/* * octeon_ebt3000_cf.c * */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "octeon_ebt3000_cf.h" #include "driveid.h" /* ATA Commands */ #define CMD_READ_SECTOR 0x20 #define CMD_WRITE_SECTOR 0x30 #define CMD_IDENTIFY 0xEC /* The ATA Task File */ #define TF_DATA 0x00 #define TF_ERROR 0x01 #define TF_PRECOMP 0x01 #define TF_SECTOR_COUNT 0x02 #define TF_SECTOR_NUMBER 0x03 #define TF_CYL_LSB 0x04 #define TF_CYL_MSB 0x05 #define TF_DRV_HEAD 0x06 #define TF_STATUS 0x07 #define TF_COMMAND 0x07 /* Status Register */ #define STATUS_BSY 0x80 /* Drive is busy */ #define STATUS_RDY 0x40 /* Drive is ready */ #define STATUS_DRQ 0x08 /* Data can be transferred */ /* Miscelaneous */ #define SECTOR_SIZE 512 #define WAIT_DELAY 1000 #define NR_TRIES 1000 #define SWAP_SHORT(x) ((x << 8) | (x >> 8)) #define SWAP_LONG(x) (((x << 24) & 0xFF000000) | ((x << 8) & 0x00FF0000) | \ ((x >> 8) & 0x0000FF00) | ((x << 24) & 0x000000FF) ) #define MODEL_STR_SIZE 40 /* Globals */ int bus_width; void *base_addr; /* Device softc */ struct cf_priv { device_t dev; struct drive_param *drive_param; struct bio_queue_head cf_bq; struct g_geom *cf_geom; struct g_provider *cf_provider; }; /* Device parameters */ struct drive_param{ union { char buf[SECTOR_SIZE]; struct hd_driveid driveid; } u; char model[MODEL_STR_SIZE]; uint32_t nr_sectors; uint16_t sector_size; uint16_t heads; uint16_t tracks; uint16_t sec_track; } drive_param; /* GEOM class implementation */ static g_access_t cf_access; static g_start_t cf_start; static g_ioctl_t cf_ioctl; struct g_class g_cf_class = { .name = "CF", .version = G_VERSION, .start = cf_start, .access = cf_access, .ioctl = cf_ioctl, }; /* Device methods */ static int cf_probe(device_t); static void cf_identify(driver_t *, device_t); static int cf_attach(device_t); static int cf_attach_geom(void *, int); /* ATA methods */ static void cf_cmd_identify(void); static void cf_cmd_write(uint32_t, uint32_t, void *); static void cf_cmd_read(uint32_t, uint32_t, void *); static void cf_wait_busy(void); static void cf_send_cmd(uint32_t, uint8_t); static void cf_attach_geom_proxy(void *arg, int flag); /* Miscelenous */ static void cf_swap_ascii(unsigned char[], char[]); /* ------------------------------------------------------------------- * * cf_access() * * ------------------------------------------------------------------- */ static int cf_access (struct g_provider *pp, int r, int w, int e) { pp->sectorsize = drive_param.sector_size; pp->stripesize = drive_param.heads * drive_param.sec_track * drive_param.sector_size; pp->mediasize = pp->stripesize * drive_param.tracks; return (0); } /* ------------------------------------------------------------------- * * cf_start() * * ------------------------------------------------------------------- */ static void cf_start (struct bio *bp) { /* * Handle actual I/O requests. The request is passed down through * the bio struct. */ if(bp->bio_cmd & BIO_GETATTR) { if (g_handleattr_int(bp, "GEOM::fwsectors", drive_param.sec_track)) return; if (g_handleattr_int(bp, "GEOM::fwheads", drive_param.heads)) return; g_io_deliver(bp, ENOIOCTL); return; } if ((bp->bio_cmd & (BIO_READ | BIO_WRITE))) { if (bp->bio_cmd & BIO_READ) { cf_cmd_read(bp->bio_length / drive_param.sector_size, bp->bio_offset / drive_param.sector_size, bp->bio_data); } else if (bp->bio_cmd & BIO_WRITE) { cf_cmd_write(bp->bio_length / drive_param.sector_size, bp->bio_offset/drive_param.sector_size, bp->bio_data); } bp->bio_resid = 0; bp->bio_completed = bp->bio_length; g_io_deliver(bp, 0); } } static