate |= rt->info[cix].shortPreamble; return (ctsrate); } /* * Calculate the RTS/CTS duration for legacy frames. */ static int ath_tx_calc_ctsduration(struct ath_hal *ah, int rix, int cix, int shortPreamble, int pktlen, const HAL_RATE_TABLE *rt, int flags) { int ctsduration = 0; /* This mustn't be called for HT modes */ if (rt->info[cix].phy == IEEE80211_T_HT) { printf("%s: HT rate where it shouldn't be (0x%x)\n", __func__, rt->info[cix].rateCode); return (-1); } /* * Compute the transmit duration based on the frame * size and the size of an ACK frame. We call into the * HAL to do the computation since it depends on the * characteristics of the actual PHY being used. * * NB: CTS is assumed the same size as an ACK so we can * use the precalculated ACK durations. */ if (shortPreamble) { if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */ ctsduration += rt->info[cix].spAckDuration; ctsduration += ath_hal_computetxtime(ah, rt, pktlen, rix, AH_TRUE); if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */ ctsduration += rt->info[rix].spAckDuration; } else { if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */ ctsduration += rt->info[cix].lpAckDuration; ctsduration += ath_hal_computetxtime(ah, rt, pktlen, rix, AH_FALSE); if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */ ctsduration += rt->info[rix].lpAckDuration; } return (ctsduration); } /* * Update the given ath_buf with updated rts/cts setup and duration * values. * * To support rate lookups for each software retry, the rts/cts rate * and cts duration must be re-calculated. * * This function assumes the RTS/CTS flags have been set as needed; * mrr has been disabled; and the rate control lookup has been done. * * XXX TODO: MRR need only be disabled for the pre-11n NICs. * XXX The 11n NICs support per-rate RTS/CTS configuration. */ static void ath_tx_set_rtscts(struct ath_softc *sc, struct ath_buf *bf) { uint16_t ctsduration = 0; uint8_t ctsrate = 0; uint8_t rix = bf->bf_state.bfs_rc[0].rix; uint8_t cix = 0; const HAL_RATE_TABLE *rt = sc->sc_currates; /* * No RTS/CTS enabled? Don't bother. */ if ((bf->bf_state.bfs_txflags & (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) == 0) { /* XXX is this really needed? */ bf->bf_state.bfs_ctsrate = 0; bf->bf_state.bfs_ctsduration = 0; return; } /* * If protection is enabled, use the protection rix control * rate. Otherwise use the rate0 control rate. */ if (bf->bf_state.bfs_doprot) rix = sc->sc_protrix; else rix = bf->bf_state.bfs_rc[0].rix; /* * If the raw path has hard-coded ctsrate0 to something, * use it. */ if (bf->bf_state.bfs_ctsrate0 != 0) cix = ath_tx_findrix(sc, bf->bf_state.bfs_ctsrate0); else /* Control rate from above */ cix = rt->info[rix].controlRate; /* Calculate the rtscts rate for the given cix */ ctsrate = ath_tx_get_rtscts_rate(sc->sc_ah, rt, cix, bf->bf_state.bfs_shpream); /* The 11n chipsets do ctsduration calculations for you */ if (! ath_tx_is_11n(sc)) ctsduration = ath_tx_calc_ctsduration(sc->sc_ah, rix, cix, bf->bf_state.bfs_shpream, bf->bf_state.bfs_pktlen, rt, bf->bf_state.bfs_txflags); /* Squirrel away in ath_buf */ bf->bf_state.bfs_ctsrate = ctsrate; bf->bf_state.bfs_ctsduration = ctsduration; /* * Must disable multi-rate retry when using RTS/CTS. */ if (!sc->sc_mrrprot) { bf->bf_state.bfs_ismrr = 0; bf->bf_state.bfs_try0 = bf->bf_state.bfs_rc[0].tries = ATH_TXMGTTRY; /* XXX ew */ } } /* * Setup the descriptor chain for a normal or fast-frame * frame. * * XXX TODO: extend to include the destination hardware QCU ID. * Make sure that is correct. Make sure that when being added * to the mcastq, the CABQ QCUID is set or things will get a bit * odd. */ static void ath_tx_setds(struct ath_softc *sc, struct ath_buf *bf) { struct ath_desc *ds = bf->bf_desc; struct ath_hal *ah = sc->sc_ah; ath_hal_setuptxdesc(ah, ds , bf->bf_state.bfs_pktlen /* packet length */ , bf->bf_state.bfs_hdrlen /* header length */ , bf->bf_state.bfs_atype /* Atheros packet type */ , bf->bf_state.bfs_txpower /* txpower */ , bf->bf_state.bfs_txrate0 , bf->bf_state.bfs_try0 /* series 0 rate/tries */ , bf->bf_state.bfs_keyix /* key cache index */ , bf->bf_state.bfs_txantenna /* antenna mode */ , bf->bf_state.bfs_txflags /* flags */ , bf->bf_state.bfs_ctsrate /* rts/cts rate */ , bf->bf_state.bfs_ctsduration /* rts/cts duration */ ); /* * This will be overriden when the descriptor chain is written. */ bf->bf_lastds = ds; bf->bf_last = bf; /* Set rate control and descriptor chain for this frame */ ath_tx_set_ratectrl(sc, bf->bf_node, bf); ath_tx_chaindesclist(sc, bf); } /* * Do a rate lookup. * * This performs a rate lookup for the given ath_buf only if it's required. * Non-data frames and raw frames don't require it. * * This populates the primary and MRR entries; MRR values are * then disabled later on if something requires it (eg RTS/CTS on * pre-11n chipsets. * * This needs to be done before the RTS/CTS fields are calculated * as they may depend upon the rate chosen. */ static void ath_tx_do_ratelookup(struct ath_softc *sc, struct ath_buf *bf) { uint8_t rate, rix; int try0; if (! bf->bf_state.bfs_doratelookup) return; /* Get rid of any previous state */ bzero(bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc)); ATH_NODE_LOCK(ATH_NODE(bf->bf_node)); ath_rate_findrate(sc, ATH_NODE(bf->bf_node), bf->bf_state.bfs_shpream, bf->bf_state.bfs_pktlen, &rix, &try0, &rate); /* In case MRR is disabled, make sure rc[0] is setup correctly */ bf->bf_state.bfs_rc[0].rix = rix; bf->bf_state.bfs_rc[0].ratecode = rate; bf->bf_state.bfs_rc[0].tries = try0; if (bf->bf_state.bfs_ismrr && try0 != ATH_TXMAXTRY) ath_rate_getxtxrates(sc, ATH_NODE(bf->bf_node), rix, bf->bf_state.bfs_rc); ATH_NODE_UNLOCK(ATH_NODE(bf->bf_node)); sc->sc_txrix = rix; /* for LED blinking */ sc->sc_lastdatarix = rix; /* for fast frames */ bf->bf_state.bfs_try0 = try0; bf->bf_state.bfs_txrate0 = rate; } /* * Transmit the given frame to the hardware. * * The frame must already be setup; rate control must already have * been done. * * XXX since the TXQ lock is being held here (and I dislike holding * it for this long when not doing software aggregation), later on * break this function into "setup_normal" and "xmit_normal". The * lock only needs to be held for the ath_tx_handoff call. */ static void ath_tx_xmit_normal(struct ath_softc *sc, struct ath_txq *txq, struct ath_buf *bf) { ATH_TXQ_LOCK_ASSERT(txq); /* Setup the descriptor before handoff */ ath_tx_do_ratelookup(sc, bf); ath_tx_calc_duration(sc, bf); ath_tx_calc_protection(sc, bf); ath_tx_set_rtscts(sc, bf); ath_tx_rate_fill_rcflags(sc, bf); ath_tx_setds(sc, bf); /* Hand off to hardware */ ath_tx_handoff(sc, txq, bf); } static int ath_tx_normal_setup(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf, struct mbuf *m0, struct ath_txq *txq) { struct ieee80211vap *vap = ni->ni_vap; struct ath_hal *ah = sc->sc_ah; struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams; int error, iswep, ismcast, isfrag, ismrr; int keyix, hdrlen, pktlen, try0 = 0; u_int8_t rix = 0, txrate = 0; struct ath_desc *ds; struct ieee80211_frame *wh; u_int subtype, flags; HAL_PKT_TYPE atype; const HAL_RATE_TABLE *rt; HAL_BOOL shortPreamble; struct ath_node *an; u_int pri; /* * To ensure that both sequence numbers and the CCMP PN handling * is "correct", make sure that the relevant TID queue is locked. * Otherwise the CCMP PN and seqno may appear out of order, causing * re-ordered frames to have out of order CCMP PN's, resulting * in many, many frame drops. */ ATH_TXQ_LOCK_ASSERT(txq); wh = mtod(m0, struct ieee80211_frame *); iswep = wh->i_fc[1] & IEEE80211_FC1_WEP; ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); isfrag = m0->m_flags & M_FRAG; hdrlen = ieee80211_anyhdrsize(wh); /* * Packet length must not include any * pad bytes; deduct them here. */ pktlen = m0->m_pkthdr.len - (hdrlen & 3); /* Handle encryption twiddling if needed */ if (! ath_tx_tag_crypto(sc, ni, m0, iswep, isfrag, &hdrlen, &pktlen, &keyix)) { ath_freetx(m0); return EIO; } /* packet header may have moved, reset our local pointer */ wh = mtod(m0, struct ieee80211_frame *); pktlen += IEEE80211_CRC_LEN; /* * Load the DMA map so any coalescing is done. This * also calculates the number of descriptors we need. */ error = ath_tx_dmasetup(sc, bf, m0); if (error != 0) return error; bf->bf_node = ni; /* NB: held reference */ m0 = bf->bf_m; /* NB: may have changed */ wh = mtod(m0, struct ieee80211_frame *); /* setup descriptors */ ds = bf->bf_desc; rt = sc->sc_currates; KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); /* * NB: the 802.11 layer marks whether or not we should * use short preamble based on the current mode and * negotiated parameters. */ if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) { shortPreamble = AH_TRUE; sc->sc_stats.ast_tx_shortpre++; } else { shortPreamble = AH_FALSE; } an = ATH_NODE(ni); flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */ ismrr = 0; /* default no multi-rate retry*/ pri = M_WME_GETAC(m0); /* honor classification */ /* XXX use txparams instead of fixed values */ /* * Calculate Atheros packet type from IEEE80211 packet header, * setup for rate calculations, and select h/w transmit queue. */ switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { case IEEE80211_FC0_TYPE_MGT: subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; if (subtype == IEEE80211_FC0_SUBTYPE_BEACON) atype = HAL_PKT_TYPE_BEACON; else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) atype = HAL_PKT_TYPE_PROBE_RESP; else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM) atype = HAL_PKT_TYPE_ATIM; else atype = HAL_PKT_TYPE_NORMAL; /* XXX */ rix = an->an_mgmtrix; txrate = rt->info[rix].rateCode; if (shortPreamble) txrate |= rt->info[rix].shortPreamble; try0 = ATH_TXMGTTRY; flags |= HAL_TXDESC_INTREQ; /* force interrupt */ break; case IEEE80211_FC0_TYPE_CTL: atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */ rix = an->an_mgmtrix; txrate = rt->info[rix].rateCode; if (shortPreamble) txrate |= rt->info[rix].shortPreamble; try0 = ATH_TXMGTTRY; flags |= HAL_TXDESC_INTREQ; /* force interrupt */ break; case IEEE80211_FC0_TYPE_DATA: atype = HAL_PKT_TYPE_NORMAL; /* default */ /* * Data frames: multicast frames go out at a fixed rate, * EAPOL frames use the mgmt frame rate; otherwise consult * the rate control module for the rate to use. */ if (ismcast) { rix = an->an_mcastrix; txrate = rt->info[rix].rateCode; if (shortPreamble) txrate |= rt->info[rix].shortPreamble; try0 = 1; } else if (m0->m_flags & M_EAPOL) { /* XXX? maybe always use long preamble? */ rix = an->an_mgmtrix; txrate = rt->info[rix].rateCode; if (shortPreamble) txrate |= rt->info[rix].shortPreamble; try0 = ATH_TXMAXTRY; /* XXX?too many? */ } else { /* * Do rate lookup on each TX, rather than using * the hard-coded TX information decided here. */ ismrr = 1; bf->bf_state.bfs_doratelookup = 1; } if (cap->cap_wmeParams[pri].wmep_noackPolicy) flags |= HAL_TXDESC_NOACK; break; default: if_printf(ifp, "bogus frame type 0x%x (%s)\n", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__); /* XXX statistic */ ath_freetx(m0); return EIO; } /* * There are two known scenarios where the frame AC doesn't match * what the destination TXQ is. * * + non-QoS frames (eg management?) that the net80211 stack has * assigned a higher AC to, but since it's a non-QoS TID, it's * being thrown into TID 16. TID 16 gets the AC_BE queue. * It's quite possible that management frames should just be * direct dispatched to hardware rather than go via the software * queue; that should be investigated in the future. There are * some specific scenarios where this doesn't make sense, mostly * surrounding ADDBA request/response - hence why that is special * cased. * * + Multicast frames going into the VAP mcast queue. That shows up * as "TXQ 11". * * This driver should eventually support separate TID and TXQ locking, * allowing for arbitrary AC frames to appear on arbitrary software * queues, being queued to the "correct" hardware queue when needed. */ #if 0 if (txq != sc->sc_ac2q[pri]) { device_printf(sc->sc_dev, "%s: txq=%p (%d), pri=%d, pri txq=%p (%d)\n", __func__, txq, txq->axq_qnum, pri, sc->sc_ac2q[pri], sc->sc_ac2q[pri]->axq_qnum); } #endif /* * Calculate miscellaneous flags. */ if (ismcast) { flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */ } else if (pktlen > vap->iv_rtsthreshold && (ni->ni_ath_flags & IEEE80211_NODE_FF) == 0) { flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */ sc->sc_stats.ast_tx_rts++; } if (flags & HAL_TXDESC_NOACK) /* NB: avoid double counting */ sc->sc_stats.ast_tx_noack++; #ifdef IEEE80211_SUPPORT_TDMA if (sc->sc_tdma && (flags & HAL_TXDESC_NOACK) == 0) { DPRINTF(sc, ATH_DEBUG_TDMA, "%s: discard frame, ACK required w/ TDMA\n", __func__); sc->sc_stats.ast_tdma_ack++; ath_freetx(m0); return EIO; } #endif /* * Determine if a tx interrupt should be generated for * this descriptor. We take a tx interrupt to reap * descriptors when the h/w hits an EOL condition or * when the descriptor is specifically marked to generate * an interrupt. We periodically mark descriptors in this * way to insure timely replenishing of the supply needed * for sending frames. Defering interrupts reduces system * load and potentially allows more concurrent work to be * done but if done to aggressively can cause senders to * backup. * * NB: use >= to deal with sc_txintrperiod changing * dynamically through sysctl. */ if (flags & HAL_TXDESC_INTREQ) { txq->axq_intrcnt = 0; } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) { flags |= HAL_TXDESC_INTREQ; txq->axq_intrcnt = 0; } /* This point forward is actual TX bits */ /* * At this point we are committed to sending the frame * and we don't need to look at m_nextpkt; clear it in * case this frame is part of frag chain. */ m0->m_nextpkt = NULL; if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT)) ieee80211_dump_pkt(ic, mtod(m0, const uint8_t *), m0->m_len, sc->sc_hwmap[rix].ieeerate, -1); if (ieee80211_radiotap_active_vap(vap)) { u_int64_t tsf = ath_hal_gettsf64(ah); sc->sc_tx_th.wt_tsf = htole64(tsf); sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags; if (iswep) sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; if (isfrag) sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG; sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate; sc->sc_tx_th.wt_txpower = ni->ni_txpower; sc->sc_tx_th.wt_antenna = sc->sc_txantenna; ieee80211_radiotap_tx(vap, m0); } /* Blank the legacy rate array */ bzero(&bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc)); /* * ath_buf_set_rate needs at least one rate/try to setup * the rate scenario. */ bf->bf_state.bfs_rc[0].rix = rix; bf->bf_state.bfs_rc[0].tries = try0; bf->bf_state.bfs_rc[0].ratecode = txrate; /* Store the decided rate index values away */ bf->bf_state.bfs_pktlen = pktlen; bf->bf_state.bfs_hdrlen = hdrlen; bf->bf_state.bfs_atype = atype; bf->bf_state.bfs_txpower = ni->ni_txpower; bf->bf_state.bfs_txrate0 = txrate; bf->bf_state.bfs_try0 = try0; bf->bf_state.bfs_keyix = keyix; bf->bf_state.bfs_txantenna = sc->sc_txantenna; bf->bf_state.bfs_txflags = flags; bf->bf_state.bfs_shpream = shortPreamble; /* XXX this should be done in ath_tx_setrate() */ bf->bf_state.bfs_ctsrate0 = 0; /* ie, no hard-coded ctsrate */ bf->bf_state.bfs_ctsrate = 0; /* calculated later */ bf->bf_state.bfs_ctsduration = 0; bf->bf_state.bfs_ismrr = ismrr; return 0; } /* * Direct-dispatch the current frame to the hardware. * * This can be called by the net80211 code. * * XXX what about locking? Or, push the seqno assign into the * XXX aggregate scheduler so its serialised? */ int ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf, struct mbuf *m0) { struct ieee80211vap *vap = ni->ni_vap; struct ath_vap *avp = ATH_VAP(vap); int r = 0; u_int pri; int tid; struct ath_txq *txq; int ismcast; const struct ieee80211_frame *wh; int is_ampdu, is_ampdu_tx, is_ampdu_pending; ieee80211_seq seqno; uint8_t type, subtype; /* * Determine the target hardware queue. * * For multicast frames, the txq gets overridden appropriately * depending upon the state of PS. * * For any other frame, we do a TID/QoS lookup inside the frame * to see what the TID should be. If it's a non-QoS frame, the * AC and TID are overridden. The TID/TXQ code assumes the * TID is on a predictable hardware TXQ, so we don't support * having a node TID queued to multiple hardware TXQs. * This may change in the future but would require some locking * fudgery. */ pri = ath_tx_getac(sc, m0); tid = ath_tx_gettid(sc, m0); txq = sc->sc_ac2q[pri]; wh = mtod(m0, struct ieee80211_frame *); ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; /* * Enforce how deep the multicast queue can grow. * * XXX duplicated in ath_raw_xmit(). */ if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { ATH_TXQ_LOCK(sc->sc_cabq); if (sc->sc_cabq->axq_depth > sc->sc_txq_mcastq_maxdepth) { sc->sc_stats.ast_tx_mcastq_overflow++; r = ENOBUFS; } ATH_TXQ_UNLOCK(sc->sc_cabq); if (r != 0) { m_freem(m0); return r; } } /* A-MPDU TX */ is_ampdu_tx = ath_tx_ampdu_running(sc, ATH_NODE(ni), tid); is_ampdu_pending = ath_tx_ampdu_pending(sc, ATH_NODE(ni), tid); is_ampdu = is_ampdu_tx | is_ampdu_pending; DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, ac=%d, is_ampdu=%d\n", __func__, tid, pri, is_ampdu); /* Set local packet state, used to queue packets to hardware */ bf->bf_state.bfs_tid = tid; bf->bf_state.bfs_txq = txq; bf->bf_state.bfs_pri = pri; /* * When servicing one or more stations in power-save mode * (or) if there is some mcast data waiting on the mcast * queue (to prevent out of order delivery) multicast frames * must be bufferd until after the beacon. * * TODO: we should lock the mcastq before we check the length. */ if (ismcast && (vap->iv_ps_sta || avp->av_mcastq.axq_depth)) { txq = &avp->av_mcastq; /* * Mark the frame as eventually belonging on the CAB * queue, so the descriptor setup functions will * correctly initialise the descriptor 'qcuId' field. */ bf->bf_state.bfs_txq = sc->sc_cabq; } /* Do the generic frame setup */ /* XXX should just bzero the bf_state? */ bf->bf_state.bfs_dobaw = 0; /* * Acquire the TXQ lock early, so both the encap and seqno * are allocated together. * * XXX should TXQ for CABQ traffic be the multicast queue, * or the TXQ the given PRI would allocate from? (eg for * sequence number allocation locking.) */ ATH_TXQ_LOCK(txq); /* A-MPDU TX? Manually set sequence number */ /* * Don't do it whilst pending; the net80211 layer still * assigns them. */ if (is_ampdu_tx) { /* * Always call; this function will * handle making sure that null data frames * don't get a sequence number from the current * TID and thus mess with the BAW. */ seqno = ath_tx_tid_seqno_assign(sc, ni, bf, m0); /* * Don't add QoS NULL frames to the BAW. */ if (IEEE80211_QOS_HAS_SEQ(wh) && subtype != IEEE80211_FC0_SUBTYPE_QOS_NULL) { bf->bf_state.bfs_dobaw = 1; } } /* * If needed, the sequence number has been assigned. * Squirrel it away somewhere easy to get to. */ bf->bf_state.bfs_seqno = M_SEQNO_GET(m0) << IEEE80211_SEQ_SEQ_SHIFT; /* Is ampdu pending? fetch the seqno and print it out */ if (is_ampdu_pending) DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid %d: ampdu pending, seqno %d\n", __func__, tid, M_SEQNO_GET(m0)); /* This also sets up the DMA map */ r = ath_tx_normal_setup(sc, ni, bf, m0, txq); if (r != 0) goto done; /* At this point m0 could have changed! */ m0 = bf->bf_m; #if 1 /* * If it's a multicast frame, do a direct-dispatch to the * destination hardware queue. Don't bother software * queuing it. */ /* * If it's a BAR frame, do a direct dispatch to the * destination hardware queue. Don't bother software * queuing it, as the TID will now be paused. * Sending a BAR frame can occur from the net80211 txa timer * (ie, retries) or from the ath txtask (completion call.) * It queues directly to hardware because the TID is paused * at this point (and won't be unpaused until the BAR has * either been TXed successfully or max retries has been * reached.) */ if (txq == &avp->av_mcastq) { DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p: mcastq: TX'ing\n", __func__, bf); ath_tx_xmit_normal(sc, txq, bf); } else if (type == IEEE80211_FC0_TYPE_CTL && subtype == IEEE80211_FC0_SUBTYPE_BAR) { DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: BAR: TX'ing direct\n", __func__); ath_tx_xmit_normal(sc, txq, bf); } else { /* add to software queue */ DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p: swq: TX'ing\n", __func__, bf); ath_tx_swq(sc, ni, txq, bf); } #else /* * For now, since there's no software queue, * direct-dispatch to the hardware. */ ath_tx_xmit_normal(sc, txq, bf); #endif done: ATH_TXQ_UNLOCK(txq); return 0; } static int ath_tx_raw_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf, struct mbuf *m0, const struct ieee80211_bpf_params *params) { struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; struct ath_hal *ah = sc->sc_ah; struct ieee80211vap *vap = ni->ni_vap; int error, ismcast, ismrr; int keyix, hdrlen, pktlen, try0, txantenna; u_int8_t rix, txrate; struct ieee80211_frame *wh; u_int flags; HAL_PKT_TYPE atype; const HAL_RATE_TABLE *rt; struct ath_desc *ds; u_int pri; int o_tid = -1; int do_override; wh = mtod(m0, struct ieee80211_frame *); ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); hdrlen = ieee80211_anyhdrsize(wh); /* * Packet length must not include any * pad bytes; deduct them here. */ /* XXX honor IEEE80211_BPF_DATAPAD */ pktlen = m0->m_pkthdr.len - (hdrlen & 3) + IEEE80211_CRC_LEN; DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: ismcast=%d\n", __func__, ismcast); pri = params->ibp_pri & 3; /* Override pri if the frame isn't a QoS one */ if (! IEEE80211_QOS_HAS_SEQ(wh)) pri = ath_tx_getac(sc, m0); /* XXX If it's an ADDBA, override the correct queue */ do_override = ath_tx_action_frame_override_queue(sc, ni, m0, &o_tid); /* Map ADDBA to the correct priority */ if (do_override) { #if 0 device_printf(sc->sc_dev, "%s: overriding tid %d pri %d -> %d\n", __func__, o_tid, pri, TID_TO_WME_AC(o_tid)); #endif pri = TID_TO_WME_AC(o_tid); } ATH_TXQ_LOCK(sc->sc_ac2q[pri]); /* Handle encryption twiddling if needed */ if (! ath_tx_tag_crypto(sc, ni, m0, params->ibp_flags & IEEE80211_BPF_CRYPTO, 0, &hdrlen, &pktlen, &keyix)) { ath_freetx(m0); return EIO; } /* packet header may have moved, reset our local pointer */ wh = mtod(m0, struct ieee80211_frame *); /* Do the generic frame setup */ /* XXX should just bzero the bf_state? */ bf->bf_state.bfs_dobaw = 0; error = ath_tx_dmasetup(sc, bf, m0); if (error != 0) return error; m0 = bf->bf_m; /* NB: may have changed */ wh = mtod(m0, struct ieee80211_frame *); bf->bf_node = ni; /* NB: held reference */ flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */ flags |= HAL_TXDESC_INTREQ; /* force interrupt */ if (params->ibp_flags & IEEE80211_BPF_RTS) flags |= HAL_TXDESC_RTSENA; else if (params->ibp_flags & IEEE80211_BPF_CTS) { /* XXX assume 11g/11n protection? */ bf->bf_state.bfs_doprot = 1; flags |= HAL_TXDESC_CTSENA; } /* XXX leave ismcast to injector? */ if ((params->ibp_flags & IEEE80211_BPF_NOACK) || ismcast) flags |= HAL_TXDESC_NOACK; rt = sc->sc_currates; KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); rix = ath_tx_findrix(sc, params->ibp_rate0); txrate = rt->info[rix].rateCode; if (params->ibp_flags & IEEE80211_BPF_SHORTPRE) txrate |= rt->info[rix].shortPreamble; sc->sc_txrix = rix; try0 = params->ibp_try0; ismrr = (params->ibp_try1 != 0); txantenna = params->ibp_pri >> 2; if (txantenna == 0) /* XXX? */ txantenna = sc->sc_txantenna; /* * Since