/* $FreeBSD$ */ /* * FreeBSD/CAM specific routines for LSI '909 FC adapters. * FreeBSD Version. * * Copyright (c) 2000, 2001 by Greg Ansley * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice immediately at the beginning of the file, without modification, * this list of conditions, and the following disclaimer. * 2. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Additional Copyright (c) 2002 by Matthew Jacob under same license. */ #include static void mpt_poll(struct cam_sim *); static timeout_t mpttimeout; static timeout_t mpttimeout2; static void mpt_action(struct cam_sim *, union ccb *); static int mpt_setwidth(mpt_softc_t *, int, int); static int mpt_setsync(mpt_softc_t *, int, int, int); void mpt_cam_attach(mpt_softc_t *mpt) { struct cam_devq *devq; struct cam_sim *sim; int maxq; mpt->bus = 0; maxq = (mpt->mpt_global_credits < MPT_MAX_REQUESTS(mpt))? mpt->mpt_global_credits : MPT_MAX_REQUESTS(mpt); /* * Create the device queue for our SIM(s). */ devq = cam_simq_alloc(maxq); if (devq == NULL) { return; } /* * Construct our SIM entry. */ sim = cam_sim_alloc(mpt_action, mpt_poll, "mpt", mpt, mpt->unit, 1, maxq, devq); if (sim == NULL) { cam_simq_free(devq); return; } /* * Register exactly the bus. */ if (xpt_bus_register(sim, 0) != CAM_SUCCESS) { cam_sim_free(sim, TRUE); return; } if (xpt_create_path(&mpt->path, NULL, cam_sim_path(sim), CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) { xpt_bus_deregister(cam_sim_path(sim)); cam_sim_free(sim, TRUE); return; } mpt->sim = sim; } void mpt_cam_detach(mpt_softc_t *mpt) { if (mpt->sim != NULL) { xpt_free_path(mpt->path); xpt_bus_deregister(cam_sim_path(mpt->sim)); cam_sim_free(mpt->sim, TRUE); mpt->sim = NULL; } } /* This routine is used after a system crash to dump core onto the * swap device. */ static void mpt_poll(struct cam_sim *sim) { mpt_softc_t *mpt = (mpt_softc_t *) cam_sim_softc(sim); MPT_LOCK(mpt); mpt_intr(mpt); MPT_UNLOCK(mpt); } /* * This routine is called if the 9x9 does not return completion status * for a command after a CAM specified time. */ static void mpttimeout(void *arg) { request_t *req; union ccb *ccb = arg; u_int32_t oseq; mpt_softc_t *mpt; mpt = ccb->ccb_h.ccb_mpt_ptr; MPT_LOCK(mpt); req = ccb->ccb_h.ccb_req_ptr; oseq = req->sequence; mpt->timeouts++; if (mpt_intr(mpt)) { if (req->sequence != oseq) { device_printf(mpt->dev, "bullet missed in timeout\n"); MPT_UNLOCK(mpt); return; } device_printf(mpt->dev, "bullet U-turned in timeout: got us\n"); } device_printf(mpt->dev, "time out on request index = 0x%02x sequence = 0x%08x\n", req->index, req->sequence); mpt_check_doorbell(mpt); device_printf(mpt->dev, "Status %08X; Mask %08X; Doorbell %08X\n", mpt_read(mpt, MPT_OFFSET_INTR_STATUS), mpt_read(mpt, MPT_OFFSET_INTR_MASK), mpt_read(mpt, MPT_OFFSET_DOORBELL) ); printf("request state %s\n", mpt_req_state(req->debug)); if (ccb != req->ccb) { printf("time out: ccb %p != req->ccb %p\n", ccb,req->ccb); } mpt_print_scsi_io_request((MSG_SCSI_IO_REQUEST *)req->req_vbuf); req->debug = REQ_TIMEOUT; req->ccb = NULL; req->link.sle_next = (void *) mpt; (void) timeout(mpttimeout2, (caddr_t)req, hz / 10); ccb->ccb_h.status = CAM_CMD_TIMEOUT; ccb->ccb_h.status |= CAM_RELEASE_SIMQ; mpt->outofbeer = 0; MPTLOCK_2_CAMLOCK(mpt); xpt_done(ccb); CAMLOCK_2_MPTLOCK(mpt); MPT_UNLOCK(mpt); } static void mpttimeout2(void *arg) { request_t *req = arg; if (req->debug == REQ_TIMEOUT) { mpt_softc_t *mpt = (mpt_softc_t *) req->link.sle_next; MPT_LOCK(mpt); mpt_free_request(mpt, req); MPT_UNLOCK(mpt); } } /* * Callback routine from "bus_dmamap_load" or in simple case called directly. * * Takes a list of physical segments and builds the SGL for SCSI IO command * and forwards the commard to the IOC after one last check that CAM has not * aborted the transaction. */ static void mpt_execute_req(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error) { request_t *req; union ccb *ccb; mpt_softc_t *mpt; MSG_SCSI_IO_REQUEST *mpt_req; SGE_SIMPLE32 *se; req = (request_t *)arg; ccb = req->ccb; mpt = ccb->ccb_h.ccb_mpt_ptr; req = ccb->ccb_h.ccb_req_ptr; mpt_req = req->req_vbuf; if (error == 0 && nseg > MPT_SGL_MAX) { error = EFBIG; } if (error != 0) { if (error != EFBIG) device_printf(mpt->dev, "bus_dmamap_load returned %d\n", error); if (ccb->ccb_h.status == CAM_REQ_INPROG) { xpt_freeze_devq(ccb->ccb_h.path, 1); ccb->ccb_h.status = CAM_DEV_QFRZN; if (error == EFBIG) ccb->ccb_h.status |= CAM_REQ_TOO_BIG; else ccb->ccb_h.status |= CAM_REQ_CMP_ERR; } ccb->ccb_h.status &= ~CAM_SIM_QUEUED; xpt_done(ccb); CAMLOCK_2_MPTLOCK(mpt); mpt_free_request(mpt, req); MPTLOCK_2_CAMLOCK(mpt); return; } if (nseg > MPT_NSGL_FIRST(mpt)) { int