/*- * Copyright (c) 1997, 1998, 1999, 2000 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * Kawasaki LSI KL5KUSB101B USB to ethernet adapter driver. * * Written by Bill Paul * Electrical Engineering Department * Columbia University, New York City */ /* * The KLSI USB to ethernet adapter chip contains an USB serial interface, * ethernet MAC and embedded microcontroller (called the QT Engine). * The chip must have firmware loaded into it before it will operate. * Packets are passed between the chip and host via bulk transfers. * There is an interrupt endpoint mentioned in the software spec, however * it's currently unused. This device is 10Mbps half-duplex only, hence * there is no media selection logic. The MAC supports a 128 entry * multicast filter, though the exact size of the filter can depend * on the firmware. Curiously, while the software spec describes various * ethernet statistics counters, my sample adapter and firmware combination * claims not to support any statistics counters at all. * * Note that once we load the firmware in the device, we have to be * careful not to load it again: if you restart your computer but * leave the adapter attached to the USB controller, it may remain * powered on and retain its firmware. In this case, we don't need * to load the firmware a second time. * * Special thanks to Rob Furr for providing an ADS Technologies * adapter for development and testing. No monkeys were harmed during * the development of this driver. */ #include "usbdevs.h" #include #include #include #define USB_DEBUG_VAR kue_debug #include #include #include #include #include #include #include #include #include #include /* * Various supported device vendors/products. */ static const struct usb_device_id kue_devs[] = { {USB_VPI(USB_VENDOR_3COM, USB_PRODUCT_3COM_3C19250, 0)}, {USB_VPI(USB_VENDOR_3COM, USB_PRODUCT_3COM_3C460, 0)}, {USB_VPI(USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_URE450, 0)}, {USB_VPI(USB_VENDOR_ADS, USB_PRODUCT_ADS_UBS10BT, 0)}, {USB_VPI(USB_VENDOR_ADS, USB_PRODUCT_ADS_UBS10BTX, 0)}, {USB_VPI(USB_VENDOR_AOX, USB_PRODUCT_AOX_USB101, 0)}, {USB_VPI(USB_VENDOR_ASANTE, USB_PRODUCT_ASANTE_EA, 0)}, {USB_VPI(USB_VENDOR_ATEN, USB_PRODUCT_ATEN_DSB650C, 0)}, {USB_VPI(USB_VENDOR_ATEN, USB_PRODUCT_ATEN_UC10T, 0)}, {USB_VPI(USB_VENDOR_COREGA, USB_PRODUCT_COREGA_ETHER_USB_T, 0)}, {USB_VPI(USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DSB650C, 0)}, {USB_VPI(USB_VENDOR_ENTREGA, USB_PRODUCT_ENTREGA_E45, 0)}, {USB_VPI(USB_VENDOR_ENTREGA, USB_PRODUCT_ENTREGA_XX1, 0)}, {USB_VPI(USB_VENDOR_ENTREGA, USB_PRODUCT_ENTREGA_XX2, 0)}, {USB_VPI(USB_VENDOR_IODATA, USB_PRODUCT_IODATA_USBETT, 0)}, {USB_VPI(USB_VENDOR_JATON, USB_PRODUCT_JATON_EDA, 0)}, {USB_VPI(USB_VENDOR_KINGSTON, USB_PRODUCT_KINGSTON_XX1, 0)}, {USB_VPI(USB_VENDOR_KLSI, USB_PRODUCT_AOX_USB101, 0)}, {USB_VPI(USB_VENDOR_KLSI, USB_PRODUCT_KLSI_DUH3E10BT, 0)}, {USB_VPI(USB_VENDOR_KLSI, USB_PRODUCT_KLSI_DUH3E10BTN, 0)}, {USB_VPI(USB_VENDOR_LINKSYS, USB_PRODUCT_LINKSYS_USB10T, 0)}, {USB_VPI(USB_VENDOR_MOBILITY, USB_PRODUCT_MOBILITY_EA, 0)}, {USB_VPI(USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_EA101, 0)}, {USB_VPI(USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_EA101X, 0)}, {USB_VPI(USB_VENDOR_PERACOM, USB_PRODUCT_PERACOM_ENET, 