ctsrate is fixed, store it away for later * use when the descriptor fields are being set. */ if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) bf->bf_state.bfs_ctsrate0 = params->ibp_ctsrate; /* * NB: we mark all packets as type PSPOLL so the h/w won't * set the sequence number, duration, etc. */ atype = HAL_PKT_TYPE_PSPOLL; if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT)) ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len, sc->sc_hwmap[rix].ieeerate, -1); if (ieee80211_radiotap_active_vap(vap)) { u_int64_t tsf = ath_hal_gettsf64(ah); sc->sc_tx_th.wt_tsf = htole64(tsf); sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags; if (wh->i_fc[1] & IEEE80211_FC1_WEP) sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; if (m0->m_flags & M_FRAG) sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG; sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate; sc->sc_tx_th.wt_txpower = ni->ni_txpower; sc->sc_tx_th.wt_antenna = sc->sc_txantenna; ieee80211_radiotap_tx(vap, m0); } /* * Formulate first tx descriptor with tx controls. */ ds = bf->bf_desc; /* XXX check return value? */ /* Store the decided rate index values away */ bf->bf_state.bfs_pktlen = pktlen; bf->bf_state.bfs_hdrlen = hdrlen; bf->bf_state.bfs_atype = atype; bf->bf_state.bfs_txpower = params->ibp_power; bf->bf_state.bfs_txrate0 = txrate; bf->bf_state.bfs_try0 = try0; bf->bf_state.bfs_keyix = keyix; bf->bf_state.bfs_txantenna = txantenna; bf->bf_state.bfs_txflags = flags; bf->bf_state.bfs_shpream = !! (params->ibp_flags & IEEE80211_BPF_SHORTPRE); /* Set local packet state, used to queue packets to hardware */ bf->bf_state.bfs_tid = WME_AC_TO_TID(pri); bf->bf_state.bfs_txq = sc->sc_ac2q[pri]; bf->bf_state.bfs_pri = pri; /* XXX this should be done in ath_tx_setrate() */ bf->bf_state.bfs_ctsrate = 0; bf->bf_state.bfs_ctsduration = 0; bf->bf_state.bfs_ismrr = ismrr; /* Blank the legacy rate array */ bzero(&bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc)); bf->bf_state.bfs_rc[0].rix = ath_tx_findrix(sc, params->ibp_rate0); bf->bf_state.bfs_rc[0].tries = try0; bf->bf_state.bfs_rc[0].ratecode = txrate; if (ismrr) { int rix; rix = ath_tx_findrix(sc, params->ibp_rate1); bf->bf_state.bfs_rc[1].rix = rix; bf->bf_state.bfs_rc[1].tries = params->ibp_try1; rix = ath_tx_findrix(sc, params->ibp_rate2); bf->bf_state.bfs_rc[2].rix = rix; bf->bf_state.bfs_rc[2].tries = params->ibp_try2; rix = ath_tx_findrix(sc, params->ibp_rate3); bf->bf_state.bfs_rc[3].rix = rix; bf->bf_state.bfs_rc[3].tries = params->ibp_try3; } /* * All the required rate control decisions have been made; * fill in the rc flags. */ ath_tx_rate_fill_rcflags(sc, bf); /* NB: no buffered multicast in power save support */ /* * If we're overiding the ADDBA destination, dump directly * into the hardware queue, right after any pending * frames to that node are. */ DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: dooverride=%d\n", __func__, do_override); if (do_override) { ath_tx_xmit_normal(sc, sc->sc_ac2q[pri], bf); } else { /* Queue to software queue */ ath_tx_swq(sc, ni, sc->sc_ac2q[pri], bf); } ATH_TXQ_UNLOCK(sc->sc_ac2q[pri]); return 0; } /* * Send a raw frame. * * This can be called by net80211. */ int ath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_bpf_params *params) { struct ieee80211com *ic = ni->ni_ic; struct ifnet *ifp = ic->ic_ifp; struct ath_softc *sc = ifp->if_softc; struct ath_buf *bf; struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); int error = 0; ATH_PCU_LOCK(sc); if (sc->sc_inreset_cnt > 0) { device_printf(sc->sc_dev, "%s: sc_inreset_cnt > 0; bailing\n", __func__); error = EIO; ATH_PCU_UNLOCK(sc); goto bad0; } sc->sc_txstart_cnt++; ATH_PCU_UNLOCK(sc); if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) { DPRINTF(sc, ATH_DEBUG_XMIT, "%s: discard frame, %s", __func__, (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ? "!running" : "invalid"); m_freem(m); error = ENETDOWN; goto bad; } /* * Enforce how deep the multicast queue can grow. * * XXX duplicated in ath_tx_start(). */ if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { ATH_TXQ_LOCK(sc->sc_cabq); if (sc->sc_cabq->axq_depth > sc->sc_txq_mcastq_maxdepth) { sc->sc_stats.ast_tx_mcastq_overflow++; error = ENOBUFS; } ATH_TXQ_UNLOCK(sc->sc_cabq); if (error != 0) { m_freem(m); goto bad; } } /* * Grab a TX buffer and associated resources. */ bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT); if (bf == NULL) { sc->sc_stats.ast_tx_nobuf++; m_freem(m); error = ENOBUFS; goto bad; } if (params == NULL) { /* * Legacy path; interpret frame contents to decide * precisely how to send the frame. */ if (ath_tx_start(sc, ni, bf, m)) { error = EIO; /* XXX */ goto bad2; } } else { /* * Caller supplied explicit parameters to use in * sending the frame. */ if (ath_tx_raw_start(sc, ni, bf, m, params)) { error = EIO; /* XXX */ goto bad2; } } sc->sc_wd_timer = 5; ifp->if_opackets++; sc->sc_stats.ast_tx_raw++; ATH_PCU_LOCK(sc); sc->sc_txstart_cnt--; ATH_PCU_UNLOCK(sc); return 0; bad2: ATH_TXBUF_LOCK(sc); ath_returnbuf_head(sc, bf); ATH_TXBUF_UNLOCK(sc); bad: ATH_PCU_LOCK(sc); sc->sc_txstart_cnt--; ATH_PCU_UNLOCK(sc); bad0: ifp->if_oerrors++; sc->sc_stats.ast_tx_raw_fail++; ieee80211_free_node(ni); return error; } /* Some helper functions */ /* * ADDBA (and potentially others) need to be placed in the same * hardware queue as the TID/node it's relating to. This is so * it goes out after any pending non-aggregate frames to the * same node/TID. * * If this isn't done, the ADDBA can go out before the frames * queued in hardware. Even though these frames have a sequence * number -earlier- than the ADDBA can be transmitted (but * no frames whose sequence numbers are after the ADDBA should * be!) they'll arrive after the ADDBA - and the receiving end * will simply drop them as being out of the BAW. * * The frames can't be appended to the TID software queue - it'll * never be sent out. So these frames have to be directly * dispatched to the hardware, rather than queued in software. * So if this function returns true, the TXQ has to be * overridden and it has to be directly dispatched. * * It's a dirty hack, but someone's gotta do it. */ /* * XXX doesn't belong here! */ static int ieee80211_is_action(struct ieee80211_frame *wh) { /* Type: Management frame? */ if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT) return 0; /* Subtype: Action frame? */ if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) != IEEE80211_FC0_SUBTYPE_ACTION) return 0; return 1; } #define MS(_v, _f) (((_v) & _f) >> _f##_S) /* * Return an alternate TID for ADDBA request frames. * * Yes, this likely should be done in the net80211 layer. */ static int ath_tx_action_frame_override_queue(struct ath_softc *sc, struct ieee80211_node *ni, struct mbuf *m0, int *tid) { struct ieee80211_frame *wh = mtod(m0, struct ieee80211_frame *); struct ieee80211_action_ba_addbarequest *ia; uint8_t *frm; uint16_t baparamset; /* Not action frame? Bail */ if (! ieee80211_is_action(wh)) return 0; /* XXX Not needed for frames we send? */ #if 0 /* Correct length? */ if (! ieee80211_parse_action(ni, m)) return 0; #endif /* Extract out action frame */ frm = (u_int8_t *)&wh[1]; ia = (struct ieee80211_action_ba_addbarequest *) frm; /* Not ADDBA? Bail */ if (ia->rq_header.ia_category != IEEE80211_ACTION_CAT_BA) return 0; if (ia->rq_header.ia_action != IEEE80211_ACTION_BA_ADDBA_REQUEST) return 0; /* Extract TID, return it */ baparamset = le16toh(ia->rq_baparamset); *tid = (int) MS(baparamset, IEEE80211_BAPS_TID); return 1; } #undef MS /* Per-node software queue operations */ /* * Add the current packet to the given BAW. * It is assumed that the current packet * * + fits inside the BAW; * + already has had a sequence number allocated. * * Since the BAW status may be modified by both the ath task and * the net80211/ifnet contexts, the TID must be locked. */ void ath_tx_addto_baw(struct ath_softc *sc, struct ath_node *an, struct ath_tid *tid, struct ath_buf *bf) { int index, cindex; struct ieee80211_tx_ampdu *tap; ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]); ATH_TID_LOCK_ASSERT(sc, tid); if (bf->bf_state.bfs_isretried) return; tap = ath_tx_get_tx_tid(an, tid->tid); if (! bf->bf_state.bfs_dobaw) { device_printf(sc->sc_dev, "%s: dobaw=0, seqno=%d, window %d:%d\n", __func__, SEQNO(bf->bf_state.bfs_seqno), tap->txa_start, tap->txa_wnd); } if (bf->bf_state.bfs_addedbaw) device_printf(sc->sc_dev, "%s: re-added? tid=%d, seqno %d; window %d:%d; " "baw head=%d tail=%d\n", __func__, tid->tid, SEQNO(bf->bf_state.bfs_seqno), tap->txa_start, tap->txa_wnd, tid->baw_head, tid->baw_tail); /* * Verify that the given sequence number is not outside of the * BAW. Complain loudly if that's the case. */ if (! BAW_WITHIN(tap->txa_start, tap->txa_wnd, SEQNO(bf->bf_state.bfs_seqno))) { device_printf(sc->sc_dev, "%s: bf=%p: outside of BAW?? tid=%d, seqno %d; window %d:%d; " "baw head=%d tail=%d\n", __func__, bf, tid->tid, SEQNO(bf->bf_state.bfs_seqno), tap->txa_start, tap->txa_wnd, tid->baw_head, tid->baw_tail); } /* * ni->ni_txseqs[] is the currently allocated seqno. * the txa state contains the current baw start. */ index = ATH_BA_INDEX(tap->txa_start, SEQNO(bf->bf_state.bfs_seqno)); cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, "%s: tid=%d, seqno %d; window %d:%d; index=%d cindex=%d " "baw head=%d tail=%d\n", __func__, tid->tid, SEQNO(bf->bf_state.bfs_seqno), tap->txa_start, tap->txa_wnd, index, cindex, tid->baw_head, tid->baw_tail); #if 0 assert(tid->tx_buf[cindex] == NULL); #endif if (tid->tx_buf[cindex] != NULL) { device_printf(sc->sc_dev, "%s: ba packet dup (index=%d, cindex=%d, " "head=%d, tail=%d)\n", __func__, index, cindex, tid->baw_head, tid->baw_tail); device_printf(sc->sc_dev, "%s: BA bf: %p; seqno=%d ; new bf: %p; seqno=%d\n", __func__, tid->tx_buf[cindex], SEQNO(tid->tx_buf[cindex]->bf_state.bfs_seqno), bf, SEQNO(bf->bf_state.bfs_seqno) ); } tid->tx_buf[cindex] = bf; if (index >= ((tid->baw_tail - tid->baw_head) & (ATH_TID_MAX_BUFS - 1))) { tid->baw_tail = cindex; INCR(tid->baw_tail, ATH_TID_MAX_BUFS); } } /* * Flip the BAW buffer entry over from the existing one to the new one. * * When software retransmitting a (sub-)frame, it is entirely possible that * the frame ath_buf is marked as BUSY and can't be immediately reused. * In that instance the buffer is cloned and the new buffer is used for * retransmit. We thus need to update the ath_buf slot in the BAW buf * tracking array to maintain consistency. */ static void ath_tx_switch_baw_buf(struct ath_softc *sc, struct ath_node *an, struct ath_tid *tid, struct ath_buf *old_bf, struct ath_buf *new_bf) { int index, cindex; struct ieee80211_tx_ampdu *tap; int seqno = SEQNO(old_bf->bf_state.bfs_seqno); ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]); ATH_TID_LOCK_ASSERT(sc, tid); tap = ath_tx_get_tx_tid(an, tid->tid); index = ATH_BA_INDEX(tap->txa_start, seqno); cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); /* * Just warn for now; if it happens then we should find out * about it. It's highly likely the aggregation session will * soon hang. */ if (old_bf->bf_state.bfs_seqno != new_bf->bf_state.bfs_seqno) { device_printf(sc->sc_dev, "%s: retransmitted buffer" " has mismatching seqno's, BA session may hang.\n", __func__); device_printf(sc->sc_dev, "%s: old seqno=%d, new_seqno=%d\n", __func__, old_bf->bf_state.bfs_seqno, new_bf->bf_state.bfs_seqno); } if (tid->tx_buf[cindex] != old_bf) { device_printf(sc->sc_dev, "%s: ath_buf pointer incorrect; " " has m BA session may hang.