i, nleft = nseg; u_int32_t flags; bus_dmasync_op_t op; SGE_CHAIN32 *ce; mpt_req->DataLength = ccb->csio.dxfer_len; flags = MPI_SGE_FLAGS_SIMPLE_ELEMENT; if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT) flags |= MPI_SGE_FLAGS_HOST_TO_IOC; se = (SGE_SIMPLE32 *) &mpt_req->SGL; for (i = 0; i < MPT_NSGL_FIRST(mpt) - 1; i++, se++, dm_segs++) { u_int32_t tf; bzero(se, sizeof (*se)); se->Address = dm_segs->ds_addr; MPI_pSGE_SET_LENGTH(se, dm_segs->ds_len); tf = flags; if (i == MPT_NSGL_FIRST(mpt) - 2) { tf |= MPI_SGE_FLAGS_LAST_ELEMENT; } MPI_pSGE_SET_FLAGS(se, tf); nleft -= 1; } /* * Tell the IOC where to find the first chain element */ mpt_req->ChainOffset = ((char *)se - (char *)mpt_req) >> 2; /* * Until we're finished with all segments... */ while (nleft) { int ntodo; /* * Construct the chain element that point to the * next segment. */ ce = (SGE_CHAIN32 *) se++; if (nleft > MPT_NSGL(mpt)) { ntodo = MPT_NSGL(mpt) - 1; ce->NextChainOffset = (MPT_RQSL(mpt) - sizeof (SGE_SIMPLE32)) >> 2; } else { ntodo = nleft; ce->NextChainOffset = 0; } ce->Length = ntodo * sizeof (SGE_SIMPLE32); ce->Address = req->req_pbuf + ((char *)se - (char *)mpt_req); ce->Flags = MPI_SGE_FLAGS_CHAIN_ELEMENT; for (i = 0; i < ntodo; i++, se++, dm_segs++) { u_int32_t tf; bzero(se, sizeof (*se)); se->Address = dm_segs->ds_addr; MPI_pSGE_SET_LENGTH(se, dm_segs->ds_len); tf = flags; if (i == ntodo - 1) { tf |= MPI_SGE_FLAGS_LAST_ELEMENT; if (ce->NextChainOffset == 0) { tf |= MPI_SGE_FLAGS_END_OF_LIST | MPI_SGE_FLAGS_END_OF_BUFFER; } } MPI_pSGE_SET_FLAGS(se, tf); nleft -= 1; } } if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) op = BUS_DMASYNC_PREREAD; else op = BUS_DMASYNC_PREWRITE; if (!(ccb->ccb_h.flags & (CAM_SG_LIST_PHYS|CAM_DATA_PHYS))) { bus_dmamap_sync(mpt->buffer_dmat, req->dmap, op); } } else if (nseg > 0) { int i; u_int32_t flags; bus_dmasync_op_t op; mpt_req->DataLength = ccb->csio.dxfer_len; flags = MPI_SGE_FLAGS_SIMPLE_ELEMENT; if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT) flags |= MPI_SGE_FLAGS_HOST_TO_IOC; /* Copy the segments into our SG list */ se = (SGE_SIMPLE32 *) &mpt_req->SGL; for (i = 0; i < nseg; i++, se++, dm_segs++) { u_int32_t tf; bzero(se, sizeof (*se)); se->Address = dm_segs->ds_addr; MPI_pSGE_SET_LENGTH(se, dm_segs->ds_len); tf = flags; if (i == nseg - 1) { tf |= MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER | MPI_SGE_FLAGS_END_OF_LIST; } MPI_pSGE_SET_FLAGS(se, tf); } if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) op = BUS_DMASYNC_PREREAD; else op = BUS_DMASYNC_PREWRITE; if (!(ccb->ccb_h.flags & (CAM_SG_LIST_PHYS|CAM_DATA_PHYS))) { bus_dmamap_sync(mpt->buffer_dmat, req->dmap, op); } } else { se = (SGE_SIMPLE32 *) &mpt_req->SGL; /* * No data to transfer so we just make a single simple SGL * with zero length. */ MPI_pSGE_SET_FLAGS(se, (MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER | MPI_SGE_FLAGS_SIMPLE_ELEMENT | MPI_SGE_FLAGS_END_OF_LIST)); } /* * Last time we need to check if this CCB needs to be aborted. */ if (ccb->ccb_h.status != CAM_REQ_INPROG) { if (nseg && (ccb->ccb_h.flags & CAM_SG_LIST_PHYS) == 0) bus_dmamap_unload(mpt->buffer_dmat, req->dmap); CAMLOCK_2_MPTLOCK(mpt); mpt_free_request(mpt, req); MPTLOCK_2_CAMLOCK(mpt); xpt_done(ccb); return; } ccb->ccb_h.status |= CAM_SIM_QUEUED; MPTLOCK_2_CAMLOCK(mpt); if (ccb->ccb_h.timeout != CAM_TIME_INFINITY) { ccb->ccb_h.timeout_ch = timeout(mpttimeout, (caddr_t)ccb, (ccb->ccb_h.timeout * hz) / 1000); } else { callout_handle_init(&ccb->ccb_h.timeout_ch); } if (mpt->verbose > 1) mpt_print_scsi_io_request(mpt_req); mpt_send_cmd(mpt, req); MPTLOCK_2_CAMLOCK(mpt); } static void mpt_start(union ccb *ccb) { request_t *req; struct mpt_softc *mpt; MSG_SCSI_IO_REQUEST *mpt_req; struct ccb_scsiio *csio = &ccb->csio; struct ccb_hdr *ccbh = &ccb->ccb_h; /* Get the pointer for the physical addapter */ mpt = ccb->ccb_h.ccb_mpt_ptr; CAMLOCK_2_MPTLOCK(mpt); /* Get a request structure off the free list */ if ((req = mpt_get_request(mpt)) == NULL) { if (mpt->outofbeer == 0) { mpt->outofbeer = 1; xpt_freeze_simq(mpt->sim, 1); if (mpt->verbose > 1) { device_printf(mpt->dev, "FREEZEQ\n"); } } MPTLOCK_2_CAMLOCK(mpt); ccb->ccb_h.status = CAM_REQUEUE_REQ; xpt_done(ccb); return; } MPTLOCK_2_CAMLOCK(mpt); /* Link the ccb and the request structure so we can find */ /* the other knowing either the request or the ccb */ req->ccb = ccb; ccb->ccb_h.ccb_req_ptr = req; /* Now we build the command for the IOC */ mpt_req = req->req_vbuf; bzero(mpt_req, sizeof *mpt_req); mpt_req->Function = MPI_FUNCTION_SCSI_IO_REQUEST; mpt_req->Bus = mpt->bus; mpt_req->SenseBufferLength = (csio->sense_len < MPT_SENSE_SIZE) ? csio->sense_len : MPT_SENSE_SIZE; /* We use the message context to find the request structure when we */ /* Get the command competion interrupt from the FC IOC. */ mpt_req->MsgContext = req->index; /* Which physical device to do the I/O on */ mpt_req->TargetID = ccb->ccb_h.target_id; mpt_req->LUN[1] = ccb->ccb_h.target_lun; /* Set the direction of the transfer */ if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) mpt_req->Control = MPI_SCSIIO_CONTROL_READ; else if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT) mpt_req->Control = MPI_SCSIIO_CONTROL_WRITE; else mpt_req->Control = MPI_SCSIIO_CONTROL_NODATATRANSFER; if ((ccb->ccb_h.flags & CAM_TAG_ACTION_VALID) != 0) { switch(ccb->csio.tag_action) { case MSG_HEAD_OF_Q_TAG: mpt_req->Control |= MPI_SCSIIO_CONTROL_HEADOFQ; break; case MSG_ACA_TASK: mpt_req->Control |= MPI_SCSIIO_CONTROL_ACAQ; break; case MSG_ORDERED_Q_TAG: mpt_req->Control |= MPI_SCSIIO_CONTROL_ORDEREDQ; break; case MSG_SIMPLE_Q_TAG: default: mpt_req->Control |= MPI_SCSIIO_CONTROL_SIMPLEQ; break; } } else { if (mpt->is_fc) mpt_req->Control |= MPI_SCSIIO_CONTROL_SIMPLEQ; else mpt_req->Control |= MPI_SCSIIO_CONTROL_UNTAGGED; } if (mpt->is_fc == 0) { if (ccb->ccb_h.flags & CAM_DIS_DISCONNECT) { mpt_req->Control |= MPI_SCSIIO_CONTROL_NO_DISCONNECT; } } /* Copy the scsi command block into place */ if ((ccb->ccb_h.flags & CAM_CDB_POINTER) != 0) bcopy(csio->cdb_io.cdb_ptr, mpt_req->CDB, csio->cdb_len); else bcopy(csio->cdb_io.cdb_bytes, mpt_req->CDB, csio->cdb_len); mpt_req->CDBLength = csio->cdb_len; mpt_req->DataLength = csio->dxfer_len; mpt_req->SenseBufferLowAddr = req->sense_pbuf; /* * If we have any data to send with this command, * map it into bus space. */ if ((ccbh->flags & CAM_DIR_MASK) != CAM_DIR_NONE) { if ((ccbh->flags & CAM_SCATTER_VALID) == 0) { /* * We've been given a pointer to a single buffer. */ if ((ccbh->flags & CAM_DATA_PHYS) == 0) { /* * Virtual address that needs to translated into * one or more physical pages. */ int error; error = bus_dmamap_load(mpt->buffer_dmat, req->dmap, csio->data_ptr, csio->dxfer_len, mpt_execute_req, req, 0); if (error == EINPROGRESS) { /* * So as to maintain ordering, * freeze the controller queue * until our mapping is * returned. */ xpt_freeze_simq(mpt->sim, 1); ccbh->status |= CAM_RELEASE_SIMQ; } } else { /* * We have been given a pointer to single * physical buffer. */ struct bus_dma_segment seg; seg.ds_addr = (bus_addr_t)csio->data_ptr; seg.ds_len = csio->dxfer_len; mpt_execute_req(req, &seg, 1, 0); } } else { /* * We have been given a list of addresses. * These case could be easily done but they are not * currently generated by the CAM subsystem so there * is no point in wasting the time right now. */ struct bus_dma_segment *segs; if ((ccbh->flags & CAM_SG_LIST_PHYS) == 0) { mpt_execute_req(req, NULL, 0, EFAULT); } else { /* Just use the segments provided */ segs = (struct bus_dma_segment *)csio->data_ptr; mpt_execute_req(req, segs, csio->sglist_cnt, (csio->sglist_cnt < MPT_SGL_MAX)? 0 : EFBIG); } } } else { mpt_execute_req(req, NULL, 0, 0); } } static int mpt_bus_reset(union ccb *ccb) { int error; request_t *req; mpt_softc_t *mpt; MSG_SCSI_TASK_MGMT *reset_req; /* Get the pointer for the physical adapter */ mpt = ccb->ccb_h.ccb_mpt_ptr; /* Get a request structure off the free list */ if ((req = mpt_get_request(mpt)) == NULL) { return (CAM_REQUEUE_REQ); } /* Link the ccb and the request structure so we can find */ /* the other knowing either the request or the ccb */ req->ccb = ccb; ccb->ccb_h.ccb_req_ptr = req; reset_req = req->req_vbuf; bzero(reset_req, sizeof *reset_req); reset_req->Function = MPI_FUNCTION_SCSI_TASK_MGMT; reset_req->MsgContext = req->index; reset_req->TaskType = MPI_SCSITASKMGMT_TASKTYPE_RESET_BUS; if (mpt->is_fc) { /* * Should really be TARGET_RESET_OPTION */ reset_req->MsgFlags = MPI_SCSITASKMGMT_MSGFLAGS_LIP_RESET_OPTION; } /* Which physical device Reset */ reset_req->TargetID = ccb->ccb_h.target_id; reset_req->LUN[1] = ccb->ccb_h.target_lun; ccb->ccb_h.status |= CAM_SIM_QUEUED; error = mpt_send_handshake_cmd(mpt, sizeof (MSG_SCSI_TASK_MGMT), reset_req); if (error) { device_printf(mpt->dev, "mpt_bus_reset: mpt_send_handshake return %d\n", error); return (CAM_REQ_CMP_ERR); } else { return (CAM_REQ_CMP); } } /* * Process an asynchronous event from the IOC. */ static void mpt_ctlop(mpt_softc_t *, void *, u_int32_t); static void mpt_event_notify_reply(mpt_softc_t *mpt, MSG_EVENT_NOTIFY_REPLY *); void mpt_ctlop(mpt_softc_t *mpt, void *vmsg, u_int32_t reply) { MSG_DEFAULT_REPLY *dmsg = vmsg; if (dmsg->Function == MPI_FUNCTION_EVENT_NOTIFICATION) { mpt_event_notify_reply(mpt, vmsg); mpt_free_reply(mpt, (reply << 1)); } else if (dmsg->Function == MPI_FUNCTION_EVENT_ACK) { mpt_free_reply(mpt, (reply << 1)); } else if (dmsg->Function == MPI_FUNCTION_PORT_ENABLE) { MSG_PORT_ENABLE_REPLY *msg = vmsg; int index = msg->MsgContext & ~0x80000000; if (mpt->verbose > 1) { device_printf(mpt->dev, "enable port reply idx %d\n", index); } if (index >= 0 && index < MPT_MAX_REQUESTS(mpt)) { request_t *req = &mpt->request_pool[index]; req->debug = REQ_DONE; } mpt_free_reply(mpt, (reply << 1)); } else if (dmsg->Function == MPI_FUNCTION_CONFIG) { MSG_CONFIG_REPLY *msg = vmsg; int index = msg->MsgContext & ~0x80000000; if (index >= 0 && index < MPT_MAX_REQUESTS(mpt)) { request_t *req = &mpt->request_pool[index]; req->debug = REQ_DONE; req->sequence = reply; } else { mpt_free_reply(mpt, (reply << 1)); } } else { device_printf(mpt->dev, "unknown mpt_ctlop: %x\n", dmsg->Function); } } static void mpt_event_notify_reply(mpt_softc_t *mpt, MSG_EVENT_NOTIFY_REPLY *msg) { switch(msg->Event) { case MPI_EVENT_LOG_DATA: /* Some error occured that LSI wants logged */ device_printf(mpt->dev, "\tEvtLogData: IOCLogInfo: 0x%08x\n", msg->IOCLogInfo); device_printf(mpt->dev, "\tEvtLogData: Event Data:"); { int i; for (i = 0; i < msg->EventDataLength; i++) { device_printf(mpt->dev, " %08X", msg->Data[i]); } } device_printf(mpt->dev, "\n"); break; case MPI_EVENT_UNIT_ATTENTION: device_printf(mpt->dev, "Bus: 0x%02x TargetID: 0x%02x\n", (msg->Data[0] >> 8) & 0xff, msg->Data[0] & 0xff); break; case MPI_EVENT_IOC_BUS_RESET: /* We generated a bus reset */ device_printf(mpt->dev, "IOC Bus Reset Port: %d\n", (msg->Data[0] >> 8) & 0xff); break; case MPI_EVENT_EXT_BUS_RESET: /* Someone else generated a bus reset */ device_printf(mpt->dev, "Ext Bus Reset\n"); /* * These replies don't return EventData like the MPI * spec says they do */ /* xpt_async(AC_BUS_RESET, path, NULL); */ break; case MPI_EVENT_RESCAN: /* * In general this means a device has been added * to the loop. */ device_printf(mpt->dev, "Rescan Port: %d\n", (msg->Data[0] >> 8) & 0xff); /* xpt_async(AC_FOUND_DEVICE, path, NULL); */ break; case MPI_EVENT_LINK_STATUS_CHANGE: device_printf(mpt->dev, "Port %d: LinkState: %s\n", (msg->Data[1] >> 8) & 0xff, ((msg->Data[0] & 0xff) == 0)? "Failed" : "Active"); break; case MPI_EVENT_LOOP_STATE_CHANGE: switch ((msg->Data[0] >> 16) & 0xff) { case 0x01: device_printf(mpt->dev, "Port 0x%x: FC LinkEvent: LIP(%02X,%02X) (Loop Initialization)\n", (msg->Data[1] >> 8) & 0xff, (msg->Data[0] >> 8) & 0xff, (msg->Data[0] ) & 0xff); switch ((msg->Data[0] >> 8) & 0xff) { case 0xF7: if ((msg->Data[0] & 0xff) == 0xF7) { printf("Device needs AL_PA\n"); } else { printf("Device %02X doesn't like FC performance\n", msg->Data[0] & 0xFF); } break; case 0xF8: if ((msg->Data[0] & 0xff) == 0xF7) { printf("Device had loop failure at its receiver prior to acquiring AL_PA\n"); } else { printf("Device %02X detected loop failure at its receiver\n", msg->Data[0] & 0xFF); } break; default: printf("Device %02X requests that device %02X reset itself\n", msg->Data[0] & 0xFF, (msg->Data[0] >> 8) & 0xFF); break; } break; case 0x02: device_printf(mpt->dev, "Port 0x%x: FC LinkEvent: LPE(%02X,%02X) (Loop Port Enable)\n", (msg->Data[1] >> 8) & 0xff, /* Port */ (msg->Data[0] >> 8) & 0xff, /* Character 3 */ (msg->Data[0] ) & 0xff /* Character 4 */ ); break; case 0x03: device_printf(mpt->dev, "Port 0x%x: FC LinkEvent: LPB(%02X,%02X) (Loop Port Bypass)\n", (msg->Data[1] >> 8) & 0xff, /* Port */ (msg->Data[0] >> 8) & 0xff, /* Character 3 */ (msg->Data[0] ) & 0xff /* Character 4 */ ); break; default: device_printf(mpt->dev, "Port 0x%x: FC LinkEvent: Unknown FC event (%02X %02X %02X)\n", (msg->Data[1] >> 8) & 0xff, /* Port */ (msg->Data[0] >> 16) & 0xff, /* Event */ (msg->Data[0] >> 8) & 0xff, /* Character 3 */ (msg->Data[0] ) & 0xff /* Character 4 */ ); } break; case MPI_EVENT_LOGOUT: device_printf(mpt->dev, "FC Logout Port: %d N_PortID: %02X\n", (msg->Data[1] >> 8) & 0xff, msg->Data[0]); break; case MPI_EVENT_EVENT_CHANGE: /* This is just an acknowledgement of our mpt_send_event_request */ break; default: device_printf(mpt->dev, "Unknown event %X\n", msg->Event); } if (msg->AckRequired) { MSG_EVENT_ACK *ackp; request_t *req; if ((req = mpt_get_request(mpt)) == NULL) { panic("unable to get request to acknowledge notify"); } ackp = (MSG_EVENT_ACK *) req->req_vbuf; bzero(ackp, sizeof *ackp); ackp->Function = MPI_FUNCTION_EVENT_ACK; ackp->Event = msg->Event; ackp->EventContext = msg->EventContext; ackp->MsgContext = req->index | 0x80000000; mpt_check_doorbell(mpt); mpt_send_cmd(mpt, req); } } void