0)}, {USB_VPI(USB_VENDOR_PERACOM, USB_PRODUCT_PERACOM_ENET2, 0)}, {USB_VPI(USB_VENDOR_PERACOM, USB_PRODUCT_PERACOM_ENET3, 0)}, {USB_VPI(USB_VENDOR_PORTGEAR, USB_PRODUCT_PORTGEAR_EA8, 0)}, {USB_VPI(USB_VENDOR_PORTGEAR, USB_PRODUCT_PORTGEAR_EA9, 0)}, {USB_VPI(USB_VENDOR_PORTSMITH, USB_PRODUCT_PORTSMITH_EEA, 0)}, {USB_VPI(USB_VENDOR_SHARK, USB_PRODUCT_SHARK_PA, 0)}, {USB_VPI(USB_VENDOR_SILICOM, USB_PRODUCT_SILICOM_GPE, 0)}, {USB_VPI(USB_VENDOR_SILICOM, USB_PRODUCT_SILICOM_U2E, 0)}, {USB_VPI(USB_VENDOR_SMC, USB_PRODUCT_SMC_2102USB, 0)}, }; /* prototypes */ static device_probe_t kue_probe; static device_attach_t kue_attach; static device_detach_t kue_detach; static usb2_callback_t kue_bulk_read_callback; static usb2_callback_t kue_bulk_write_callback; static usb2_ether_fn_t kue_attach_post; static usb2_ether_fn_t kue_init; static usb2_ether_fn_t kue_stop; static usb2_ether_fn_t kue_start; static usb2_ether_fn_t kue_setmulti; static usb2_ether_fn_t kue_setpromisc; static int kue_do_request(struct kue_softc *, struct usb_device_request *, void *); static int kue_setword(struct kue_softc *, uint8_t, uint16_t); static int kue_ctl(struct kue_softc *, uint8_t, uint8_t, uint16_t, void *, int); static int kue_load_fw(struct kue_softc *); static void kue_reset(struct kue_softc *); #if USB_DEBUG static int kue_debug = 0; SYSCTL_NODE(_hw_usb, OID_AUTO, kue, CTLFLAG_RW, 0, "USB kue"); SYSCTL_INT(_hw_usb_kue, OID_AUTO, debug, CTLFLAG_RW, &kue_debug, 0, "Debug level"); #endif static const struct usb_config kue_config[KUE_N_TRANSFER] = { [KUE_BULK_DT_WR] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_OUT, .bufsize = (MCLBYTES + 2 + 64), .flags = {.pipe_bof = 1,}, .callback = kue_bulk_write_callback, .timeout = 10000, /* 10 seconds */ }, [KUE_BULK_DT_RD] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_IN, .bufsize = (MCLBYTES + 2), .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, .callback = kue_bulk_read_callback, .timeout = 0, /* no timeout */ }, }; static device_method_t kue_methods[] = { /* Device interface */ DEVMETHOD(device_probe, kue_probe), DEVMETHOD(device_attach, kue_attach), DEVMETHOD(device_detach, kue_detach), {0, 0} }; static driver_t kue_driver = { .name = "kue", .methods = kue_methods, .size = sizeof(struct kue_softc), }; static devclass_t kue_devclass; DRIVER_MODULE(kue, uhub, kue_driver, kue_devclass, NULL, 0); MODULE_DEPEND(kue, uether, 1, 1, 1); MODULE_DEPEND(kue, usb, 1, 1, 1); MODULE_DEPEND(kue, ether, 1, 1, 1); static const struct usb_ether_methods kue_ue_methods = { .ue_attach_post = kue_attach_post, .ue_start = kue_start, .ue_init = kue_init, .ue_stop = kue_stop, .ue_setmulti = kue_setmulti, .ue_setpromisc = kue_setpromisc, }; /* * We have a custom do_request function which is almost like the * regular do_request function, except it has a much longer timeout. * Why? Because we need to make requests over the control endpoint * to download the firmware to the device, which can take longer * than the default timeout. */ static int kue_do_request(struct kue_softc *sc, struct usb_device_request *req, void *data) { usb2_error_t err; err = usb2_ether_do_request(&sc->sc_ue, req, data, 60000); return (err); } static int kue_setword(struct kue_softc *sc, uint8_t breq, uint16_t