\n", __func__); device_printf(sc->sc_dev, "%s: old bf=%p, new bf=%p\n", __func__, old_bf, new_bf); } tid->tx_buf[cindex] = new_bf; } /* * seq_start - left edge of BAW * seq_next - current/next sequence number to allocate * * Since the BAW status may be modified by both the ath task and * the net80211/ifnet contexts, the TID must be locked. */ static void ath_tx_update_baw(struct ath_softc *sc, struct ath_node *an, struct ath_tid *tid, const struct ath_buf *bf) { int index, cindex; struct ieee80211_tx_ampdu *tap; int seqno = SEQNO(bf->bf_state.bfs_seqno); ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]); ATH_TID_LOCK_ASSERT(sc, tid); tap = ath_tx_get_tx_tid(an, tid->tid); index = ATH_BA_INDEX(tap->txa_start, seqno); cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, "%s: tid=%d, baw=%d:%d, seqno=%d, index=%d, cindex=%d, " "baw head=%d, tail=%d\n", __func__, tid->tid, tap->txa_start, tap->txa_wnd, seqno, index, cindex, tid->baw_head, tid->baw_tail); /* * If this occurs then we have a big problem - something else * has slid tap->txa_start along without updating the BAW * tracking start/end pointers. Thus the TX BAW state is now * completely busted. * * But for now, since I haven't yet fixed TDMA and buffer cloning, * it's quite possible that a cloned buffer is making its way * here and causing it to fire off. Disable TDMA for now. */ if (tid->tx_buf[cindex] != bf) { device_printf(sc->sc_dev, "%s: comp bf=%p, seq=%d; slot bf=%p, seqno=%d\n", __func__, bf, SEQNO(bf->bf_state.bfs_seqno), tid->tx_buf[cindex], SEQNO(tid->tx_buf[cindex]->bf_state.bfs_seqno)); } tid->tx_buf[cindex] = NULL; while (tid->baw_head != tid->baw_tail && !tid->tx_buf[tid->baw_head]) { INCR(tap->txa_start, IEEE80211_SEQ_RANGE); INCR(tid->baw_head, ATH_TID_MAX_BUFS); } DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, "%s: baw is now %d:%d, baw head=%d\n", __func__, tap->txa_start, tap->txa_wnd, tid->baw_head); } /* * Mark the current node/TID as ready to TX. * * This is done to make it easy for the software scheduler to * find which nodes have data to send. * * The TXQ lock must be held. */ static void ath_tx_tid_sched(struct ath_softc *sc, struct ath_tid *tid) { struct ath_txq *txq = sc->sc_ac2q[tid->ac]; ATH_TXQ_LOCK_ASSERT(txq); if (tid->paused) return; /* paused, can't schedule yet */ if (tid->sched) return; /* already scheduled */ tid->sched = 1; TAILQ_INSERT_TAIL(&txq->axq_tidq, tid, axq_qelem); } /* * Mark the current node as no longer needing to be polled for * TX packets. * * The TXQ lock must be held. */ static void ath_tx_tid_unsched(struct ath_softc *sc, struct ath_tid *tid) { struct ath_txq *txq = sc->sc_ac2q[tid->ac]; ATH_TXQ_LOCK_ASSERT(txq); if (tid->sched == 0) return; tid->sched = 0; TAILQ_REMOVE(&txq->axq_tidq, tid, axq_qelem); } /* * Assign a sequence number manually to the given frame. * * This should only be called for A-MPDU TX frames. */ static ieee80211_seq ath_tx_tid_seqno_assign(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf, struct mbuf *m0) { struct ieee80211_frame *wh; int tid, pri; ieee80211_seq seqno; uint8_t subtype; /* TID lookup */ wh = mtod(m0, struct ieee80211_frame *); pri = M_WME_GETAC(m0); /* honor classification */ tid = WME_AC_TO_TID(pri); DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: pri=%d, tid=%d, qos has seq=%d\n", __func__, pri, tid, IEEE80211_QOS_HAS_SEQ(wh)); /* XXX Is it a control frame? Ignore */ /* Does the packet require a sequence number? */ if (! IEEE80211_QOS_HAS_SEQ(wh)) return -1; ATH_TID_LOCK_ASSERT(sc, &(ATH_NODE(ni)->an_tid[tid])); /* * Is it a QOS NULL Data frame? Give it a sequence number from * the default TID (IEEE80211_NONQOS_TID.) * * The RX path of everything I've looked at doesn't include the NULL * data frame sequence number in the aggregation state updates, so * assigning it a sequence number there will cause a BAW hole on the * RX side. */ subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; if (subtype == IEEE80211_FC0_SUBTYPE_QOS_NULL) { /* XXX no locking for this TID? This is a bit of a problem. */ seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]; INCR(ni->ni_txseqs[IEEE80211_NONQOS_TID], IEEE80211_SEQ_RANGE); } else { /* Manually assign sequence number */ seqno = ni->ni_txseqs[tid]; INCR(ni->ni_txseqs[tid], IEEE80211_SEQ_RANGE); } *(uint16_t *)&wh->i_seq[0] = htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); M_SEQNO_SET(m0, seqno); /* Return so caller can do something with it if needed */ DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: -> seqno=%d\n", __func__, seqno); return seqno; } /* * Attempt to direct dispatch an aggregate frame to hardware. * If the frame is out of BAW, queue. * Otherwise, schedule it as a single frame. */ static void ath_tx_xmit_aggr(struct ath_softc *sc, struct ath_node *an, struct ath_txq *txq, struct ath_buf *bf) { struct ath_tid *tid = &an->an_tid[bf->bf_state.bfs_tid]; // struct ath_txq *txq = bf->bf_state.bfs_txq; struct ieee80211_tx_ampdu *tap; if (txq != bf->bf_state.bfs_txq) { device_printf(sc->sc_dev, "%s: txq %d != bfs_txq %d!\n", __func__, txq->axq_qnum, bf->bf_state.bfs_txq->axq_qnum); } ATH_TXQ_LOCK_ASSERT(txq); ATH_TID_LOCK_ASSERT(sc, tid); tap = ath_tx_get_tx_tid(an, tid->tid); /* paused? queue */ if (tid->paused) { ATH_TXQ_INSERT_HEAD(tid, bf, bf_list); /* XXX don't sched - we're paused! */ return; } /* outside baw? queue */ if (bf->bf_state.bfs_dobaw && (! BAW_WITHIN(tap->txa_start, tap->txa_wnd, SEQNO(bf->bf_state.bfs_seqno)))) { ATH_TXQ_INSERT_HEAD(tid, bf, bf_list); ath_tx_tid_sched(sc, tid); return; } /* Direct dispatch to hardware */ ath_tx_do_ratelookup(sc, bf); ath_tx_calc_duration(sc, bf); ath_tx_calc_protection(sc, bf); ath_tx_set_rtscts(sc, bf); ath_tx_rate_fill_rcflags(sc, bf); ath_tx_setds(sc, bf); /* Statistics */ sc->sc_aggr_stats.aggr_low_hwq_single_pkt++; /* Track per-TID hardware queue depth correctly */ tid->hwq_depth++; /* Add to BAW */ if (bf->bf_state.bfs_dobaw) { ath_tx_addto_baw(sc, an, tid, bf); bf->bf_state.bfs_addedbaw = 1; } /* Set completion handler, multi-frame aggregate or not */ bf->bf_comp = ath_tx_aggr_comp; /* Hand off to hardware */ ath_tx_handoff(sc, txq, bf); } /* * Attempt to send the packet. * If the queue isn't busy, direct-dispatch. * If the queue is busy enough, queue the given packet on the * relevant software queue. */ void ath_tx_swq(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_txq *txq, struct ath_buf *bf) { struct ath_node *an = ATH_NODE(ni); struct ieee80211_frame *wh; struct ath_tid *atid; int pri, tid; struct mbuf *m0 = bf->bf_m; ATH_TXQ_LOCK_ASSERT(txq); /* Fetch the TID - non-QoS frames get assigned to TID 16 */ wh = mtod(m0, struct ieee80211_frame *); pri = ath_tx_getac(sc, m0); tid = ath_tx_gettid(sc, m0); atid = &an->an_tid[tid]; ATH_TID_LOCK_ASSERT(sc, atid); DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p, pri=%d, tid=%d, qos=%d\n", __func__, bf, pri, tid, IEEE80211_QOS_HAS_SEQ(wh)); /* Set local packet state, used to queue packets to hardware */ /* XXX potentially duplicate info, re-check */ /* XXX remember, txq must be the hardware queue, not the av_mcastq */ bf->bf_state.bfs_tid = tid; bf->bf_state.bfs_txq = txq; bf->bf_state.bfs_pri = pri; /* * If the hardware queue isn't busy, queue it directly. * If the hardware queue is busy, queue it. * If the TID is paused or the traffic it outside BAW, software * queue it. */ if (atid->paused) { /* TID is paused, queue */ DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: paused\n", __func__); ATH_TXQ_INSERT_TAIL(atid, bf, bf_list); } else if (ath_tx_ampdu_pending(sc, an, tid)) { /* AMPDU pending; queue */ DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: pending\n", __func__); ATH_TXQ_INSERT_TAIL(atid, bf, bf_list); /* XXX sched? */ } else if (ath_tx_ampdu_running(sc, an, tid)) { /* AMPDU running, attempt direct dispatch if possible */ /* * Always queue the frame to the tail of the list. */ ATH_TXQ_INSERT_TAIL(atid, bf, bf_list); /* * If the hardware queue isn't busy, direct dispatch * the head frame in the list. Don't schedule the * TID - let it build some more frames first? * * Otherwise, schedule the TID. */ if (txq->axq_depth < sc->sc_hwq_limit) { bf = TAILQ_FIRST(&atid->axq_q); ATH_TXQ_REMOVE(atid, bf, bf_list); ath_tx_xmit_aggr(sc, an, txq, bf); DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: xmit_aggr\n", __func__); } else { DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: ampdu; swq'ing\n", __func__); ath_tx_tid_sched(sc, atid); } } else if (txq->axq_depth < sc->sc_hwq_limit) { /* AMPDU not running, attempt direct dispatch */ DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: xmit_normal\n", __func__); ath_tx_xmit_normal(sc, txq, bf); } else { /* Busy; queue */ DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: swq'ing\n", __func__); ATH_TXQ_INSERT_TAIL(atid, bf, bf_list); ath_tx_tid_sched(sc, atid); } } /* * Do the basic frame setup stuff that's required before the frame * is added to a software queue. * * All frames get mostly the same treatment and it's done once. * Retransmits fiddle with things like the rate control setup, * setting the retransmit bit in the packet; doing relevant DMA/bus * syncing and relinking it (back) into the hardware TX queue. * * Note that this may cause the mbuf to be reallocated, so * m0 may not be valid. */ /* * Configure the per-TID node state. * * This likely belongs in if_ath_node.c but I can't think of anywhere * else to put it just yet. * * This sets up the SLISTs and the mutex as appropriate. */ void ath_tx_tid_init(struct ath_softc *sc, struct ath_node *an) { int i, j; struct ath_tid *atid; for (i = 0; i < IEEE80211_TID_SIZE; i++) { atid = &an->an_tid[i]; TAILQ_INIT(&atid->axq_q); atid->tid = i; atid->an = an; for (j = 0; j < ATH_TID_MAX_BUFS; j++) atid->tx_buf[j] = NULL; atid->baw_head = atid->baw_tail = 0; atid->paused = 0; atid->sched = 0; atid->hwq_depth = 0; atid->cleanup_inprogress = 0; if (i == IEEE80211_NONQOS_TID) atid->ac = WME_AC_BE; else atid->ac = TID_TO_WME_AC(i); } } /* * Pause the current TID. This stops packets from being transmitted * on it. * * Since this is also called from upper layers as well as the driver, * it will get the TID lock. */ static void ath_tx_tid_pause(struct ath_softc *sc, struct ath_tid *tid) { ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]); tid->paused++; DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: paused = %d\n", __func__, tid->paused); } /* * Unpause the current TID, and schedule it if needed. */ static void ath_tx_tid_resume(struct ath_softc *sc, struct ath_tid *tid) { ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]); tid->paused--; DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: unpaused = %d\n", __func__, tid->paused); if (tid->paused || tid->axq_depth == 0) { return; } ath_tx_tid_sched(sc, tid); /* Punt some frames to the hardware if needed */ //ath_txq_sched(sc, sc->sc_ac2q[tid->ac]); taskqueue_enqueue(sc->sc_tq, &sc->sc_txqtask); } /* * Suspend the queue because we need to TX a BAR. */ static void ath_tx_tid_bar_suspend(struct ath_softc *sc, struct ath_tid *tid) { ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]); DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, "%s: tid=%p, bar_wait=%d, bar_tx=%d, called\n", __func__, tid, tid->bar_wait, tid->bar_tx); /* We shouldn't be called when bar_tx is 1 */ if (tid->bar_tx) { device_printf(sc->sc_dev, "%s: bar_tx is 1?!\n", __func__); } /* If we've already been called, just be patient. */ if (tid->bar_wait) return; /* Wait! */ tid->bar_wait = 1; /* Only one pause, no matter how many frames fail */ ath_tx_tid_pause(sc, tid); } /* * We've finished with BAR handling - either we succeeded or * failed. Either way, unsuspend TX. */ static void ath_tx_tid_bar_unsuspend(struct ath_softc *sc, struct ath_tid *tid) { ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]); DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, "%s: tid=%p, called\n", __func__, tid); if (tid->bar_tx == 0 || tid->bar_wait == 0) { device_printf(sc->sc_dev, "%s: bar_tx=%d, bar_wait=%d: ?