int cf_ioctl (struct g_provider *pp, u_long cmd, void *data, int fflag, struct thread *td) { return (0); } /* ------------------------------------------------------------------- * * cf_cmd_read() * * ------------------------------------------------------------------- * * * Read nr_sectors from the device starting from start_sector. */ static void cf_cmd_read (uint32_t nr_sectors, uint32_t start_sector, void *buf) { unsigned long lba; uint32_t count; uint16_t *ptr_16; uint8_t *ptr_8; //#define OCTEON_VISUAL_CF_0 1 #ifdef OCTEON_VISUAL_CF_0 octeon_led_write_char(0, 'R'); #endif ptr_8 = (uint8_t*)buf; ptr_16 = (uint16_t*)buf; lba = start_sector; while (nr_sectors--) { cf_send_cmd(lba, CMD_READ_SECTOR); if (bus_width == 8) { volatile uint8_t *task_file = (volatile uint8_t*)base_addr; volatile uint8_t dummy; for (count = 0; count < SECTOR_SIZE; count++) { *ptr_8++ = task_file[TF_DATA]; if ((count & 0xf) == 0) dummy = task_file[TF_STATUS]; } } else { volatile uint16_t *task_file = (volatile uint16_t*)base_addr; volatile uint16_t dummy; for (count = 0; count < SECTOR_SIZE; count+=2) { uint16_t temp; temp = task_file[TF_DATA]; *ptr_16++ = SWAP_SHORT(temp); if ((count & 0xf) == 0) dummy = task_file[TF_STATUS/2]; } } lba ++; } #ifdef OCTEON_VISUAL_CF_0 octeon_led_write_char(0, ' '); #endif } /* ------------------------------------------------------------------- * * cf_cmd_write() * * ------------------------------------------------------------------- * * * Write nr_sectors to the device starting from start_sector. */ static void cf_cmd_write (uint32_t nr_sectors, uint32_t start_sector, void *buf) { uint32_t lba; uint32_t count; uint16_t *ptr_16; uint8_t *ptr_8; //#define OCTEON_VISUAL_CF_1 1 #ifdef OCTEON_VISUAL_CF_1 octeon_led_write_char(1, 'W'); #endif lba = start_sector; ptr_8 = (uint8_t*)buf; ptr_16 = (uint16_t*)buf; while (nr_sectors--) { cf_send_cmd(lba, CMD_WRITE_SECTOR); if (bus_width == 8) { volatile uint8_t *task_file; volatile uint8_t dummy; task_file = (volatile uint8_t *) base_addr; for (count = 0; count < SECTOR_SIZE; count++) { task_file[TF_DATA] = *ptr_8++; if ((count & 0xf) == 0) dummy = task_file[TF_STATUS]; } } else { volatile uint16_t *task_file; volatile uint16_t dummy; task_file = (volatile uint16_t *) base_addr; for (count = 0; count < SECTOR_SIZE; count+=2) { uint16_t temp = *ptr_16++; task_file[TF_DATA] = SWAP_SHORT(temp); if ((count & 0xf) == 0) dummy = task_file[TF_STATUS/2]; } } lba ++; } #ifdef OCTEON_VISUAL_CF_1 octeon_led_write_char(1, ' '); #endif } /* ------------------------------------------------------------------- * * cf_cmd_identify() * * ------------------------------------------------------------------- * * * Read parameters and other information from the drive and store * it in the drive_param structure * */ static void cf_cmd_identify (void) { int count; uint8_t status; if (bus_width == 8) { volatile uint8_t *task_file; task_file = (volatile uint8_t *) base_addr; while ((status = task_file[TF_STATUS]) & STATUS_BSY) { DELAY(WAIT_DELAY); } task_file[TF_SECTOR_COUNT] = 0; task_file[TF_SECTOR_NUMBER] = 0; task_file[TF_CYL_LSB] = 0; task_file[TF_CYL_MSB] = 0; task_file[TF_DRV_HEAD] = 0; task_file[TF_COMMAND] = CMD_IDENTIFY; cf_wait_busy(); for (count = 0; count < SECTOR_SIZE; count++) drive_param.u.buf[count] = task_file[TF_DATA]; } else { volatile uint16_t *task_file; task_file = (volatile uint16_t *) base_addr; while ((status = (task_file[TF_STATUS/2]>>8)) & STATUS_BSY) { DELAY(WAIT_DELAY); } task_file[TF_SECTOR_COUNT/2] = 0; /* this includes