word) { struct usb_device_request req; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = breq; USETW(req.wValue, word); USETW(req.wIndex, 0); USETW(req.wLength, 0); return (kue_do_request(sc, &req, NULL)); } static int kue_ctl(struct kue_softc *sc, uint8_t rw, uint8_t breq, uint16_t val, void *data, int len) { struct usb_device_request req; if (rw == KUE_CTL_WRITE) req.bmRequestType = UT_WRITE_VENDOR_DEVICE; else req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = breq; USETW(req.wValue, val); USETW(req.wIndex, 0); USETW(req.wLength, len); return (kue_do_request(sc, &req, data)); } static int kue_load_fw(struct kue_softc *sc) { struct usb_device_descriptor *dd; uint16_t hwrev; usb2_error_t err; dd = usb2_get_device_descriptor(sc->sc_ue.ue_udev); hwrev = UGETW(dd->bcdDevice); /* * First, check if we even need to load the firmware. * If the device was still attached when the system was * rebooted, it may already have firmware loaded in it. * If this is the case, we don't need to do it again. * And in fact, if we try to load it again, we'll hang, * so we have to avoid this condition if we don't want * to look stupid. * * We can test this quickly by checking the bcdRevision * code. The NIC will return a different revision code if * it's probed while the firmware is still loaded and * running. */ if (hwrev == 0x0202) return(0); /* Load code segment */ err = kue_ctl(sc, KUE_CTL_WRITE, KUE_CMD_SEND_SCAN, 0, kue_code_seg, sizeof(kue_code_seg)); if (err) { device_printf(sc->sc_ue.ue_dev, "failed to load code segment: %s\n", usb2_errstr(err)); return(ENXIO); } /* Load fixup segment */ err = kue_ctl(sc, KUE_CTL_WRITE, KUE_CMD_SEND_SCAN, 0, kue_fix_seg, sizeof(kue_fix_seg)); if (err) { device_printf(sc->sc_ue.ue_dev, "failed to load fixup segment: %s\n", usb2_errstr(err)); return(ENXIO); } /* Send trigger command. */ err = kue_ctl(sc, KUE_CTL_WRITE, KUE_CMD_SEND_SCAN, 0, kue_trig_seg, sizeof(kue_trig_seg)); if (err) { device_printf(sc->sc_ue.ue_dev, "failed to load trigger segment: %s\n", usb2_errstr(err)); return(ENXIO); } return (0); } static void kue_setpromisc(struct usb_ether *ue) { struct kue_softc *sc = usb2_ether_getsc(ue); struct ifnet *ifp = usb2_ether_getifp(ue); KUE_LOCK_ASSERT(sc, MA_OWNED); if (ifp->if_flags & IFF_PROMISC) sc->sc_rxfilt |= KUE_RXFILT_PROMISC; else sc->sc_rxfilt &= ~KUE_RXFILT_PROMISC; kue_setword(sc, KUE_CMD_SET_PKT_FILTER, sc->sc_rxfilt); } static void kue_setmulti(struct usb_ether *ue) { struct kue_softc *sc = usb2_ether_getsc(ue); struct ifnet *ifp = usb2_ether_getifp(ue); struct ifmultiaddr *ifma; int i = 0; KUE_LOCK_ASSERT(sc, MA_OWNED); if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { sc->sc_rxfilt |= KUE_RXFILT_ALLMULTI; sc->sc_rxfilt &= ~KUE_RXFILT_MULTICAST; kue_setword(sc, KUE_CMD_SET_PKT_FILTER, sc->sc_rxfilt); return; } sc->sc_rxfilt &= ~KUE_RXFILT_ALLMULTI; IF_ADDR_LOCK(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; /* * If there are too many addresses for the * internal filter, switch over to allmulti mode. */ if (i == KUE_MCFILTCNT(sc)) break; bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr), KUE_MCFILT(sc, i), ETHER_ADDR_LEN); i++; } IF_ADDR_UNLOCK(ifp); if (i == KUE_MCFILTCNT(sc)) sc->sc_rxfilt |= KUE_RXFILT_ALLMULTI; else { sc->sc_rxfilt |= KUE_RXFILT_MULTICAST; kue_ctl(sc, KUE_CTL_WRITE, KUE_CMD_SET_MCAST_FILTERS, i, sc->sc_mcfilters, i * ETHER_ADDR_LEN); } kue_setword(sc, KUE_CMD_SET_PKT_FILTER, sc->sc_rxfilt); } /* * Issue a SET_CONFIGURATION command to reset the MAC. This should be * done after the firmware is loaded into the adapter in order to * bring it into proper operation. */ static void kue_reset(struct kue_softc *sc) { struct usb_config_descriptor *cd; usb2_error_t err; cd = usb2_get_config_descriptor(sc->sc_ue.ue_udev); err = usb2_req_set_config(sc->sc_ue.ue_udev, &sc->sc_mtx, cd->bConfigurationValue); if (err) DPRINTF("reset failed (ignored)\n"); /* wait a little while for the chip to get its brains in order */ usb2_ether_pause(&sc->sc_ue, hz / 100); } static void kue_attach_post(struct usb_ether *ue) { struct kue_softc *sc = usb2_ether_getsc(ue); int error; /* load the firmware into the NIC */ error = kue_load_fw(sc); if (error) { device_printf(sc->sc_ue.ue_dev, "could not load firmware\n"); /* ignore the error */ } /* reset the adapter */ kue_reset(sc); /* read ethernet descriptor */ kue_ctl(sc, KUE_CTL_READ, KUE_CMD_GET_ETHER_DESCRIPTOR, 0, &sc->sc_desc, sizeof(sc->sc_desc)); /* copy in ethernet address */ memcpy(ue->ue_eaddr, sc->sc_desc.kue_macaddr, sizeof(ue->ue_eaddr)); } /* * Probe for a KLSI chip. */ static int kue_probe(device_t dev) { struct usb_attach_arg *uaa = device_get_ivars(dev); if (uaa->usb_mode != USB_MODE_HOST) return (ENXIO); if (uaa->info.bConfigIndex != KUE_CONFIG_IDX) return (ENXIO); if (uaa->info.bIfaceIndex != KUE_IFACE_IDX) return (ENXIO); return (usb2_lookup_id_by_uaa(kue_devs, sizeof(kue_devs), uaa)); } /* * Attach the interface. Allocate softc structures, do * setup and ethernet/BPF attach. */ static int kue_attach(device_t dev) { struct usb_attach_arg *uaa = device_get_ivars(dev); struct kue_softc *sc = device_get_softc(dev); struct usb_ether *ue = &sc->sc_ue; uint8_t iface_index; int error; device_set_usb2_desc(dev); mtx_init(&sc->sc_mtx, device_get_nameunit(dev), NULL, MTX_DEF); iface_index = KUE_IFACE_IDX; error = usb2_transfer_setup(uaa->device, &iface_index, sc->sc_xfer, kue_config, KUE_N_TRANSFER, sc, &sc->sc_mtx); if (error) { device_printf(dev, "allocating USB transfers failed!\n"); goto detach; } sc->sc_mcfilters = malloc(KUE_MCFILTCNT(sc) * ETHER_ADDR_LEN, M_USBDEV, M_WAITOK); if (sc->sc_mcfilters == NULL) { device_printf(dev, "failed allocating USB memory!\n"); goto detach; } ue->ue_sc = sc; ue->ue_dev = dev; ue->ue_udev = uaa->device; ue->ue_mtx = &sc->sc_mtx; ue->ue_methods = &kue_ue_methods; error = usb2_ether_ifattach(ue); if (error) { device_printf(dev, "could not attach interface\n"); goto detach; } return (0); /* success */ detach: kue_detach(dev); return (ENXIO); /* failure */ } static int kue_detach(device_t dev) { struct kue_softc *sc = device_get_softc(dev); struct usb_ether *ue = &sc->sc_ue; usb2_transfer_unsetup(sc->sc_xfer, KUE_N_TRANSFER); usb2_ether_ifdetach(ue); mtx_destroy(&sc->sc_mtx); free(sc->sc_mcfilters, M_USBDEV); return (0); } /* * A frame has been uploaded: pass the resulting mbuf chain up to * the higher level protocols. */ static void kue_bulk_read_callback(struct usb_xfer *xfer) { struct kue_softc *sc = xfer->priv_sc; struct usb_ether *ue = &sc->sc_ue; struct ifnet *ifp = usb2_ether_getifp(ue); uint8_t buf[2]; int len; switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: if (xfer->actlen <= (2 + sizeof(struct ether_header))) { ifp->if_ierrors++; goto tr_setup; } usb2_copy_out(xfer->frbuffers, 0, buf, 2); xfer->actlen -= 2; len = buf[0] | (buf[1] << 8); len = min(xfer->actlen, len); usb2_ether_rxbuf(ue, xfer->frbuffers, 2, len); /* FALLTHROUGH */ case USB_ST_SETUP: tr_setup: xfer->frlengths[0] = xfer->max_data_length; usb2_start_hardware(xfer); usb2_ether_rxflush(ue); return; default: /* Error */ DPRINTF("bulk read error, %s\n", usb2_errstr(xfer->error)); if (xfer->error != USB_ERR_CANCELLED) { /* try to clear stall first */ xfer->flags.stall_pipe = 1; goto tr_setup; } return; } } static void kue_bulk_write_callback(struct usb_xfer *xfer) { struct kue_softc *sc = xfer->priv_sc; struct ifnet *ifp = usb2_ether_getifp(&sc->sc_ue); struct mbuf *m; int total_len; int temp_len; uint8_t buf[2]; switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: DPRINTFN(11, "transfer complete\n"); ifp->if_opackets++; /* FALLTHROUGH */ case USB_ST_SETUP: tr_setup: IFQ_DRV_DEQUEUE(&ifp->if_snd, m); if (m == NULL) return; if (m->m_pkthdr.len > MCLBYTES) m->m_pkthdr.len = MCLBYTES; temp_len = (m->m_pkthdr.len + 2); total_len = (temp_len + (64 - (temp_len % 64))); /* the first two bytes are the frame length */ buf[0] = (uint8_t)(m->m_pkthdr.len); buf[1] = (uint8_t)(m->m_pkthdr.len >> 8); usb2_copy_in(xfer->frbuffers, 0, buf, 2); usb2_m_copy_in(xfer->frbuffers, 2, m, 0, m->m_pkthdr.len); usb2_bzero(xfer->frbuffers, temp_len, total_len - temp_len); xfer->frlengths[0] = total_len; /* * if there's a BPF listener, bounce a copy * of this frame to him: */ BPF_MTAP(ifp, m); m_freem(m); usb2_start_hardware(xfer); return; default: /* Error */ DPRINTFN(11, "transfer error, %s\n", usb2_errstr(xfer->error)); ifp->if_oerrors++; if (xfer->error != USB_ERR_CANCELLED) { /* try to clear stall first */ xfer->flags.stall_pipe = 1; goto tr_setup; } return; } } static void kue_start(struct usb_ether *ue) { struct kue_softc *sc = usb2_ether_getsc(ue); /* * start the USB transfers, if not already started: */ usb2_transfer_start(sc->sc_xfer[KUE_BULK_DT_RD]); usb2_transfer_start(sc->sc_xfer[KUE_BULK_DT_WR]); } static void kue_init(struct usb_ether *ue) { struct kue_softc *sc = usb2_ether_getsc(ue); struct ifnet *ifp = usb2_ether_getifp(ue); KUE_LOCK_ASSERT(sc, MA_OWNED); /* set MAC address */ kue_ctl(sc, KUE_CTL_WRITE, KUE_CMD_SET_MAC, 0, IF_LLADDR(ifp), ETHER_ADDR_LEN); /* I'm not sure how to tune these. */ #if 0 /* * Leave this one alone for now; setting it * wrong causes lockups on some machines/controllers. */ kue_setword(sc, KUE_CMD_SET_SOFS, 1); #endif kue_setword(sc, KUE_CMD_SET_URB_SIZE, 64); /* load the multicast filter */ kue_setpromisc(ue); usb2_transfer_set_stall(sc->sc_xfer[KUE_BULK_DT_WR]); ifp->if_drv_flags |= IFF_DRV_RUNNING; kue_start(ue); } static void kue_stop(struct usb_ether *ue) { struct kue_softc *sc = usb2_ether_getsc(ue); struct ifnet *ifp = usb2_ether_getifp(ue); KUE_LOCK_ASSERT(sc, MA_OWNED); ifp->if_drv_flags &= ~IFF_DRV_RUNNING; /* * stop all the transfers, if not already stopped: */ usb2_transfer_stop(sc->sc_xfer[KUE_BULK_DT_WR]); usb2_transfer_stop(sc->sc_xfer[KUE_BULK_DT_RD]); }