\n", __func__, tid->bar_tx, tid->bar_wait); } tid->bar_tx = tid->bar_wait = 0; ath_tx_tid_resume(sc, tid); } /* * Return whether we're ready to TX a BAR frame. * * Requires the TID lock be held. */ static int ath_tx_tid_bar_tx_ready(struct ath_softc *sc, struct ath_tid *tid) { ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]); if (tid->bar_wait == 0 || tid->hwq_depth > 0) return (0); DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, "%s: tid=%p (%d), bar ready\n", __func__, tid, tid->tid); return (1); } /* * Check whether the current TID is ready to have a BAR * TXed and if so, do the TX. * * Since the TID/TXQ lock can't be held during a call to * ieee80211_send_bar(), we have to do the dirty thing of unlocking it, * sending the BAR and locking it again. * * Eventually, the code to send the BAR should be broken out * from this routine so the lock doesn't have to be reacquired * just to be immediately dropped by the caller. */ static void ath_tx_tid_bar_tx(struct ath_softc *sc, struct ath_tid *tid) { struct ieee80211_tx_ampdu *tap; ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]); DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, "%s: tid=%p, called\n", __func__, tid); tap = ath_tx_get_tx_tid(tid->an, tid->tid); /* * This is an error condition! */ if (tid->bar_wait == 0 || tid->bar_tx == 1) { device_printf(sc->sc_dev, "%s: tid=%p, bar_tx=%d, bar_wait=%d: ?\n", __func__, tid, tid->bar_tx, tid->bar_wait); return; } /* Don't do anything if we still have pending frames */ if (tid->hwq_depth > 0) { DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, "%s: tid=%p, hwq_depth=%d, waiting\n", __func__, tid, tid->hwq_depth); return; } /* We're now about to TX */ tid->bar_tx = 1; /* * Calculate new BAW left edge, now that all frames have either * succeeded or failed. * * XXX verify this is _actually_ the valid value to begin at! */ DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, "%s: tid=%p, new BAW left edge=%d\n", __func__, tid, tap->txa_start); /* Try sending the BAR frame */ /* We can't hold the lock here! */ ATH_TXQ_UNLOCK(sc->sc_ac2q[tid->ac]); if (ieee80211_send_bar(&tid->an->an_node, tap, tap->txa_start) == 0) { /* Success? Now we wait for notification that it's done */ ATH_TXQ_LOCK(sc->sc_ac2q[tid->ac]); return; } /* Failure? For now, warn loudly and continue */ ATH_TXQ_LOCK(sc->sc_ac2q[tid->ac]); device_printf(sc->sc_dev, "%s: tid=%p, failed to TX BAR, continue!\n", __func__, tid); ath_tx_tid_bar_unsuspend(sc, tid); } /* * Free any packets currently pending in the software TX queue. * * This will be called when a node is being deleted. * * It can also be called on an active node during an interface * reset or state transition. * * (From Linux/reference): * * TODO: For frame(s) that are in the retry state, we will reuse the * sequence number(s) without setting the retry bit. The * alternative is to give up on these and BAR the receiver's window * forward. */ static void ath_tx_tid_drain(struct ath_softc *sc, struct ath_node *an, struct ath_tid *tid, ath_bufhead *bf_cq) { struct ath_buf *bf; struct ieee80211_tx_ampdu *tap; struct ieee80211_node *ni = &an->an_node; int t = 0; struct ath_txq *txq = sc->sc_ac2q[tid->ac]; tap = ath_tx_get_tx_tid(an, tid->tid); ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]); /* Walk the queue, free frames */ for (;;) { bf = TAILQ_FIRST(&tid->axq_q); if (bf == NULL) { break; } if (t == 0) { device_printf(sc->sc_dev, "%s: node %p: bf=%p: addbaw=%d, dobaw=%d, " "seqno=%d, retry=%d\n", __func__, ni, bf, bf->bf_state.bfs_addedbaw, bf->bf_state.bfs_dobaw, SEQNO(bf->bf_state.bfs_seqno), bf->bf_state.bfs_retries); device_printf(sc->sc_dev, "%s: node %p: bf=%p: tid txq_depth=%d hwq_depth=%d, bar_wait=%d\n", __func__, ni, bf, tid->axq_depth, tid->hwq_depth, tid->bar_wait); device_printf(sc->sc_dev, "%s: node %p: tid %d: txq_depth=%d, " "txq_aggr_depth=%d, sched=%d, paused=%d, " "hwq_depth=%d, incomp=%d, baw_head=%d, " "baw_tail=%d txa_start=%d, ni_txseqs=%d\n", __func__, ni, tid->tid, txq->axq_depth, txq->axq_aggr_depth, tid->sched, tid->paused, tid->hwq_depth, tid->incomp, tid->baw_head, tid->baw_tail, tap == NULL ? -1 : tap->txa_start, ni->ni_txseqs[tid->tid]); /* XXX Dump the frame, see what it is? */ ieee80211_dump_pkt(ni->ni_ic, mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 0, -1); t = 1; } /* * If the current TID is running AMPDU, update * the BAW. */ if (ath_tx_ampdu_running(sc, an, tid->tid) && bf->bf_state.bfs_dobaw) { /* * Only remove the frame from the BAW if it's * been transmitted at least once; this means * the frame was in the BAW to begin with. */ if (bf->bf_state.bfs_retries > 0) { ath_tx_update_baw(sc, an, tid, bf); bf->bf_state.bfs_dobaw = 0; } /* * This has become a non-fatal error now */ if (! bf->bf_state.bfs_addedbaw) device_printf(sc->sc_dev, "%s: wasn't added: seqno %d\n", __func__, SEQNO(bf->bf_state.bfs_seqno)); } ATH_TXQ_REMOVE(tid, bf, bf_list); TAILQ_INSERT_TAIL(bf_cq, bf, bf_list); } /* * Now that it's completed, grab the TID lock and update * the sequence number and BAW window. * Because sequence numbers have been assigned to frames * that haven't been sent yet, it's entirely possible * we'll be called with some pending frames that have not * been transmitted. * * The cleaner solution is to do the sequence number allocation * when the packet is first transmitted - and thus the "retries" * check above would be enough to update the BAW/seqno. */ /* But don't do it for non-QoS TIDs */ if (tap) { #if 0 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: node %p: TID %d: sliding BAW left edge to %d\n", __func__, an, tid->tid, tap->txa_start); #endif ni->ni_txseqs[tid->tid] = tap->txa_start; tid->baw_tail = tid->baw_head; } } /* * Flush all software queued packets for the given node. * * This occurs when a completion handler frees the last buffer * for a node, and the node is thus freed. This causes the node * to be cleaned up, which ends up calling ath_tx_node_flush. */ void ath_tx_node_flush(struct ath_softc *sc, struct ath_node *an) { int tid; ath_bufhead bf_cq; struct ath_buf *bf; TAILQ_INIT(&bf_cq); for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) { struct ath_tid *atid = &an->an_tid[tid]; struct ath_txq *txq = sc->sc_ac2q[atid->ac]; /* Remove this tid from the list of active tids */ ATH_TXQ_LOCK(txq); ath_tx_tid_unsched(sc, atid); /* Free packets */ ath_tx_tid_drain(sc, an, atid, &bf_cq); ATH_TXQ_UNLOCK(txq); } /* Handle completed frames */ while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) { TAILQ_REMOVE(&bf_cq, bf, bf_list); ath_tx_default_comp(sc, bf, 0); } } /* * Drain all the software TXQs currently with traffic queued. */ void ath_tx_txq_drain(struct ath_softc *sc, struct ath_txq *txq) { struct ath_tid *tid; ath_bufhead bf_cq; struct ath_buf *bf; TAILQ_INIT(&bf_cq); ATH_TXQ_LOCK(txq); /* * Iterate over all active tids for the given txq, * flushing and unsched'ing them */ while (! TAILQ_EMPTY(&txq->axq_tidq)) { tid = TAILQ_FIRST(&txq->axq_tidq); ath_tx_tid_drain(sc, tid->an, tid, &bf_cq); ath_tx_tid_unsched(sc, tid); } ATH_TXQ_UNLOCK(txq); while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) { TAILQ_REMOVE(&bf_cq, bf, bf_list); ath_tx_default_comp(sc, bf, 0); } } /* * Handle completion of non-aggregate session frames. */ void ath_tx_normal_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) { struct ieee80211_node *ni = bf->bf_node; struct ath_node *an = ATH_NODE(ni); int tid = bf->bf_state.bfs_tid; struct ath_tid *atid = &an->an_tid[tid]; struct ath_tx_status *ts = &bf->bf_status.ds_txstat; /* The TID state is protected behind the TXQ lock */ ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]); DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p: fail=%d, hwq_depth now %d\n", __func__, bf, fail, atid->hwq_depth - 1); atid->hwq_depth--; if (atid->hwq_depth < 0) device_printf(sc->sc_dev, "%s: hwq_depth < 0: %d\n", __func__, atid->hwq_depth); ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); /* * punt to rate control if we're not being cleaned up * during a hw queue drain and the frame wanted an ACK. */ if (fail == 0 && ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) ath_tx_update_ratectrl(sc, ni, bf->bf_state.bfs_rc, ts, bf->bf_state.bfs_pktlen, 1, (ts->ts_status == 0) ? 0 : 1); ath_tx_default_comp(sc, bf, fail); } /* * Handle cleanup of aggregate session packets that aren't * an A-MPDU. * * There's no need to update the BAW here - the session is being * torn down. */ static void ath_tx_comp_cleanup_unaggr(struct ath_softc *sc, struct ath_buf *bf) { struct ieee80211_node *ni = bf->bf_node; struct ath_node *an = ATH_NODE(ni); int tid = bf->bf_state.bfs_tid; struct ath_tid *atid = &an->an_tid[tid]; DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: TID %d: incomp=%d\n", __func__, tid, atid->incomp); ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]); atid->incomp--; if (atid->incomp == 0) { DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: TID %d: cleaned up! resume!\n", __func__, tid); atid->cleanup_inprogress = 0; ath_tx_tid_resume(sc, atid); } ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); ath_tx_default_comp(sc, bf, 0); } /* * Performs transmit side cleanup when TID changes from aggregated to * unaggregated. * * - Discard all retry frames from the s/w queue. * - Fix the tx completion function for all buffers in s/w queue. * - Count the number of unacked frames, and let transmit completion * handle it later. * * The caller is responsible for pausing the TID. */ static void ath_tx_tid_cleanup(struct ath_softc *sc, struct ath_node *an, int tid) { struct ath_tid *atid = &an->an_tid[tid]; struct ieee80211_tx_ampdu *tap; struct ath_buf *bf, *bf_next; ath_bufhead bf_cq; DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, "%s: TID %d: called\n", __func__, tid); TAILQ_INIT(&bf_cq); ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]); /* * Update the frames in the software TX queue: * * + Discard retry frames in the queue * + Fix the completion function to be non-aggregate */ bf = TAILQ_FIRST(&atid->axq_q); while (bf) { if (bf->bf_state.bfs_isretried) { bf_next = TAILQ_NEXT(bf, bf_list); TAILQ_REMOVE(&atid->axq_q, bf, bf_list); atid->axq_depth--; if (bf->bf_state.bfs_dobaw) { ath_tx_update_baw(sc, an, atid, bf); if (! bf->bf_state.bfs_addedbaw) device_printf(sc->sc_dev, "%s: wasn't added: seqno %d\n", __func__, SEQNO(bf->bf_state.bfs_seqno)); } bf->bf_state.bfs_dobaw = 0; /* * Call the default completion handler with "fail" just * so upper levels are suitably notified about this. */ TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list); bf = bf_next; continue; } /* Give these the default completion handler */ bf->bf_comp = ath_tx_normal_comp; bf = TAILQ_NEXT(bf, bf_list); } /* The caller is required to pause the TID */ #if 0 /* Pause the TID */ ath_tx_tid_pause(sc, atid); #endif /* * Calculate what hardware-queued frames exist based * on the current BAW size. Ie, what frames have been * added to the TX hardware queue for this TID but * not yet ACKed. */ tap = ath_tx_get_tx_tid(an, tid); /* Need the lock - fiddling with BAW */ while (atid->baw_head != atid->baw_tail) { if (atid->tx_buf[atid->baw_head]) { atid->incomp++; atid->cleanup_inprogress = 1; atid->tx_buf[atid->baw_head] = NULL; } INCR(atid->baw_head, ATH_TID_MAX_BUFS); INCR(tap->txa_start, IEEE80211_SEQ_RANGE); } /* * If cleanup is required, defer TID scheduling * until all the HW queued packets have been * sent. */ if (! atid->cleanup_inprogress) ath_tx_tid_resume(sc, atid); if (atid->cleanup_inprogress) DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: TID %d: cleanup needed: %d packets\n", __func__, tid, atid->incomp); ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); /* Handle