TF_SECTOR_NUMBER */ task_file[TF_CYL_LSB/2] = 0; /* this includes TF_CYL_MSB */ task_file[TF_DRV_HEAD/2] = 0 | (CMD_IDENTIFY<<8); /* this includes TF_COMMAND */ cf_wait_busy(); for (count = 0; count < SECTOR_SIZE; count+=2) { uint16_t temp; temp = task_file[TF_DATA]; /* endianess will be swapped below */ drive_param.u.buf[count] = (temp & 0xff); drive_param.u.buf[count+1] = (temp & 0xff00)>>8; } } cf_swap_ascii(drive_param.u.driveid.model, drive_param.model); drive_param.sector_size = 512; //= SWAP_SHORT (drive_param.u.driveid.sector_bytes); drive_param.heads = SWAP_SHORT (drive_param.u.driveid.cur_heads); drive_param.tracks = SWAP_SHORT (drive_param.u.driveid.cur_cyls); drive_param.sec_track = SWAP_SHORT (drive_param.u.driveid.cur_sectors); drive_param.nr_sectors = SWAP_LONG (drive_param.u.driveid.lba_capacity); } /* ------------------------------------------------------------------- * * cf_send_cmd() * * ------------------------------------------------------------------- * * * Send command to read/write one sector specified by lba. * */ static void cf_send_cmd (uint32_t lba, uint8_t cmd) { uint8_t status; if (bus_width == 8) { volatile uint8_t *task_file; task_file = (volatile uint8_t *) base_addr; while ( (status = task_file[TF_STATUS]) & STATUS_BSY) { DELAY(WAIT_DELAY); } task_file[TF_SECTOR_COUNT] = 1; task_file[TF_SECTOR_NUMBER] = (lba & 0xff); task_file[TF_CYL_LSB] = ((lba >> 8) & 0xff); task_file[TF_CYL_MSB] = ((lba >> 16) & 0xff); task_file[TF_DRV_HEAD] = ((lba >> 24) & 0xff) | 0xe0; task_file[TF_COMMAND] = cmd; } else { volatile uint16_t *task_file; task_file = (volatile uint16_t *) base_addr; while ( (status = (task_file[TF_STATUS/2]>>8)) & STATUS_BSY) { DELAY(WAIT_DELAY); } task_file[TF_SECTOR_COUNT/2] = 1 | ((lba & 0xff) << 8); task_file[TF_CYL_LSB/2] = ((lba >> 8) & 0xff) | (((lba >> 16) & 0xff) << 8); task_file[TF_DRV_HEAD/2] = (((lba >> 24) & 0xff) | 0xe0) | (cmd << 8); } cf_wait_busy(); } /* ------------------------------------------------------------------- * * cf_wait_busy() * * ------------------------------------------------------------------- * * * Wait until the drive finishes a given command and data is * ready to be transferred. This is done by repeatedly checking * the BSY and DRQ bits of the status register. When the controller * is ready for data transfer, it clears the BSY bit and sets the * DRQ bit. * */ static void cf_wait_busy (void) { uint8_t status; //#define OCTEON_VISUAL_CF_2 1 #ifdef OCTEON_VISUAL_CF_2 static int where0 = 0; octeon_led_run_wheel(&where0, 2); #endif if (bus_width == 8) { volatile uint8_t *task_file; task_file = (volatile uint8_t *)base_addr; status = task_file[TF_STATUS]; while ((status & STATUS_BSY) == STATUS_BSY || (status & STATUS_DRQ) != STATUS_DRQ ) { DELAY(WAIT_DELAY); status = task_file[TF_STATUS]; } } else { volatile uint16_t *task_file; task_file = (volatile uint16_t *)base_addr; status = task_file[TF_STATUS/2]>>8; while ((status & STATUS_BSY) == STATUS_BSY || (status & STATUS_DRQ) != STATUS_DRQ ) { DELAY(WAIT_DELAY); status = (uint8_t)(task_file[TF_STATUS/2]>>8); } } #ifdef OCTEON_VISUAL_CF_2 octeon_led_write_char(2, ' '); #endif } /* ------------------------------------------------------------------- * * cf_swap_ascii() * * ------------------------------------------------------------------- * * * The ascii string returned by the controller specifying * the model of the drive is byte-swaped. This routine * corrects the byte ordering. * */ static void cf_swap_ascii (unsigned char str1[], char str2[]) { int i; for(i = 0; i < MODEL_STR_SIZE; i++) { str2[i] = str1[i^1]; } } /* ------------------------------------------------------------------- * * cf_probe() * * ------------------------------------------------------------------- */ static int cf_probe (device_t dev) { if (!octeon_board_real()) return 1; if (device_get_unit(dev) != 0) { panic("can't attach more devices\n"); } device_set_desc(dev, "Octeon Compact Flash Driver"); cf_cmd_identify(); return (0); } /* ------------------------------------------------------------------- * * cf_identify() * * ------------------------------------------------------------------- * * * Find the bootbus region for the CF to determine * 16 or 8 bit and check to see if device is * inserted. * */ static void cf_identify (driver_t *drv, device_t parent) { uint8_t status; int bus_region; int count = 0; octeon_mio_boot_reg_cfgx_t cfg; if (!octeon_board_real()) return 1; base_addr = (void *) OCTEON_PHYS2PTR(OCTEON_CF_COMMON_BASE_ADDR); for (bus_region = 0; bus_region < 8; bus_region++) { cfg.word64 = oct_read64(OCTEON_MIO_BOOT_REG_CFGX(bus_region)); if (cfg.bits.base == OCTEON_CF_COMMON_BASE_ADDR >> 16) { bus_width = (cfg.bits.width) ? 16: 8; printf("Compact flash found in bootbus region %d (%d bit).\n", bus_region, bus_width); break; } } if (bus_width == 8) { volatile uint8_t *task_file; task_file = (volatile uint8_t *) base_addr; /* Check if CF is inserted */ while ( (status = task_file[TF_STATUS]) & STATUS_BSY){ if ((count++) == NR_TRIES ) { printf("Compact Flash not present\n"); return; } DELAY(WAIT_DELAY); } } else { volatile uint16_t *task_file; task_file = (volatile uint16_t *) base_addr; /* Check if CF is inserted */ while ( (status = (task_file[TF_STATUS/2]>>8)) & STATUS_BSY){ if ((count++) == NR_TRIES ) { printf("Compact Flash not present\n"); return; } DELAY(WAIT_DELAY); } } BUS_ADD_CHILD(parent, 0, "cf", 0); } /* ------------------------------------------------------------------- * * cf_attach_geom() * * ------------------------------------------------------------------- */ static int cf_attach_geom (void *arg, int flag) { struct cf_priv *cf_priv; cf_priv = (struct cf_priv *) arg; cf_priv->cf_geom = g_new_geomf(&g_cf_class, "cf%d", device_get_unit(cf_priv->dev)); cf_priv->cf_provider = g_new_providerf(cf_priv->cf_geom, cf_priv->cf_geom->name); cf_priv->cf_geom->softc = cf_priv; g_error_provider(cf_priv->cf_provider, 0); return (0); } /* ------------------------------------------------------------------- * * cf_attach_geom() * * ------------------------------------------------------------------- */ static void cf_attach_geom_proxy (void *arg, int flag) { cf_attach_geom(arg, flag); } /* ------------------------------------------------------------------- * * cf_attach() * * ------------------------------------------------------------------- */ static int cf_attach (device_t dev) { struct cf_priv *cf_priv; if (!octeon_board_real()) return 1; cf_priv = device_get_softc(dev); cf_priv->dev = dev; cf_priv->drive_param = &drive_param; g_post_event(cf_attach_geom_proxy, cf_priv, M_WAITOK, NULL); bioq_init(&cf_priv->cf_bq); return 0; } static device_method_t cf_methods[] = { /* Device interface */ DEVMETHOD(device_probe, cf_probe), DEVMETHOD(device_identify, cf_identify), DEVMETHOD(device_attach, cf_attach), DEVMETHOD(device_detach, bus_generic_detach), DEVMETHOD(device_shutdown, bus_generic_shutdown), { 0, 0 } }; static driver_t cf_driver = { "cf", cf_methods, sizeof(struct cf_priv) }; static devclass_t cf_devclass; DRIVER_MODULE(cf, nexus, cf_driver, cf_devclass, 0, 0);