/****************************************************************************** * * Module Name: dswstate - Dispatcher parse tree walk management routines * $Revision: 31 $ * *****************************************************************************/ /****************************************************************************** * * 1. Copyright Notice * * Some or all of this work - Copyright (c) 1999, Intel Corp. All rights * reserved. * * 2. License * * 2.1. This is your license from Intel Corp. under its intellectual property * rights. You may have additional license terms from the party that provided * you this software, covering your right to use that party's intellectual * property rights. * * 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a * copy of the source code appearing in this file ("Covered Code") an * irrevocable, perpetual, worldwide license under Intel's copyrights in the * base code distributed originally by Intel ("Original Intel Code") to copy, * make derivatives, distribute, use and display any portion of the Covered * Code in any form, with the right to sublicense such rights; and * * 2.3. Intel grants Licensee a non-exclusive and non-transferable patent * license (with the right to sublicense), under only those claims of Intel * patents that are infringed by the Original Intel Code, to make, use, sell, * offer to sell, and import the Covered Code and derivative works thereof * solely to the minimum extent necessary to exercise the above copyright * license, and in no event shall the patent license extend to any additions * to or modifications of the Original Intel Code. No other license or right * is granted directly or by implication, estoppel or otherwise; * * The above copyright and patent license is granted only if the following * conditions are met: * * 3. Conditions * * 3.1. Redistribution of Source with Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification with rights to further distribute source must include * the above Copyright Notice, the above License, this list of Conditions, * and the following Disclaimer and Export Compliance provision. In addition, * Licensee must cause all Covered Code to which Licensee contributes to * contain a file documenting the changes Licensee made to create that Covered * Code and the date of any change. Licensee must include in that file the * documentation of any changes made by any predecessor Licensee. Licensee * must include a prominent statement that the modification is derived, * directly or indirectly, from Original Intel Code. * * 3.2. Redistribution of Source with no Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification without rights to further distribute source must * include the following Disclaimer and Export Compliance provision in the * documentation and/or other materials provided with distribution. In * addition, Licensee may not authorize further sublicense of source of any * portion of the Covered Code, and must include terms to the effect that the * license from Licensee to its licensee is limited to the intellectual * property embodied in the software Licensee provides to its licensee, and * not to intellectual property embodied in modifications its licensee may * make. * * 3.3. Redistribution of Executable. Redistribution in executable form of any * substantial portion of the Covered Code or modification must reproduce the * above Copyright Notice, and the following Disclaimer and Export Compliance * provision in the documentation and/or other materials provided with the * distribution. * * 3.4. Intel retains all right, title, and interest in and to the Original * Intel Code. * * 3.5. Neither the name Intel nor any other trademark owned or controlled by * Intel shall be used in advertising or otherwise to promote the sale, use or * other dealings in products derived from or relating to the Covered Code * without prior written authorization from Intel. * * 4. Disclaimer and Export Compliance * * 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED * HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE * IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE, * INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY * UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY * IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A * PARTICULAR PURPOSE. * * 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES * OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR * COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT, * SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY * CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL * HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS * SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY * LIMITED REMEDY. * * 4.3. Licensee shall not export, either directly or indirectly, any of this * software or system incorporating such software without first obtaining any * required license or other approval from the U. S. Department of Commerce or * any other agency or department of the United States Government. In the * event Licensee exports any such software from the United States or * re-exports any such software from a foreign destination, Licensee shall * ensure that the distribution and export/re-export of the software is in * compliance with all laws, regulations, orders, or other restrictions of the * U.S. Export Administration Regulations. Licensee agrees that neither it nor * any of its subsidiaries will export/re-export any technical data, process, * software, or service, directly or indirectly, to any country for which the * United States government or any agency thereof requires an export license, * other governmental approval, or letter of assurance, without first obtaining * such license, approval or letter. * *****************************************************************************/ #define __DSWSTATE_C__ #include "acpi.h" #include "amlcode.h" #include "acparser.h" #include "acdispat.h" #include "acnamesp.h" #include "acinterp.h" #define _COMPONENT DISPATCHER MODULE_NAME ("dswstate") /******************************************************************************* * * FUNCTION: AcpiDsResultStackClear * * PARAMETERS: WalkState - Current Walk state * * RETURN: Status * * DESCRIPTION: Reset this walk's result stack pointers to zero, thus setting * the stack to zero. * ******************************************************************************/ ACPI_STATUS AcpiDsResultStackClear ( ACPI_WALK_STATE *WalkState) { WalkState->NumResults = 0; WalkState->CurrentResult = 0; return (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiDsResultStackPush * * PARAMETERS: Object - Object to push * WalkState - Current Walk state * * RETURN: Status * * DESCRIPTION: Push an object onto this walk's result stack * ******************************************************************************/ ACPI_STATUS AcpiDsResultStackPush ( void *Object, ACPI_WALK_STATE *WalkState) { if (WalkState->NumResults >= OBJ_NUM_OPERANDS) { DEBUG_PRINT (ACPI_ERROR, ("DsResultStackPush: overflow! Obj=%p State=%p Num=%X\n", Object, WalkState, WalkState->NumResults)); return (AE_STACK_OVERFLOW); } WalkState->Results [WalkState->NumResults] = Object; WalkState->NumResults++; DEBUG_PRINT (TRACE_EXEC, ("DsResultStackPush: Obj=%p State=%p Num=%X Cur=%X\n", Object, WalkState, WalkState->NumResults, WalkState->CurrentResult)); return (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiDsResultStackPop * * PARAMETERS: Object - Where to return the popped object * WalkState - Current Walk state * * RETURN: Status * * DESCRIPTION: Pop an object off the bottom of this walk's result stack. In * other words, this is a FIFO. * ******************************************************************************/ ACPI_STATUS AcpiDsResultStackPop ( ACPI_OPERAND_OBJECT **Object, ACPI_WALK_STATE *WalkState) { /* Check for stack underflow */ if (WalkState->NumResults == 0) { DEBUG_PRINT (ACPI_ERROR, ("DsResultStackPop: Underflow! State=%p Cur=%X Num=%X\n", WalkState, WalkState->CurrentResult, WalkState->NumResults)); return (AE_AML_NO_OPERAND); } /* Pop the stack */ WalkState->NumResults--; /* Check for a valid result object */ if (!WalkState->Results [WalkState->NumResults]) { DEBUG_PRINT (ACPI_ERROR, ("DsResultStackPop: Null operand! State=%p #Ops=%X\n", WalkState, WalkState->NumResults)); return (AE_AML_NO_OPERAND); } *Object = WalkState->Results [WalkState->NumResults]; WalkState->Results [WalkState->NumResults] = NULL; DEBUG_PRINT (TRACE_EXEC, ("DsResultStackPop: Obj=%p State=%p Num=%X Cur=%X\n", *Object, WalkState, WalkState->NumResults, WalkState->CurrentResult)); return (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiDsObjStackDeleteAll * * PARAMETERS: WalkState - Current Walk state * * RETURN: Status * * DESCRIPTION: Clear the object stack by deleting all objects that are on it. * Should be used with great care, if at all! * ******************************************************************************/ ACPI_STATUS AcpiDsObjStackDeleteAll ( ACPI_WALK_STATE *WalkState) { UINT32 i; FUNCTION_TRACE_PTR ("DsObjStackDeleteAll", WalkState); /* The stack size is configurable, but fixed */ for (i = 0; i < OBJ_NUM_OPERANDS; i++) { if (WalkState->Operands[i]) { AcpiCmRemoveReference (WalkState->Operands[i]); WalkState->Operands[i] = NULL; } } return_ACPI_STATUS (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiDsObjStackPush * * PARAMETERS: Object - Object to push * WalkState - Current Walk state * * RETURN: Status * * DESCRIPTION: Push an object onto this walk's object/operand stack * ******************************************************************************/ ACPI_STATUS AcpiDsObjStackPush ( void *Object, ACPI_WALK_STATE *WalkState) { /* Check for stack overflow */ if (WalkState->NumOperands >= OBJ_NUM_OPERANDS) { DEBUG_PRINT (ACPI_ERROR, ("DsObjStackPush: overflow! Obj=%p State=%p #Ops=%X\n", Object, WalkState, WalkState->NumOperands)); return (AE_STACK_OVERFLOW); } /* Put the object onto the stack */ WalkState->Operands [WalkState->NumOperands] = Object; WalkState->NumOperands++; DEBUG_PRINT (TRACE_EXEC, ("DsObjStackPush: Obj=%p State=%p #Ops=%X\n", Object, WalkState, WalkState->NumOperands)); return (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiDsObjStackPopObject * * PARAMETERS: PopCount - Number of objects/entries to pop * WalkState - Current Walk state * * RETURN: Status * * DESCRIPTION: Pop this walk's object stack. Objects on the stack are NOT * deleted by this routine. * ******************************************************************************/ ACPI_STATUS AcpiDsObjStackPopObject ( ACPI_OPERAND_OBJECT **Object, ACPI_WALK_STATE *WalkState) { /* Check for stack underflow */ if (WalkState->NumOperands == 0) { DEBUG_PRINT (ACPI_ERROR, ("DsObjStackPop: Missing operand/stack empty! State=%p #Ops=%X\n", WalkState, WalkState->NumOperands)); return (AE_AML_NO_OPERAND); } /* Pop the stack */ WalkState->NumOperands--; /* Check for a valid operand */ if (!WalkState->Operands [WalkState->NumOperands]) { DEBUG_PRINT (ACPI_ERROR, ("DsObjStackPop: Null operand! State=%p #Ops=%X\n", WalkState, WalkState->NumOperands)); return (AE_AML_NO_OPERAND); } /* Get operand and set stack entry to null */ *Object = WalkState->Operands [WalkState->NumOperands]; WalkState->Operands [WalkState->NumOperands] = NULL; DEBUG_PRINT (TRACE_EXEC, ("DsObjStackPopObject: State=%p #Ops=%X\n", WalkState, WalkState->NumOperands)); return (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiDsObjStackPop * * PARAMETERS: PopCount - Number of objects/entries to pop * WalkState - Current Walk state * * RETURN: Status * * DESCRIPTION: Pop this walk's object stack. Objects on the stack are NOT * deleted by this routine. * ******************************************************************************/ ACPI_STATUS AcpiDsObjStackPop ( UINT32 PopCount, ACPI_WALK_STATE *WalkState) { UINT32 i; for (i = 0; i < PopCount; i++) { /* Check for stack underflow */ if (WalkState->NumOperands == 0) { DEBUG_PRINT (ACPI_ERROR, ("DsObjStackPop: Underflow! Count=%X State=%p #Ops=%X\n", PopCount, WalkState, WalkState->NumOperands)); return (AE_STACK_UNDERFLOW); } /* Just set the stack entry to null */ WalkState->NumOperands--; WalkState->Operands [WalkState->NumOperands] = NULL; } DEBUG_PRINT (TRACE_EXEC, ("DsObjStackPop: Count=%X State=%p #Ops=%X\n", PopCount, WalkState, WalkState->NumOperands)); return (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiDsObjStackPopAndDelete * * PARAMETERS: PopCount - Number of objects/entries to pop * WalkState - Current Walk state * * RETURN: Status * * DESCRIPTION: Pop this walk's object stack and delete each object that is * popped off. * ******************************************************************************/ ACPI_STATUS AcpiDsObjStackPopAndDelete ( UINT32 PopCount, ACPI_WALK_STATE *WalkState) { UINT32 i; ACPI_OPERAND_OBJECT *ObjDesc; for (i = 0; i < PopCount; i++) { /* Check for stack underflow */ if (WalkState->NumOperands == 0) { DEBUG_PRINT (ACPI_ERROR, ("DsObjStackPop: Underflow! Count=%X State=%p #Ops=%X\n", PopCount, WalkState, WalkState->NumOperands)); return (AE_STACK_UNDERFLOW); } /* Pop the stack and delete an object if present in this stack entry */ WalkState->NumOperands--; ObjDesc = WalkState->Operands [WalkState->NumOperands]; if (ObjDesc) { AcpiCmRemoveReference (WalkState->Operands [WalkState->NumOperands]); WalkState->Operands [WalkState->NumOperands] = NULL; } } DEBUG_PRINT (TRACE_EXEC, ("DsObjStackPop: Count=%X State=%p #Ops=%X\n", PopCount, WalkState, WalkState->NumOperands)); return (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiDsObjStackGetValue * * PARAMETERS: Index - Stack index whose value is desired. Based * on the top of the stack (index=0 == top) * WalkState - Current Walk state * * RETURN: Status * * DESCRIPTION: Retrieve an object from this walk's object stack. Index must * be within the range of the current stack pointer. * ******************************************************************************/ void * AcpiDsObjStackGetValue ( UINT32 Index, ACPI_WALK_STATE *WalkState) { FUNCTION_TRACE_PTR ("DsObjStackGetValue", WalkState); /* Can't do it if the stack is empty */ if (WalkState->NumOperands == 0) { return_VALUE (NULL); } /* or if the index is past the top of the stack */ if (Index > (WalkState->NumOperands - (UINT32) 1)) { return_VALUE (NULL); } return_PTR (WalkState->Operands[(NATIVE_UINT)(WalkState->NumOperands - 1) - Index]); } /******************************************************************************* * * FUNCTION: AcpiDsGetCurrentWalkState * * PARAMETERS: WalkList - Get current active state for this walk list * * RETURN: Pointer to the current walk state * * DESCRIPTION: Get the walk state that is at the head of the list (the "current" * walk state. * ******************************************************************************/ ACPI_WALK_STATE * AcpiDsGetCurrentWalkState ( ACPI_WALK_LIST *WalkList) { DEBUG_PRINT (TRACE_PARSE, ("DsGetCurrentWalkState, =%p\n", WalkList->WalkState)); if (!WalkList) { return (NULL); } return (WalkList->WalkState); } /******************************************************************************* * * FUNCTION: AcpiDsPushWalkState * * PARAMETERS: WalkState - State to push * WalkList - The list that owns the walk stack * * RETURN: None * * DESCRIPTION: Place the WalkState at the head of the state list. * ******************************************************************************/ void AcpiDsPushWalkState ( ACPI_WALK_STATE *WalkState, ACPI_WALK_LIST *WalkList) { FUNCTION_TRACE ("DsPushWalkState"); WalkState->Next = WalkList->WalkState; WalkList->WalkState = WalkState; return_VOID; } /******************************************************************************* * * FUNCTION: AcpiDsPopWalkState * * PARAMETERS: WalkList - The list that owns the walk stack * * RETURN: A WalkState object popped from the stack * * DESCRIPTION: Remove and return the walkstate object that is at the head of * the walk stack for the given walk list. NULL indicates that * the list is empty. * ******************************************************************************/ ACPI_WALK_STATE * AcpiDsPopWalkState ( ACPI_WALK_LIST *WalkList) { ACPI_WALK_STATE *WalkState; FUNCTION_TRACE ("DsPopWalkState"); WalkState = WalkList->WalkState; if (WalkState) { /* Next walk state becomes the current walk state */ WalkList->WalkState = WalkState->Next; /* * Don't