completing frames and fail them */ while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) { TAILQ_REMOVE(&bf_cq, bf, bf_list); ath_tx_default_comp(sc, bf, 1); } } static void ath_tx_set_retry(struct ath_softc *sc, struct ath_buf *bf) { struct ieee80211_frame *wh; wh = mtod(bf->bf_m, struct ieee80211_frame *); /* Only update/resync if needed */ if (bf->bf_state.bfs_isretried == 0) { wh->i_fc[1] |= IEEE80211_FC1_RETRY; bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); } sc->sc_stats.ast_tx_swretries++; bf->bf_state.bfs_isretried = 1; bf->bf_state.bfs_retries ++; } static struct ath_buf * ath_tx_retry_clone(struct ath_softc *sc, struct ath_node *an, struct ath_tid *tid, struct ath_buf *bf) { struct ath_buf *nbf; int error; nbf = ath_buf_clone(sc, bf); #if 0 device_printf(sc->sc_dev, "%s: ATH_BUF_BUSY; cloning\n", __func__); #endif if (nbf == NULL) { /* Failed to clone */ device_printf(sc->sc_dev, "%s: failed to clone a busy buffer\n", __func__); return NULL; } /* Setup the dma for the new buffer */ error = ath_tx_dmasetup(sc, nbf, nbf->bf_m); if (error != 0) { device_printf(sc->sc_dev, "%s: failed to setup dma for clone\n", __func__); /* * Put this at the head of the list, not tail; * that way it doesn't interfere with the * busy buffer logic (which uses the tail of * the list.) */ ATH_TXBUF_LOCK(sc); ath_returnbuf_head(sc, nbf); ATH_TXBUF_UNLOCK(sc); return NULL; } /* Update BAW if required, before we free the original buf */ if (bf->bf_state.bfs_dobaw) ath_tx_switch_baw_buf(sc, an, tid, bf, nbf); /* Free current buffer; return the older buffer */ bf->bf_m = NULL; bf->bf_node = NULL; ath_freebuf(sc, bf); return nbf; } /* * Handle retrying an unaggregate frame in an aggregate * session. * * If too many retries occur, pause the TID, wait for * any further retransmits (as there's no reason why * non-aggregate frames in an aggregate session are * transmitted in-order; they just have to be in-BAW) * and then queue a BAR. */ static void ath_tx_aggr_retry_unaggr(struct ath_softc *sc, struct ath_buf *bf) { struct ieee80211_node *ni = bf->bf_node; struct ath_node *an = ATH_NODE(ni); int tid = bf->bf_state.bfs_tid; struct ath_tid *atid = &an->an_tid[tid]; struct ieee80211_tx_ampdu *tap; ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]); tap = ath_tx_get_tx_tid(an, tid); /* * If the buffer is marked as busy, we can't directly * reuse it. Instead, try to clone the buffer. * If the clone is successful, recycle the old buffer. * If the clone is unsuccessful, set bfs_retries to max * to force the next bit of code to free the buffer * for us. */ if ((bf->bf_state.bfs_retries < SWMAX_RETRIES) && (bf->bf_flags & ATH_BUF_BUSY)) { struct ath_buf *nbf; nbf = ath_tx_retry_clone(sc, an, atid, bf); if (nbf) /* bf has been freed at this point */ bf = nbf; else bf->bf_state.bfs_retries = SWMAX_RETRIES + 1; } if (bf->bf_state.bfs_retries >= SWMAX_RETRIES) { DPRINTF(sc, ATH_DEBUG_SW_TX_RETRIES, "%s: exceeded retries; seqno %d\n", __func__, SEQNO(bf->bf_state.bfs_seqno)); sc->sc_stats.ast_tx_swretrymax++; /* Update BAW anyway */ if (bf->bf_state.bfs_dobaw) { ath_tx_update_baw(sc, an, atid, bf); if (! bf->bf_state.bfs_addedbaw) device_printf(sc->sc_dev, "%s: wasn't added: seqno %d\n", __func__, SEQNO(bf->bf_state.bfs_seqno)); } bf->bf_state.bfs_dobaw = 0; /* Suspend the TX queue and get ready to send the BAR */ ath_tx_tid_bar_suspend(sc, atid); /* Send the BAR if there are no other frames waiting */ if (ath_tx_tid_bar_tx_ready(sc, atid)) ath_tx_tid_bar_tx(sc, atid); ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); /* Free buffer, bf is free after this call */ ath_tx_default_comp(sc, bf, 0); return; } /* * This increments the retry counter as well as * sets the retry flag in the ath_buf and packet * body. */ ath_tx_set_retry(sc, bf); /* * Insert this at the head of the queue, so it's * retried before any current/subsequent frames. */ ATH_TXQ_INSERT_HEAD(atid, bf, bf_list); ath_tx_tid_sched(sc, atid); /* Send the BAR if there are no other frames waiting */ if (ath_tx_tid_bar_tx_ready(sc, atid)) ath_tx_tid_bar_tx(sc, atid); ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); } /* * Common code for aggregate excessive retry/subframe retry. * If retrying, queues buffers to bf_q. If not, frees the * buffers. * * XXX should unify this with ath_tx_aggr_retry_unaggr() */ static int ath_tx_retry_subframe(struct ath_softc *sc, struct ath_buf *bf, ath_bufhead *bf_q) { struct ieee80211_node *ni = bf->bf_node; struct ath_node *an = ATH_NODE(ni); int tid = bf->bf_state.bfs_tid; struct ath_tid *atid = &an->an_tid[tid]; ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[atid->ac]); ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc); ath_hal_set11nburstduration(sc->sc_ah, bf->bf_desc, 0); /* ath_hal_set11n_virtualmorefrag(sc->sc_ah, bf->bf_desc, 0); */ /* * If the buffer is marked as busy, we can't directly * reuse it. Instead, try to clone the buffer. * If the clone is successful, recycle the old buffer. * If the clone is unsuccessful, set bfs_retries to max * to force the next bit of code to free the buffer * for us. */ if ((bf->bf_state.bfs_retries < SWMAX_RETRIES) && (bf->bf_flags & ATH_BUF_BUSY)) { struct ath_buf *nbf; nbf = ath_tx_retry_clone(sc, an, atid, bf); if (nbf) /* bf has been freed at this point */ bf = nbf; else bf->bf_state.bfs_retries = SWMAX_RETRIES + 1; } if (bf->bf_state.bfs_retries >= SWMAX_RETRIES) { sc->sc_stats.ast_tx_swretrymax++; DPRINTF(sc, ATH_DEBUG_SW_TX_RETRIES, "%s: max retries: seqno %d\n", __func__, SEQNO(bf->bf_state.bfs_seqno)); ath_tx_update_baw(sc, an, atid, bf); if (! bf->bf_state.bfs_addedbaw) device_printf(sc->sc_dev, "%s: wasn't added: seqno %d\n", __func__, SEQNO(bf->bf_state.bfs_seqno)); bf->bf_state.bfs_dobaw = 0; return 1; } ath_tx_set_retry(sc, bf); bf->bf_next = NULL; /* Just to make sure */ TAILQ_INSERT_TAIL(bf_q, bf, bf_list); return 0; } /* * error pkt completion for an aggregate destination */ static void ath_tx_comp_aggr_error(struct ath_softc *sc, struct ath_buf *bf_first, struct ath_tid *tid) { struct ieee80211_node *ni = bf_first->bf_node; struct ath_node *an = ATH_NODE(ni); struct ath_buf *bf_next, *bf; ath_bufhead bf_q; int drops = 0; struct ieee80211_tx_ampdu *tap; ath_bufhead bf_cq; TAILQ_INIT(&bf_q); TAILQ_INIT(&bf_cq); /* * Update rate control - all frames have failed. * * XXX use the length in the first frame in the series; * XXX just so things are consistent for now. */ ath_tx_update_ratectrl(sc, ni, bf_first->bf_state.bfs_rc, &bf_first->bf_status.ds_txstat, bf_first->bf_state.bfs_pktlen, bf_first->bf_state.bfs_nframes, bf_first->bf_state.bfs_nframes); ATH_TXQ_LOCK(sc->sc_ac2q[tid->ac]); tap = ath_tx_get_tx_tid(an, tid->tid); sc->sc_stats.ast_tx_aggr_failall++; /* Retry all subframes */ bf = bf_first; while (bf) { bf_next = bf->bf_next; bf->bf_next = NULL; /* Remove it from the aggr list */ sc->sc_stats.ast_tx_aggr_fail++; if (ath_tx_retry_subframe(sc, bf, &bf_q)) { drops++; bf->bf_next = NULL; TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list); } bf = bf_next; } /* Prepend all frames to the beginning of the queue */ while ((bf = TAILQ_LAST(&bf_q, ath_bufhead_s)) != NULL) { TAILQ_REMOVE(&bf_q, bf, bf_list); ATH_TXQ_INSERT_HEAD(tid, bf, bf_list); } /* * Schedule the TID to be re-tried. */ ath_tx_tid_sched(sc, tid); /* * send bar if we dropped any frames * * Keep the txq lock held for now, as we need to ensure * that ni_txseqs[] is consistent (as it's being updated * in the ifnet TX context or raw TX context.) */ if (drops) { /* Suspend the TX queue and get ready to send the BAR */ ath_tx_tid_bar_suspend(sc, tid); } /* * Send BAR if required */ if (ath_tx_tid_bar_tx_ready(sc, tid)) ath_tx_tid_bar_tx(sc, tid); ATH_TXQ_UNLOCK(sc->sc_ac2q[tid->ac]); /* Complete frames which errored out */ while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) { TAILQ_REMOVE(&bf_cq, bf, bf_list); ath_tx_default_comp(sc, bf, 0); } } /* * Handle clean-up of packets from an aggregate list. * * There's no need to update the BAW here - the session is being * torn down. */ static void ath_tx_comp_cleanup_aggr(struct ath_softc *sc, struct ath_buf *bf_first) { struct ath_buf *bf, *bf_next; struct ieee80211_node *ni = bf_first->bf_node; struct ath_node *an = ATH_NODE(ni); int tid = bf_first->bf_state.bfs_tid; struct ath_tid *atid = &an->an_tid[tid]; bf = bf_first; ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]); /* update incomp */ while (bf) { atid->incomp--; bf = bf->bf_next; } if (atid->incomp == 0) { DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: TID %d: cleaned up! resume!\n", __func__, tid); atid->cleanup_inprogress = 0; ath_tx_tid_resume(sc, atid); } /* Send BAR if required */ if (ath_tx_tid_bar_tx_ready(sc, atid)) ath_tx_tid_bar_tx(sc, atid); ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); /* Handle frame completion */ while (bf) { bf_next = bf->bf_next; ath_tx_default_comp(sc, bf, 1); bf = bf_next; } } /* * Handle completion of an set of aggregate frames. * * XXX for now, simply complete each sub-frame. * * Note: the completion handler is the last descriptor in the aggregate, * not the last descriptor in the first frame. */ static void ath_tx_aggr_comp_aggr(struct ath_softc *sc, struct ath_buf *bf_first, int fail) { //struct ath_desc *ds = bf->bf_lastds; struct ieee80211_node *ni = bf_first->bf_node; struct ath_node *an = ATH_NODE(ni); int tid = bf_first->bf_state.bfs_tid; struct ath_tid *atid = &an->an_tid[tid]; struct ath_tx_status ts; struct ieee80211_tx_ampdu *tap; ath_bufhead bf_q; ath_bufhead bf_cq; int seq_st, tx_ok; int hasba, isaggr; uint32_t ba[2]; struct ath_buf *bf, *bf_next; int ba_index; int drops = 0; int nframes = 0, nbad = 0, nf; int pktlen; /* XXX there's too much on the stack? */ struct ath_rc_series rc[ATH_RC_NUM]; int txseq; DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: called; hwq_depth=%d\n", __func__, atid->hwq_depth); /* The TID state is kept behind the TXQ lock */ ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]); atid->hwq_depth--; if (atid->hwq_depth < 0) device_printf(sc->sc_dev, "%s: hwq_depth < 0: %d\n", __func__, atid->hwq_depth); /* * Punt cleanup to the relevant function, not our problem now */ if (atid->cleanup_inprogress) { ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); ath_tx_comp_cleanup_aggr(sc, bf_first); return; } /* * Take a copy; this may be needed -after- bf_first * has been completed and freed. */ ts = bf_first->bf_status.ds_txstat; /* * XXX for now, use the first frame in the aggregate for * XXX rate control completion; it's at least consistent. */ pktlen = bf_first->bf_state.bfs_pktlen; /* * Handle errors first! * * Here, handle _any_ error as a "exceeded retries" error. * Later on (when filtered frames are to be specially handled) * it'll have to be expanded. */ #if 0 if (ts.ts_status & HAL_TXERR_XRETRY) { #endif if (ts.ts_status != 0) { ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); ath_tx_comp_aggr_error(sc, bf_first, atid); return; } TAILQ_INIT(&bf_q); TAILQ_INIT(&bf_cq); tap = ath_tx_get_tx_tid(an, tid); /* * extract starting sequence and block-ack bitmap */ /* XXX endian-ness of seq_st, ba? */ seq_st = ts.ts_seqnum; hasba = !! (ts.ts_flags & HAL_TX_BA); tx_ok = (ts.ts_status == 0); isaggr = bf_first->bf_state.bfs_aggr; ba[0] = ts.ts_ba_low; ba[1] = ts.ts_ba_high; /* * Copy the TX completion status and the rate control * series from the first descriptor, as it may be freed * before the rate control code can get its grubby fingers * into things. */ memcpy(rc, bf_first->bf_state.bfs_rc, sizeof(rc)); DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: txa_start=%d, tx_ok=%d, status=%.8x, flags=%.8x, " "isaggr=%d, seq_st=%d, hasba=%d, ba=%.8x, %.8x\n", __func__, tap->txa_start, tx_ok, ts.ts_status, ts.ts_flags, isaggr, seq_st, hasba, ba[0], ba[1]); /* Occasionally, the