mpt_done(mpt_softc_t *mpt, u_int32_t reply) { int index; request_t *req; union ccb *ccb; MSG_REQUEST_HEADER *mpt_req; MSG_SCSI_IO_REPLY *mpt_reply; index = -1; /* Shutup the complier */ if ((reply & MPT_CONTEXT_REPLY) == 0) { /* context reply */ mpt_reply = NULL; index = reply & MPT_CONTEXT_MASK; } else { unsigned *pReply; bus_dmamap_sync(mpt->reply_dmat, mpt->reply_dmap, BUS_DMASYNC_POSTREAD); /* address reply (Error) */ mpt_reply = MPT_REPLY_PTOV(mpt, reply); if (mpt->verbose > 1) { pReply = (unsigned *) mpt_reply; device_printf(mpt->dev, "Address Reply (index %u)\n", mpt_reply->MsgContext & 0xffff); device_printf(mpt->dev, "%08X %08X %08X %08X\n", pReply[0], pReply[1], pReply[2], pReply[3]); device_printf(mpt->dev, "%08X %08X %08X %08X\n", pReply[4], pReply[5], pReply[6], pReply[7]); device_printf(mpt->dev, "%08X %08X %08X %08X\n\n", pReply[8], pReply[9], pReply[10], pReply[11]); } index = mpt_reply->MsgContext; } /* * Address reply with MessageContext high bit set * This is most likely a notify message so we try * to process it then free it */ if ((index & 0x80000000) != 0) { if (mpt_reply != NULL) { mpt_ctlop(mpt, mpt_reply, reply); } else { device_printf(mpt->dev, "mpt_done: index 0x%x, NULL reply\n", index); } return; } /* Did we end up with a valid index into the table? */ if (index < 0 || index >= MPT_MAX_REQUESTS(mpt)) { printf("mpt_done: invalid index (%x) in reply\n", index); return; } req = &mpt->request_pool[index]; /* Make sure memory hasn't been trashed */ if (req->index != index) { printf("mpt_done: corrupted request struct"); return; } /* Short cut for task management replys; nothing more for us to do */ mpt_req = req->req_vbuf; if (mpt_req->Function == MPI_FUNCTION_SCSI_TASK_MGMT) { if (mpt->verbose > 1) { device_printf(mpt->dev, "mpt_done: TASK MGMT\n"); } goto done; } if (mpt_req->Function == MPI_FUNCTION_PORT_ENABLE) { goto done; } /* * At this point it better be a SCSI IO command, but don't * crash if it isn't */ if (mpt_req->Function != MPI_FUNCTION_SCSI_IO_REQUEST) { goto done; } /* Recover the CAM control block from the request structure */ ccb = req->ccb; /* Can't have had a SCSI command with out a CAM control block */ if (ccb == NULL || (ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { device_printf(mpt->dev, "mpt_done: corrupted ccb, index = 0x%02x seq = 0x%08x", req->index, req->sequence); printf(" request state %s\nmpt_request:\n", mpt_req_state(req->debug)); mpt_print_scsi_io_request((MSG_SCSI_IO_REQUEST *)req->req_vbuf); if (mpt_reply != NULL) { printf("\nmpt_done: reply:\n"); mpt_print_reply(MPT_REPLY_PTOV(mpt, reply)); } else { printf("\nmpt_done: context reply: 0x%08x\n", reply); } goto done; } untimeout(mpttimeout, ccb, ccb->ccb_h.timeout_ch); if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) { bus_dmasync_op_t op; if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) { op = BUS_DMASYNC_POSTREAD; } else { op = BUS_DMASYNC_POSTWRITE; } bus_dmamap_sync(mpt->buffer_dmat, req->dmap, op); bus_dmamap_unload(mpt->buffer_dmat, req->dmap); } ccb->csio.resid = 0; if (mpt_reply == NULL) { /* Context reply; report that the command was successfull */ ccb->ccb_h.status = CAM_REQ_CMP; ccb->csio.scsi_status = SCSI_STATUS_OK; ccb->ccb_h.status &= ~CAM_SIM_QUEUED; if (mpt->outofbeer) { ccb->ccb_h.status |= CAM_RELEASE_SIMQ; mpt->outofbeer = 0; if (mpt->verbose > 1) { device_printf(mpt->dev, "THAWQ\n"); } } MPTLOCK_2_CAMLOCK(mpt); xpt_done(ccb); CAMLOCK_2_MPTLOCK(mpt); goto done; } ccb->csio.scsi_status = mpt_reply->SCSIStatus; switch(mpt_reply->IOCStatus) { case MPI_IOCSTATUS_SCSI_DATA_OVERRUN: ccb->ccb_h.status = CAM_DATA_RUN_ERR; break; case MPI_IOCSTATUS_SCSI_DATA_UNDERRUN: /* * Yikes, Tagged queue full comes through this path! * * So we'll change it to a status error and anything * that returns status should probably be a status * error as well. */ ccb->csio.resid = ccb->csio.dxfer_len - mpt_reply->TransferCount; if (mpt_reply->SCSIState & MPI_SCSI_STATE_NO_SCSI_STATUS) { ccb->ccb_h.status = CAM_DATA_RUN_ERR; break; } #if 0 device_printf(mpt->dev, "underrun, scsi status is %x\n", ccb->csio.scsi_status); ccb->csio.scsi_status = SCSI_STATUS_QUEUE_FULL; #endif /* Fall through */ case MPI_IOCSTATUS_SUCCESS: case MPI_IOCSTATUS_SCSI_RECOVERED_ERROR: switch (ccb->csio.scsi_status) { case SCSI_STATUS_OK: ccb->ccb_h.status = CAM_REQ_CMP; break; default: ccb->ccb_h.status = CAM_SCSI_STATUS_ERROR; break; } break; case MPI_IOCSTATUS_BUSY: case MPI_IOCSTATUS_INSUFFICIENT_RESOURCES: ccb->ccb_h.status = CAM_BUSY; break; case MPI_IOCSTATUS_SCSI_INVALID_BUS: case MPI_IOCSTATUS_SCSI_INVALID_TARGETID: case MPI_IOCSTATUS_SCSI_DEVICE_NOT_THERE: ccb->ccb_h.status = CAM_DEV_NOT_THERE; break; case MPI_IOCSTATUS_SCSI_RESIDUAL_MISMATCH: ccb->ccb_h.status = CAM_DATA_RUN_ERR; break; case MPI_IOCSTATUS_SCSI_PROTOCOL_ERROR: case MPI_IOCSTATUS_SCSI_IO_DATA_ERROR: ccb->ccb_h.status = CAM_UNCOR_PARITY; break; case MPI_IOCSTATUS_SCSI_TASK_TERMINATED: ccb->ccb_h.status = CAM_REQ_CMP; break; case MPI_IOCSTATUS_SCSI_TASK_MGMT_FAILED: ccb->ccb_h.status = CAM_UA_TERMIO; break; case MPI_IOCSTATUS_SCSI_IOC_TERMINATED: ccb->ccb_h.status = CAM_REQ_TERMIO; break; case MPI_IOCSTATUS_SCSI_EXT_TERMINATED: ccb->ccb_h.status = CAM_SCSI_BUS_RESET; break; default: ccb->ccb_h.status = CAM_UNREC_HBA_ERROR; break; } if ((mpt_reply->SCSIState & MPI_SCSI_STATE_AUTOSENSE_VALID) != 0) { if (ccb->ccb_h.flags & (CAM_SENSE_PHYS | CAM_SENSE_PTR)) { ccb->ccb_h.status |= CAM_AUTOSENSE_FAIL; } else { ccb->ccb_h.status |= CAM_AUTOSNS_VALID; ccb->csio.sense_resid = mpt_reply->SenseCount; bcopy(req->sense_vbuf, &ccb->csio.sense_data, ccb->csio.sense_len); } } else if (mpt_reply->SCSIState & MPI_SCSI_STATE_AUTOSENSE_FAILED) { ccb->ccb_h.status &= ~CAM_STATUS_MASK; ccb->ccb_h.status |= CAM_AUTOSENSE_FAIL; } if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { if ((ccb->ccb_h.status & CAM_DEV_QFRZN) == 0) { ccb->ccb_h.status |= CAM_DEV_QFRZN; xpt_freeze_devq(ccb->ccb_h.path, 1); } } ccb->ccb_h.status &= ~CAM_SIM_QUEUED; if (mpt->outofbeer) { ccb->ccb_h.status |= CAM_RELEASE_SIMQ; mpt->outofbeer = 0; if (mpt->verbose > 1) { device_printf(mpt->dev, "THAWQ\n"); } } MPTLOCK_2_CAMLOCK(mpt); xpt_done(ccb); CAMLOCK_2_MPTLOCK(mpt); done: /* If IOC done with this request free it up */ if (mpt_reply == NULL || (mpt_reply->MsgFlags & 0x80) == 0) mpt_free_request(mpt, req); /* If address reply; give the buffer back to the IOC */ if (mpt_reply != NULL) mpt_free_reply(mpt, (reply << 1)); } static void mpt_action(struct cam_sim *sim, union ccb *ccb) { int tgt, error; mpt_softc_t *mpt; struct ccb_trans_settings *cts; CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("mpt_action\n")); mpt = (mpt_softc_t *)cam_sim_softc(sim); ccb->ccb_h.ccb_mpt_ptr = mpt; switch (ccb->ccb_h.func_code) { case XPT_RESET_BUS: if (mpt->verbose > 1) device_printf(mpt->dev, "XPT_RESET_BUS\n"); CAMLOCK_2_MPTLOCK(mpt); error = mpt_bus_reset(ccb); switch (error) { case CAM_REQ_INPROG: MPTLOCK_2_CAMLOCK(mpt); break; case CAM_REQUEUE_REQ: if (mpt->outofbeer == 0) { mpt->outofbeer = 1; xpt_freeze_simq(sim, 1); if (mpt->verbose > 1) { device_printf(mpt->dev, "FREEZEQ\n"); } } ccb->ccb_h.status = CAM_REQUEUE_REQ; MPTLOCK_2_CAMLOCK(mpt); xpt_done(ccb); break; case CAM_REQ_CMP: ccb->ccb_h.status &= ~CAM_SIM_QUEUED; ccb->ccb_h.status |= CAM_REQ_CMP; if (mpt->outofbeer) { ccb->ccb_h.status |= CAM_RELEASE_SIMQ; mpt->outofbeer = 0; if (mpt->verbose > 1) { device_printf(mpt->dev, "THAWQ\n"); } } MPTLOCK_2_CAMLOCK(mpt); xpt_done(ccb); break; default: ccb->ccb_h.status = CAM_REQ_CMP_ERR; MPTLOCK_2_CAMLOCK(mpt); xpt_done(ccb); } break; case XPT_SCSI_IO: /* Execute the requested I/O operation */ /* * Do a couple of preliminary checks... */ if ((ccb->ccb_h.flags & CAM_CDB_POINTER) != 0) { if ((ccb->ccb_h.flags & CAM_CDB_PHYS) != 0) { ccb->ccb_h.status = CAM_REQ_INVALID; xpt_done(ccb); break; } } /* Max supported CDB length is 16 bytes */ if (ccb->csio.cdb_len > sizeof (((PTR_MSG_SCSI_IO_REQUEST)0)->CDB)) { ccb->ccb_h.status = CAM_REQ_INVALID; xpt_done(ccb); return; } ccb->csio.scsi_status = SCSI_STATUS_OK; mpt_start(ccb); break; case XPT_ABORT: /* * XXX: Need to implement */ ccb->ccb_h.status = CAM_UA_ABORT; xpt_done(ccb); break; #ifdef CAM_NEW_TRAN_CODE #define IS_CURRENT_SETTINGS(c) (c->type == CTS_TYPE_CURRENT_SETTINGS) #else #define IS_CURRENT_SETTINGS(c) (c->flags & CCB_TRANS_CURRENT_SETTINGS) #endif #define DP_DISC_ENABLE 0x1 #define DP_DISC_DISABL 0x2 #define DP_DISC (DP_DISC_ENABLE|DP_DISC_DISABL) #define DP_TQING_ENABLE 0x4 #define DP_TQING_DISABL 0x8 #define DP_TQING (DP_TQING_ENABLE|DP_TQING_DISABL) #define DP_WIDE 0x10 #define DP_NARROW 0x20 #define DP_WIDTH (DP_WIDE|DP_NARROW) #define DP_SYNC 0x40 case XPT_SET_TRAN_SETTINGS: /* Nexus Settings */ cts = &ccb->cts; if (!IS_CURRENT_SETTINGS(cts)) { ccb->ccb_h.status = CAM_REQ_INVALID; xpt_done(ccb); break; } tgt = cts->ccb_h.target_id; if (mpt->is_fc == 0) { u_int8_t dval = 0; u_int period = 0, offset = 0; #ifndef CAM_NEW_TRAN_CODE if (cts->valid & CCB_TRANS_DISC_VALID) { dval |= DP_DISC_ENABLE; } if (cts->valid & CCB_TRANS_TQ_VALID) { dval |= DP_TQING_ENABLE; } if (cts->valid & CCB_TRANS_BUS_WIDTH_VALID) { if (cts->bus_width) dval |= DP_WIDE; else dval |= DP_NARROW; } /* * Any SYNC RATE of nonzero and SYNC_OFFSET * of nonzero will cause