clear the NEXT field, this serves as an indicator * that there is a parent WALK STATE * WalkState->Next = NULL; */ } return_PTR (WalkState); } /******************************************************************************* * * FUNCTION: AcpiDsCreateWalkState * * PARAMETERS: Origin - Starting point for this walk * WalkList - Owning walk list * * RETURN: Pointer to the new walk state. * * DESCRIPTION: Allocate and initialize a new walk state. The current walk state * is set to this new state. * ******************************************************************************/ ACPI_WALK_STATE * AcpiDsCreateWalkState ( ACPI_OWNER_ID OwnerId, ACPI_PARSE_OBJECT *Origin, ACPI_OPERAND_OBJECT *MthDesc, ACPI_WALK_LIST *WalkList) { ACPI_WALK_STATE *WalkState; FUNCTION_TRACE ("DsCreateWalkState"); AcpiCmAcquireMutex (ACPI_MTX_CACHES); AcpiGbl_WalkStateCacheRequests++; /* Check the cache first */ if (AcpiGbl_WalkStateCache) { /* There is an object available, use it */ WalkState = AcpiGbl_WalkStateCache; AcpiGbl_WalkStateCache = WalkState->Next; AcpiGbl_WalkStateCacheHits++; AcpiGbl_WalkStateCacheDepth--; DEBUG_PRINT (TRACE_EXEC, ("DsCreateWalkState: State %p from cache\n", WalkState)); AcpiCmReleaseMutex (ACPI_MTX_CACHES); } else { /* The cache is empty, create a new object */ /* Avoid deadlock with AcpiCmCallocate */ AcpiCmReleaseMutex (ACPI_MTX_CACHES); WalkState = AcpiCmCallocate (sizeof (ACPI_WALK_STATE)); if (!WalkState) { return_VALUE (NULL); } } WalkState->DataType = ACPI_DESC_TYPE_WALK; WalkState->OwnerId = OwnerId; WalkState->Origin = Origin; WalkState->MethodDesc = MthDesc; /* Init the method args/local */ AcpiDsMethodDataInit (WalkState); /* Put the new state at the head of the walk list */ AcpiDsPushWalkState (WalkState, WalkList); return_PTR (WalkState); } /******************************************************************************* * * FUNCTION: AcpiDsDeleteWalkState * * PARAMETERS: WalkState - State to delete * * RETURN: Status * * DESCRIPTION: Delete a walk state including all internal data structures * ******************************************************************************/ void AcpiDsDeleteWalkState ( ACPI_WALK_STATE *WalkState) { ACPI_GENERIC_STATE *State; FUNCTION_TRACE_PTR ("DsDeleteWalkState", WalkState); if (!WalkState) { return; } if (WalkState->DataType != ACPI_DESC_TYPE_WALK) { DEBUG_PRINT (ACPI_ERROR, ("DsDeleteWalkState: **** %p not a valid walk state\n", WalkState)); return; } /* Always must free any linked control states */ while (WalkState->ControlState) { State = WalkState->ControlState; WalkState->ControlState = State->Common.Next; AcpiCmDeleteGenericState (State); } /* Always must free any linked parse states */ while (WalkState->ScopeInfo) { State = WalkState->ScopeInfo; WalkState->ScopeInfo = State->Common.Next; AcpiCmDeleteGenericState (State); } /* If walk cache is full, just free this wallkstate object */ if (AcpiGbl_WalkStateCacheDepth >= MAX_WALK_CACHE_DEPTH) { AcpiCmFree (WalkState); } /* Otherwise put this object back into the cache */ else { AcpiCmAcquireMutex (ACPI_MTX_CACHES); /* Clear the state */ MEMSET (WalkState, 0, sizeof (ACPI_WALK_STATE)); WalkState->DataType = ACPI_DESC_TYPE_WALK; /* Put the object at the head of the global cache list */ WalkState->Next = AcpiGbl_WalkStateCache; AcpiGbl_WalkStateCache = WalkState; AcpiGbl_WalkStateCacheDepth++; AcpiCmReleaseMutex (ACPI_MTX_CACHES); } return_VOID; } /****************************************************************************** * * FUNCTION: AcpiDsDeleteWalkStateCache * * PARAMETERS: None * * RETURN: Status * * DESCRIPTION: Purge the global state object cache. Used during subsystem * termination. * ******************************************************************************/ void AcpiDsDeleteWalkStateCache ( void) { ACPI_WALK_STATE *Next; FUNCTION_TRACE ("DsDeleteWalkStateCache"); /* Traverse the global cache list */ while (AcpiGbl_WalkStateCache) { /* Delete one cached state object */ Next = AcpiGbl_WalkStateCache->Next; AcpiCmFree (AcpiGbl_WalkStateCache); AcpiGbl_WalkStateCache = Next; AcpiGbl_WalkStateCacheDepth--; } return_VOID; }