MAC sends a tx status for the wrong TID. */ if (tid != ts.ts_tid) { device_printf(sc->sc_dev, "%s: tid %d != hw tid %d\n", __func__, tid, ts.ts_tid); tx_ok = 0; } /* AR5416 BA bug; this requires an interface reset */ if (isaggr && tx_ok && (! hasba)) { device_printf(sc->sc_dev, "%s: AR5416 bug: hasba=%d; txok=%d, isaggr=%d, " "seq_st=%d\n", __func__, hasba, tx_ok, isaggr, seq_st); /* XXX TODO: schedule an interface reset */ #ifdef ATH_DEBUG ath_printtxbuf(sc, bf_first, sc->sc_ac2q[atid->ac]->axq_qnum, 0, 0); #endif } /* * Walk the list of frames, figure out which ones were correctly * sent and which weren't. */ bf = bf_first; nf = bf_first->bf_state.bfs_nframes; /* bf_first is going to be invalid once this list is walked */ bf_first = NULL; /* * Walk the list of completed frames and determine * which need to be completed and which need to be * retransmitted. * * For completed frames, the completion functions need * to be called at the end of this function as the last * node reference may free the node. * * Finally, since the TXQ lock can't be held during the * completion callback (to avoid lock recursion), * the completion calls have to be done outside of the * lock. */ while (bf) { nframes++; ba_index = ATH_BA_INDEX(seq_st, SEQNO(bf->bf_state.bfs_seqno)); bf_next = bf->bf_next; bf->bf_next = NULL; /* Remove it from the aggr list */ DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: checking bf=%p seqno=%d; ack=%d\n", __func__, bf, SEQNO(bf->bf_state.bfs_seqno), ATH_BA_ISSET(ba, ba_index)); if (tx_ok && ATH_BA_ISSET(ba, ba_index)) { sc->sc_stats.ast_tx_aggr_ok++; ath_tx_update_baw(sc, an, atid, bf); bf->bf_state.bfs_dobaw = 0; if (! bf->bf_state.bfs_addedbaw) device_printf(sc->sc_dev, "%s: wasn't added: seqno %d\n", __func__, SEQNO(bf->bf_state.bfs_seqno)); bf->bf_next = NULL; TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list); } else { sc->sc_stats.ast_tx_aggr_fail++; if (ath_tx_retry_subframe(sc, bf, &bf_q)) { drops++; bf->bf_next = NULL; TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list); } nbad++; } bf = bf_next; } /* * Now that the BAW updates have been done, unlock * * txseq is grabbed before the lock is released so we * have a consistent view of what -was- in the BAW. * Anything after this point will not yet have been * TXed. */ txseq = tap->txa_start; ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); if (nframes != nf) device_printf(sc->sc_dev, "%s: num frames seen=%d; bf nframes=%d\n", __func__, nframes, nf); /* * Now we know how many frames were bad, call the rate * control code. */ if (fail == 0) ath_tx_update_ratectrl(sc, ni, rc, &ts, pktlen, nframes, nbad); /* * send bar if we dropped any frames */ if (drops) { /* Suspend the TX queue and get ready to send the BAR */ ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]); ath_tx_tid_bar_suspend(sc, atid); ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); } DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: txa_start now %d\n", __func__, tap->txa_start); ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]); /* Prepend all frames to the beginning of the queue */ while ((bf = TAILQ_LAST(&bf_q, ath_bufhead_s)) != NULL) { TAILQ_REMOVE(&bf_q, bf, bf_list); ATH_TXQ_INSERT_HEAD(atid, bf, bf_list); } /* * Reschedule to grab some further frames. */ ath_tx_tid_sched(sc, atid); /* * Send BAR if required */ if (ath_tx_tid_bar_tx_ready(sc, atid)) ath_tx_tid_bar_tx(sc, atid); ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); /* Do deferred completion */ while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) { TAILQ_REMOVE(&bf_cq, bf, bf_list); ath_tx_default_comp(sc, bf, 0); } } /* * Handle completion of unaggregated frames in an ADDBA * session. * * Fail is set to 1 if the entry is being freed via a call to * ath_tx_draintxq(). */ static void ath_tx_aggr_comp_unaggr(struct ath_softc *sc, struct ath_buf *bf, int fail) { struct ieee80211_node *ni = bf->bf_node; struct ath_node *an = ATH_NODE(ni); int tid = bf->bf_state.bfs_tid; struct ath_tid *atid = &an->an_tid[tid]; struct ath_tx_status *ts = &bf->bf_status.ds_txstat; /* * Update rate control status here, before we possibly * punt to retry or cleanup. * * Do it outside of the TXQ lock. */ if (fail == 0 && ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) ath_tx_update_ratectrl(sc, ni, bf->bf_state.bfs_rc, &bf->bf_status.ds_txstat, bf->bf_state.bfs_pktlen, 1, (ts->ts_status == 0) ? 0 : 1); /* * This is called early so atid->hwq_depth can be tracked. * This unfortunately means that it's released and regrabbed * during retry and cleanup. That's rather inefficient. */ ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]); if (tid == IEEE80211_NONQOS_TID) device_printf(sc->sc_dev, "%s: TID=16!\n", __func__); DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p: tid=%d, hwq_depth=%d, seqno=%d\n", __func__, bf, bf->bf_state.bfs_tid, atid->hwq_depth, SEQNO(bf->bf_state.bfs_seqno)); atid->hwq_depth--; if (atid->hwq_depth < 0) device_printf(sc->sc_dev, "%s: hwq_depth < 0: %d\n", __func__, atid->hwq_depth); /* * If a cleanup is in progress, punt to comp_cleanup; * rather than handling it here. It's thus their * responsibility to clean up, call the completion * function in net80211, etc. */ if (atid->cleanup_inprogress) { ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: cleanup_unaggr\n", __func__); ath_tx_comp_cleanup_unaggr(sc, bf); return; } /* * Don't bother with the retry check if all frames * are being failed (eg during queue deletion.) */ #if 0 if (fail == 0 && ts->ts_status & HAL_TXERR_XRETRY) { #endif if (fail == 0 && ts->ts_status != 0) { ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: retry_unaggr\n", __func__); ath_tx_aggr_retry_unaggr(sc, bf); return; } /* Success? Complete */ DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: TID=%d, seqno %d\n", __func__, tid, SEQNO(bf->bf_state.bfs_seqno)); if (bf->bf_state.bfs_dobaw) { ath_tx_update_baw(sc, an, atid, bf); bf->bf_state.bfs_dobaw = 0; if (! bf->bf_state.bfs_addedbaw) device_printf(sc->sc_dev, "%s: wasn't added: seqno %d\n", __func__, SEQNO(bf->bf_state.bfs_seqno)); } /* * Send BAR if required */ if (ath_tx_tid_bar_tx_ready(sc, atid)) ath_tx_tid_bar_tx(sc, atid); ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); ath_tx_default_comp(sc, bf, fail); /* bf is freed at this point */ } void ath_tx_aggr_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) { if (bf->bf_state.bfs_aggr) ath_tx_aggr_comp_aggr(sc, bf, fail); else ath_tx_aggr_comp_unaggr(sc, bf, fail); } /* * Schedule some packets from the given node/TID to the hardware. * * This is the aggregate version. */ void ath_tx_tid_hw_queue_aggr(struct ath_softc *sc, struct ath_node *an, struct ath_tid *tid) { struct ath_buf *bf; struct ath_txq *txq = sc->sc_ac2q[tid->ac]; struct ieee80211_tx_ampdu *tap; ATH_AGGR_STATUS status; ath_bufhead bf_q; DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d\n", __func__, tid->tid); ATH_TXQ_LOCK_ASSERT(txq); tap = ath_tx_get_tx_tid(an, tid->tid); if (tid->tid == IEEE80211_NONQOS_TID) device_printf(sc->sc_dev, "%s: called for TID=NONQOS_TID?\n", __func__); for (;;) { status = ATH_AGGR_DONE; /* * If the upper layer has paused the TID, don't * queue any further packets. * * This can also occur from the completion task because * of packet loss; but as its serialised with this code, * it won't "appear" half way through queuing packets. */ if (tid->paused) break; bf = TAILQ_FIRST(&tid->axq_q); if (bf == NULL) { break; } /* * If the packet doesn't fall within the BAW (eg a NULL * data frame), schedule it directly; continue. */ if (! bf->bf_state.bfs_dobaw) { DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: non-baw packet\n", __func__); ATH_TXQ_REMOVE(tid, bf, bf_list); bf->bf_state.bfs_aggr = 0; ath_tx_do_ratelookup(sc, bf); ath_tx_calc_duration(sc, bf); ath_tx_calc_protection(sc, bf); ath_tx_set_rtscts(sc, bf); ath_tx_rate_fill_rcflags(sc, bf); ath_tx_setds(sc, bf); ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc); sc->sc_aggr_stats.aggr_nonbaw_pkt++; /* Queue the packet; continue */ goto queuepkt; } TAILQ_INIT(&bf_q); /* * Do a rate control lookup on the first frame in the * list. The rate control code needs that to occur * before it can determine whether to TX. * It's inaccurate because the rate control code doesn't * really "do" aggregate lookups, so it only considers * the size of the first frame. */ ath_tx_do_ratelookup(sc, bf); bf->bf_state.bfs_rc[3].rix = 0; bf->bf_state.bfs_rc[3].tries = 0; ath_tx_calc_duration(sc, bf); ath_tx_calc_protection(sc, bf); ath_tx_set_rtscts(sc, bf); ath_tx_rate_fill_rcflags(sc, bf); status = ath_tx_form_aggr(sc, an, tid, &bf_q); DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: ath_tx_form_aggr() status=%d\n", __func__, status); /* * No frames to be picked up - out of BAW */ if (TAILQ_EMPTY(&bf_q)) break; /* * This assumes that the descriptor list in the ath_bufhead * are already linked together via bf_next pointers. */ bf = TAILQ_FIRST(&bf_q); if (status == ATH_AGGR_8K_LIMITED) sc->sc_aggr_stats.aggr_rts_aggr_limited++; /* * If it's the only frame send as non-aggregate * assume that ath_tx_form_aggr() has checked * whether it's in the BAW and added it appropriately. */ if (bf->bf_state.bfs_nframes == 1) { DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: single-frame aggregate\n", __func__); bf->bf_state.bfs_aggr = 0; ath_tx_setds(sc, bf); ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc); if (status == ATH_AGGR_BAW_CLOSED) sc->sc_aggr_stats.aggr_baw_closed_single_pkt++; else sc->sc_aggr_stats.aggr_single_pkt++; } else { DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: multi-frame aggregate: %d frames, " "length %d\n", __func__, bf->bf_state.bfs_nframes, bf->bf_state.bfs_al); bf->bf_state.bfs_aggr = 1; sc->sc_aggr_stats.aggr_pkts[bf->bf_state.bfs_nframes]++; sc->sc_aggr_stats.aggr_aggr_pkt++; /* * Calculate the duration/protection as required. */ ath_tx_calc_duration(sc, bf); ath_tx_calc_protection(sc, bf); /* * Update the rate and rtscts information based on the * rate decision made by the rate control code; * the first frame in the aggregate needs it. */ ath_tx_set_rtscts(sc, bf); /* * Setup the relevant descriptor fields * for aggregation. The first descriptor * already points to the rest in the chain. */ ath_tx_setds_11n(sc, bf); } queuepkt: //txq = bf->bf_state.bfs_txq; /* Set completion handler, multi-frame aggregate or not */ bf->bf_comp = ath_tx_aggr_comp; if (bf->bf_state.bfs_tid == IEEE80211_NONQOS_TID) device_printf(sc->sc_dev, "%s: TID=16?\n", __func__); /* Punt to txq */ ath_tx_handoff(sc, txq, bf); /* Track outstanding buffer count to hardware */ /* aggregates are "one" buffer */ tid->hwq_depth++; /* * Break out if ath_tx_form_aggr() indicated * there can't be any further progress (eg BAW is full.) * Checking for an empty txq is done above. * * XXX locking on txq here? */ if (txq->axq_aggr_depth >= sc->sc_hwq_limit || status == ATH_AGGR_BAW_CLOSED) break; } } /* * Schedule some packets from the given node/TID to the hardware. */ void ath_tx_tid_hw_queue_norm(struct ath_softc *sc, struct ath_node *an, struct ath_tid *tid) { struct ath_buf *bf; struct ath_txq *txq = sc->sc_ac2q[tid->ac]; DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: node %p: TID %d: called\n", __func__, an, tid->tid); ATH_TXQ_LOCK_ASSERT(txq); /* Check - is AMPDU pending or running? then print out something */ if (ath_tx_ampdu_pending(sc, an, tid->tid)) device_printf(sc->sc_dev, "%s: tid=%d, ampdu pending?\n", __func__, tid->tid); if (ath_tx_ampdu_running(sc, an, tid->tid)) device_printf(sc->sc_dev, "%s: tid=%d, ampdu running?