us to go to the * selected (from NVRAM) maximum value for * this device. At a later point, we'll * allow finer control. */ if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) && (cts->valid & CCB_TRANS_SYNC_OFFSET_VALID)) { dval |= DP_SYNC; period = cts->sync_period; offset = cts->sync_offset; } #else struct ccb_trans_settings_scsi *scsi = &cts->proto_specific.scsi; struct ccb_trans_settings_spi *spi = &cts->xport_specific.spi; if ((spi->valid & CTS_SPI_VALID_DISC) != 0) { if ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0) dval |= DP_DISC_ENABLE; else dval |= DP_DISC_DISABL; } if ((scsi->valid & CTS_SCSI_VALID_TQ) != 0) { if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) dval |= DP_TQING_ENABLE; else dval |= DP_TQING_DISABL; } if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0) { if (spi->bus_width == MSG_EXT_WDTR_BUS_16_BIT) dval |= DP_WIDE; else dval |= DP_NARROW; } if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) && (spi->valid & CTS_SPI_VALID_SYNC_RATE) && (spi->sync_period && spi->sync_offset)) { dval |= DP_SYNC; period = spi->sync_period; offset = spi->sync_offset; } #endif CAMLOCK_2_MPTLOCK(mpt); if (dval & DP_DISC_ENABLE) { mpt->mpt_disc_enable |= (1 << tgt); } else if (dval & DP_DISC_DISABL) { mpt->mpt_disc_enable &= ~(1 << tgt); } if (dval & DP_TQING_ENABLE) { mpt->mpt_tag_enable |= (1 << tgt); } else if (dval & DP_TQING_DISABL) { mpt->mpt_tag_enable &= ~(1 << tgt); } if (dval & DP_WIDTH) { if (mpt_setwidth(mpt, tgt, dval & DP_WIDE)) { ccb->ccb_h.status = CAM_REQ_CMP_ERR; MPTLOCK_2_CAMLOCK(mpt); xpt_done(ccb); break; } } if (dval & DP_SYNC) { if (mpt_setsync(mpt, tgt, period, offset)) { ccb->ccb_h.status = CAM_REQ_CMP_ERR; MPTLOCK_2_CAMLOCK(mpt); xpt_done(ccb); break; } } MPTLOCK_2_CAMLOCK(mpt); if (mpt->verbose > 1) { device_printf(mpt->dev, "SET tgt %d flags %x period %x off %x\n", tgt, dval, period, offset); } } ccb->ccb_h.status = CAM_REQ_CMP; xpt_done(ccb); break; case XPT_GET_TRAN_SETTINGS: cts = &ccb->cts; tgt = cts->ccb_h.target_id; if (mpt->is_fc) { #ifndef CAM_NEW_TRAN_CODE /* * a lot of normal SCSI things don't make sense. */ cts->flags = CCB_TRANS_TAG_ENB | CCB_TRANS_DISC_ENB; cts->valid = CCB_TRANS_DISC_VALID | CCB_TRANS_TQ_VALID; /* * How do you measure the width of a high * speed serial bus? Well, in bytes. * * Offset and period make no sense, though, so we set * (above) a 'base' transfer speed to be gigabit. */ cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT; #else struct ccb_trans_settings_fc *fc = &cts->xport_specific.fc; cts->protocol = PROTO_SCSI; cts->protocol_version = SCSI_REV_2; cts->transport = XPORT_FC; cts->transport_version = 0; fc->valid = CTS_FC_VALID_SPEED; fc->bitrate = 100000; /* XXX: Need for 2Gb/s */ /* XXX: need a port database for each target */ #endif } else { #ifdef CAM_NEW_TRAN_CODE struct ccb_trans_settings_scsi *scsi = &cts->proto_specific.scsi; struct ccb_trans_settings_spi *spi = &cts->xport_specific.spi; #endif u_int8_t dval, pval, oval; /* * We aren't going off of Port PAGE2 params for * tagged queuing or disconnect capabilities * for current settings. For goal settings, * we assert all capabilities- we've had some * problems with reading NVRAM data. */ if (IS_CURRENT_SETTINGS(cts)) { fCONFIG_PAGE_SCSI_DEVICE_0 tmp; dval = 0; tmp = mpt->mpt_dev_page0[tgt]; CAMLOCK_2_MPTLOCK(mpt); if (mpt_read_cfg_page(mpt, tgt, &tmp.Header)) { device_printf(mpt->dev, "cannot get target %d DP0\n", tgt); } else { if (mpt->verbose > 1) { device_printf(mpt->dev, "SPI Tgt %d Page 0: NParms %x Information %x\n", tgt, tmp.NegotiatedParameters, tmp.Information); } } MPTLOCK_2_CAMLOCK(mpt); if (tmp.NegotiatedParameters & MPI_SCSIDEVPAGE0_NP_WIDE) dval |= DP_WIDE; if (mpt->mpt_disc_enable & (1 << tgt)) { dval |= DP_DISC_ENABLE; } if (mpt->mpt_tag_enable & (1 << tgt)) { dval |= DP_TQING_ENABLE; } oval = (tmp.NegotiatedParameters >> 16) & 0xff; pval = (tmp.NegotiatedParameters >> 8) & 0xff; } else { /* * XXX: Fix wrt NVRAM someday. Attempts * XXX: to read port page2 device data * XXX: just returns zero in these areas. */ dval = DP_WIDE|DP_DISC|DP_TQING; oval = (mpt->mpt_port_page0.Capabilities >> 16); pval = (mpt->mpt_port_page0.Capabilities >> 8); } #ifndef CAM_NEW_TRAN_CODE cts->flags &= ~(CCB_TRANS_DISC_ENB|CCB_TRANS_TAG_ENB); if (dval & DP_DISC_ENABLE) { cts->flags |= CCB_TRANS_DISC_ENB; } if (dval & DP_TQING_ENABLE) { cts->flags |= CCB_TRANS_TAG_ENB; } if (dval & DP_WIDE) { cts->bus_width = MSG_EXT_WDTR_BUS_16_BIT; } else { cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT; } cts->valid = CCB_TRANS_BUS_WIDTH_VALID | CCB_TRANS_DISC_VALID | CCB_TRANS_TQ_VALID; if (oval) { cts->sync_period = pval; cts->sync_offset = oval; cts->valid |= CCB_TRANS_SYNC_RATE_VALID | CCB_TRANS_SYNC_OFFSET_VALID; } #else cts->protocol = PROTO_SCSI; cts->protocol_version = SCSI_REV_2; cts->transport = XPORT_SPI; cts->transport_version = 2; scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; if (dval & DP_DISC_ENABLE) { spi->flags |= CTS_SPI_FLAGS_DISC_ENB; } if (dval & DP_TQING_ENABLE) { scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB; } if (oval && pval) { spi->sync_offset = oval; spi->sync_period = pval; spi->valid |= CTS_SPI_VALID_SYNC_OFFSET; spi->valid |= CTS_SPI_VALID_SYNC_RATE; } spi->valid |= CTS_SPI_VALID_BUS_WIDTH; if (dval & DP_WIDE) { spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT; } else { spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT; } if (cts->ccb_h.target_lun != CAM_LUN_WILDCARD) { scsi->valid = CTS_SCSI_VALID_TQ; spi->valid |= CTS_SPI_VALID_DISC; } else { scsi->valid = 0; } #endif if (mpt->verbose > 1) { device_printf(mpt->dev, "GET %s tgt %d flags %x period %x off %x\n", IS_CURRENT_SETTINGS(cts)? "ACTIVE" : "NVRAM", tgt, dval, pval, oval); } } ccb->ccb_h.status = CAM_REQ_CMP; xpt_done(ccb); break; case XPT_CALC_GEOMETRY: { struct ccb_calc_geometry *ccg; u_int32_t secs_per_cylinder; u_int32_t size_mb; ccg = &ccb->ccg; if (ccg->block_size == 0) { ccb->ccb_h.status = CAM_REQ_INVALID; xpt_done(ccb); break; } size_mb = ccg->volume_size /((1024L * 1024L) / ccg->block_size); if (size_mb > 1024) { ccg->heads = 255; ccg->secs_per_track = 63; } else { ccg->heads = 64; ccg->secs_per_track = 32; } secs_per_cylinder = ccg->heads * ccg->secs_per_track; ccg->cylinders = ccg->volume_size / secs_per_cylinder; ccb->ccb_h.status = CAM_REQ_CMP; xpt_done(ccb); break; } case XPT_PATH_INQ: /* Path routing inquiry */ { struct ccb_pathinq *cpi = &ccb->cpi; cpi->version_num = 1; cpi->target_sprt = 0; cpi->hba_eng_cnt = 0; cpi->max_lun = 7; cpi->bus_id = cam_sim_bus(sim); if (mpt->is_fc) { cpi->max_target = 255; cpi->hba_misc = PIM_NOBUSRESET; cpi->initiator_id = cpi->max_target + 1; cpi->base_transfer_speed = 100000; cpi->hba_inquiry = PI_TAG_ABLE; } else { cpi->initiator_id = mpt->mpt_ini_id; cpi->base_transfer_speed = 3300; cpi->hba_inquiry = PI_SDTR_ABLE|PI_TAG_ABLE|PI_WIDE_16; cpi->hba_misc = 0; cpi->max_target = 15; } strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); strncpy(cpi->hba_vid, "LSI", HBA_IDLEN); strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN); cpi->unit_number = cam_sim_unit(sim); cpi->ccb_h.status = CAM_REQ_CMP; xpt_done(ccb); break; } default: ccb->ccb_h.status = CAM_REQ_INVALID; xpt_done(ccb); break; } } static int mpt_setwidth(mpt_softc_t *mpt, int tgt, int onoff) { fCONFIG_PAGE_SCSI_DEVICE_1 tmp; tmp = mpt->mpt_dev_page1[tgt]; if (onoff) { tmp.RequestedParameters |= MPI_SCSIDEVPAGE1_RP_WIDE; } else { tmp.RequestedParameters &= ~MPI_SCSIDEVPAGE1_RP_WIDE; } if (mpt_write_cfg_page(mpt, tgt, &tmp.Header)) { return (-1); } if (mpt_read_cfg_page(mpt, tgt, &tmp.Header)) { return (-1); } mpt->mpt_dev_page1[tgt] = tmp; if (mpt->verbose > 1) { device_printf(mpt->dev, "SPI Target %d Page 1: RequestedParameters %x Config %x\n", tgt, mpt->mpt_dev_page1[tgt].RequestedParameters, mpt->mpt_dev_page1[tgt].Configuration); } return (0); } static int mpt_setsync(mpt_softc_t *mpt, int tgt, int period, int offset) { fCONFIG_PAGE_SCSI_DEVICE_1 tmp; tmp = mpt->mpt_dev_page1[tgt]; tmp.RequestedParameters &= ~MPI_SCSIDEVPAGE1_RP_MIN_SYNC_PERIOD_MASK; tmp.RequestedParameters &= ~MPI_SCSIDEVPAGE1_RP_MAX_SYNC_OFFSET_MASK; tmp.RequestedParameters &= ~MPI_SCSIDEVPAGE1_RP_DT; tmp.RequestedParameters &= ~MPI_SCSIDEVPAGE1_RP_QAS; tmp.RequestedParameters &= ~MPI_SCSIDEVPAGE1_RP_IU; /* * XXX: For now, we're ignoring specific settings */ if (period && offset) { int factor, offset, np; factor = (mpt->mpt_port_page0.Capabilities >> 8) & 0xff; offset = (mpt->mpt_port_page0.Capabilities >> 16) & 0xff; #if 0 if ((mpt->mpt_port_page0.PhysicalInterface & MPI_SCSIPORTPAGE0_PHY_SIGNAL_TYPE_MASK) != MPI_SCSIPORTPAGE0_PHY_SIGNAL_LVD && factor < 0xa) { factor = 0xa; } #endif np = 0; if (factor < 0x9) { np |= MPI_SCSIDEVPAGE1_RP_QAS; np |= MPI_SCSIDEVPAGE1_RP_IU; } if (factor < 0xa) { np |= MPI_SCSIDEVPAGE1_RP_DT; } np |= (factor << 8) | (offset << 16); tmp.RequestedParameters |= np; } if (mpt_write_cfg_page(mpt, tgt, &tmp.Header)) { return (-1); } if (mpt_read_cfg_page(mpt, tgt, &tmp.Header)) { return (-1); } mpt->mpt_dev_page1[tgt] = tmp; if (mpt->verbose > 1) { device_printf(mpt->dev, "SPI Target %d Page 1: RParams %x Config %x\n", tgt, mpt->mpt_dev_page1[tgt].RequestedParameters, mpt->mpt_dev_page1[tgt].Configuration); } return (0); }