\n", __func__, tid->tid); for (;;) { /* * If the upper layers have paused the TID, don't * queue any further packets. */ if (tid->paused) break; bf = TAILQ_FIRST(&tid->axq_q); if (bf == NULL) { break; } ATH_TXQ_REMOVE(tid, bf, bf_list); KASSERT(txq == bf->bf_state.bfs_txq, ("txqs not equal!\n")); /* Sanity check! */ if (tid->tid != bf->bf_state.bfs_tid) { device_printf(sc->sc_dev, "%s: bfs_tid %d !=" " tid %d\n", __func__, bf->bf_state.bfs_tid, tid->tid); } /* Normal completion handler */ bf->bf_comp = ath_tx_normal_comp; /* Program descriptors + rate control */ ath_tx_do_ratelookup(sc, bf); ath_tx_calc_duration(sc, bf); ath_tx_calc_protection(sc, bf); ath_tx_set_rtscts(sc, bf); ath_tx_rate_fill_rcflags(sc, bf); ath_tx_setds(sc, bf); /* Track outstanding buffer count to hardware */ /* aggregates are "one" buffer */ tid->hwq_depth++; /* Punt to hardware or software txq */ ath_tx_handoff(sc, txq, bf); } } /* * Schedule some packets to the given hardware queue. * * This function walks the list of TIDs (ie, ath_node TIDs * with queued traffic) and attempts to schedule traffic * from them. * * TID scheduling is implemented as a FIFO, with TIDs being * added to the end of the queue after some frames have been * scheduled. */ void ath_txq_sched(struct ath_softc *sc, struct ath_txq *txq) { struct ath_tid *tid, *next, *last; ATH_TXQ_LOCK_ASSERT(txq); /* * Don't schedule if the hardware queue is busy. * This (hopefully) gives some more time to aggregate * some packets in the aggregation queue. */ if (txq->axq_aggr_depth >= sc->sc_hwq_limit) { sc->sc_aggr_stats.aggr_sched_nopkt++; return; } last = TAILQ_LAST(&txq->axq_tidq, axq_t_s); TAILQ_FOREACH_SAFE(tid, &txq->axq_tidq, axq_qelem, next) { /* * Suspend paused queues here; they'll be resumed * once the addba completes or times out. */ DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, paused=%d\n", __func__, tid->tid, tid->paused); ath_tx_tid_unsched(sc, tid); if (tid->paused) { continue; } if (ath_tx_ampdu_running(sc, tid->an, tid->tid)) ath_tx_tid_hw_queue_aggr(sc, tid->an, tid); else ath_tx_tid_hw_queue_norm(sc, tid->an, tid); /* Not empty? Re-schedule */ if (tid->axq_depth != 0) ath_tx_tid_sched(sc, tid); /* Give the software queue time to aggregate more packets */ if (txq->axq_aggr_depth >= sc->sc_hwq_limit) { break; } /* * If this was the last entry on the original list, stop. * Otherwise nodes that have been rescheduled onto the end * of the TID FIFO list will just keep being rescheduled. */ if (tid == last) break; } } /* * TX addba handling */ /* * Return net80211 TID struct pointer, or NULL for none */ struct ieee80211_tx_ampdu * ath_tx_get_tx_tid(struct ath_node *an, int tid) { struct ieee80211_node *ni = &an->an_node; struct ieee80211_tx_ampdu *tap; if (tid == IEEE80211_NONQOS_TID) return NULL; tap = &ni->ni_tx_ampdu[tid]; return tap; } /* * Is AMPDU-TX running? */ static int ath_tx_ampdu_running(struct ath_softc *sc, struct ath_node *an, int tid) { struct ieee80211_tx_ampdu *tap; if (tid == IEEE80211_NONQOS_TID) return 0; tap = ath_tx_get_tx_tid(an, tid); if (tap == NULL) return 0; /* Not valid; default to not running */ return !! (tap->txa_flags & IEEE80211_AGGR_RUNNING); } /* * Is AMPDU-TX negotiation pending? */ static int ath_tx_ampdu_pending(struct ath_softc *sc, struct ath_node *an, int tid) { struct ieee80211_tx_ampdu *tap; if (tid == IEEE80211_NONQOS_TID) return 0; tap = ath_tx_get_tx_tid(an, tid); if (tap == NULL) return 0; /* Not valid; default to not pending */ return !! (tap->txa_flags & IEEE80211_AGGR_XCHGPEND); } /* * Is AMPDU-TX pending for the given TID? */ /* * Method to handle sending an ADDBA request. * * We tap this so the relevant flags can be set to pause the TID * whilst waiting for the response. * * XXX there's no timeout handler we can override? */ int ath_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, int dialogtoken, int baparamset, int batimeout) { struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc; int tid = tap->txa_tid; struct ath_node *an = ATH_NODE(ni); struct ath_tid *atid = &an->an_tid[tid]; /* * XXX danger Will Robinson! * * Although the taskqueue may be running and scheduling some more * packets, these should all be _before_ the addba sequence number. * However, net80211 will keep self-assigning sequence numbers * until addba has been negotiated. * * In the past, these packets would be "paused" (which still works * fine, as they're being scheduled to the driver in the same * serialised method which is calling the addba request routine) * and when the aggregation session begins, they'll be dequeued * as aggregate packets and added to the BAW. However, now there's * a "bf->bf_state.bfs_dobaw" flag, and this isn't set for these * packets. Thus they never get included in the BAW tracking and * this can cause the initial burst of packets after the addba * negotiation to "hang", as they quickly fall outside the BAW. * * The "eventual" solution should be to tag these packets with * dobaw. Although net80211 has given us a sequence number, * it'll be "after" the left edge of the BAW and thus it'll * fall within it. */ ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]); /* * This is a bit annoying. Until net80211 HT code inherits some * (any) locking, we may have this called in parallel BUT only * one response/timeout will be called. Grr. */ if (atid->addba_tx_pending == 0) { ath_tx_tid_pause(sc, atid); atid->addba_tx_pending = 1; } ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: called; dialogtoken=%d, baparamset=%d, batimeout=%d\n", __func__, dialogtoken, baparamset, batimeout); DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: txa_start=%d, ni_txseqs=%d\n", __func__, tap->txa_start, ni->ni_txseqs[tid]); return sc->sc_addba_request(ni, tap, dialogtoken, baparamset, batimeout); } /* * Handle an ADDBA response. * * We unpause the queue so TX'ing can resume. * * Any packets TX'ed from this point should be "aggregate" (whether * aggregate or not) so the BAW is updated. * * Note! net80211 keeps self-assigning sequence numbers until * ampdu is negotiated. This means the initially-negotiated BAW left * edge won't match the ni->ni_txseq. * * So, being very dirty, the BAW left edge is "slid" here to match * ni->ni_txseq. * * What likely SHOULD happen is that all packets subsequent to the * addba request should be tagged as aggregate and queued as non-aggregate * frames; thus updating the BAW. For now though, I'll just slide the * window. */ int ath_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, int status, int code, int batimeout) { struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc; int tid = tap->txa_tid; struct ath_node *an = ATH_NODE(ni); struct ath_tid *atid = &an->an_tid[tid]; int r; DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: called; status=%d, code=%d, batimeout=%d\n", __func__, status, code, batimeout); DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: txa_start=%d, ni_txseqs=%d\n", __func__, tap->txa_start, ni->ni_txseqs[tid]); /* * Call this first, so the interface flags get updated * before the TID is unpaused. Otherwise a race condition * exists where the unpaused TID still doesn't yet have * IEEE80211_AGGR_RUNNING set. */ r = sc->sc_addba_response(ni, tap, status, code, batimeout); ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]); atid->addba_tx_pending = 0; /* * XXX dirty! * Slide the BAW left edge to wherever net80211 left it for us. * Read above for more information. */ tap->txa_start = ni->ni_txseqs[tid]; ath_tx_tid_resume(sc, atid); ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); return r; } /* * Stop ADDBA on a queue. * * This can be called whilst BAR TX is currently active on the queue, * so make sure this is unblocked before continuing. */ void ath_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) { struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc; int tid = tap->txa_tid; struct ath_node *an = ATH_NODE(ni); struct ath_tid *atid = &an->an_tid[tid]; DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: called\n", __func__); /* * Pause TID traffic early, so there aren't any races * Unblock the pending BAR held traffic, if it's currently paused. */ ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]); ath_tx_tid_pause(sc, atid); if (atid->bar_wait) { /* * bar_unsuspend() expects bar_tx == 1, as it should be * called from the TX completion path. This quietens * the warning. It's cleared for us anyway. */ atid->bar_tx = 1; ath_tx_tid_bar_unsuspend(sc, atid); } ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); /* There's no need to hold the TXQ lock here */ sc->sc_addba_stop(ni, tap); /* * ath_tx_tid_cleanup will resume the TID if possible, otherwise * it'll set the cleanup flag, and it'll be unpaused once * things have been cleaned up. */ ath_tx_tid_cleanup(sc, an, tid); } /* * Note: net80211 bar_timeout() doesn't call this function on BAR failure; * it simply tears down the aggregation session. Ew. * * It however will call ieee80211_ampdu_stop() which will call * ic->ic_addba_stop(). * * XXX This uses a hard-coded max BAR count value; the whole * XXX BAR TX success or failure should be better handled! */ void ath_bar_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, int status) { struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc; int tid = tap->txa_tid; struct ath_node *an = ATH_NODE(ni); struct ath_tid *atid = &an->an_tid[tid]; int attempts = tap->txa_attempts; DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, "%s: called; tap=%p, atid=%p, txa_tid=%d, atid->tid=%d, status=%d, attempts=%d\n", __func__, tap, atid, tap->txa_tid, atid->tid, status, attempts); /* Note: This may update the BAW details */ sc->sc_bar_response(ni, tap, status); /* Unpause the TID */ /* * XXX if this is attempt=50, the TID will be downgraded * XXX to a non-aggregate session. So we must unpause the * XXX TID here or it'll never be done. */ if (status == 0 || attempts == 50) { ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]); ath_tx_tid_bar_unsuspend(sc, atid); ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); } } /* * This is called whenever the pending ADDBA request times out. * Unpause and reschedule the TID. */ void ath_addba_response_timeout(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) { struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc; int tid = tap->txa_tid; struct ath_node *an = ATH_NODE(ni); struct ath_tid *atid = &an->an_tid[tid]; DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: called; resuming\n", __func__); ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]); atid->addba_tx_pending = 0; ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); /* Note: This updates the aggregate state to (again) pending */ sc->sc_addba_response_timeout(ni, tap); /* Unpause the TID; which reschedules it */ ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]); ath_tx_tid_resume(sc, atid); ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]); } static int ath_legacy_dma_txsetup(struct ath_softc *sc) { /* nothing new needed */ return (0); } static int ath_legacy_dma_txteardown(struct ath_softc *sc) { /* nothing new needed */ return (0); } void ath_xmit_setup_legacy(struct ath_softc *sc) { /* * For now, just set the descriptor length to sizeof(ath_desc); * worry about extracting the real length out of the HAL later. */ sc->sc_tx_desclen = sizeof(struct ath_desc); sc->sc_tx_statuslen = 0; sc->sc_tx_nmaps = 1; /* only one buffer per TX desc */ sc->sc_tx.xmit_setup = ath_legacy_dma_txsetup; sc->sc_tx.xmit_teardown = ath_legacy_dma_txteardown; sc->sc_tx.xmit_attach_comp_func = ath_legacy_attach_comp_func; sc->sc_tx.xmit_dma_restart = ath_legacy_tx_dma_restart; sc->sc_tx.xmit_handoff = ath_legacy_xmit_handoff; sc->sc_tx.xmit_processq = ath_legacy_tx_processq; sc->sc_tx.xmit_drainq = ath_legacy_tx_draintxq; }