/*- * Copyright (c) 2003 Nate Lawson * Copyright (c) 2000 Michael Smith * Copyright (c) 2000 BSDi * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /*- ****************************************************************************** * * 1. Copyright Notice * * Some or all of this work - Copyright (c) 1999, Intel Corp. All rights * reserved. * * 2. License * * 2.1. This is your license from Intel Corp. under its intellectual property * rights. You may have additional license terms from the party that provided * you this software, covering your right to use that party's intellectual * property rights. * * 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a * copy of the source code appearing in this file ("Covered Code") an * irrevocable, perpetual, worldwide license under Intel's copyrights in the * base code distributed originally by Intel ("Original Intel Code") to copy, * make derivatives, distribute, use and display any portion of the Covered * Code in any form, with the right to sublicense such rights; and * * 2.3. Intel grants Licensee a non-exclusive and non-transferable patent * license (with the right to sublicense), under only those claims of Intel * patents that are infringed by the Original Intel Code, to make, use, sell, * offer to sell, and import the Covered Code and derivative works thereof * solely to the minimum extent necessary to exercise the above copyright * license, and in no event shall the patent license extend to any additions * to or modifications of the Original Intel Code. No other license or right * is granted directly or by implication, estoppel or otherwise; * * The above copyright and patent license is granted only if the following * conditions are met: * * 3. Conditions * * 3.1. Redistribution of Source with Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification with rights to further distribute source must include * the above Copyright Notice, the above License, this list of Conditions, * and the following Disclaimer and Export Compliance provision. In addition, * Licensee must cause all Covered Code to which Licensee contributes to * contain a file documenting the changes Licensee made to create that Covered * Code and the date of any change. Licensee must include in that file the * documentation of any changes made by any predecessor Licensee. Licensee * must include a prominent statement that the modification is derived, * directly or indirectly, from Original Intel Code. * * 3.2. Redistribution of Source with no Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification without rights to further distribute source must * include the following Disclaimer and Export Compliance provision in the * documentation and/or other materials provided with distribution. In * addition, Licensee may not authorize further sublicense of source of any * portion of the Covered Code, and must include terms to the effect that the * license from Licensee to its licensee is limited to the intellectual * property embodied in the software Licensee provides to its licensee, and * not to intellectual property embodied in modifications its licensee may * make. * * 3.3. Redistribution of Executable. Redistribution in executable form of any * substantial portion of the Covered Code or modification must reproduce the * above Copyright Notice, and the following Disclaimer and Export Compliance * provision in the documentation and/or other materials provided with the * distribution. * * 3.4. Intel retains all right, title, and interest in and to the Original * Intel Code. * * 3.5. Neither the name Intel nor any other trademark owned or controlled by * Intel shall be used in advertising or otherwise to promote the sale, use or * other dealings in products derived from or relating to the Covered Code * without prior written authorization from Intel. * * 4. Disclaimer and Export Compliance * * 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED * HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE * IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE, * INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY * UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY * IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A * PARTICULAR PURPOSE. * * 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES * OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR * COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT, * SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY * CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL * HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS * SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY * LIMITED REMEDY. * * 4.3. Licensee shall not export, either directly or indirectly, any of this * software or system incorporating such software without first obtaining any * required license or other approval from the U. S. Department of Commerce or * any other agency or department of the United States Government. In the * event Licensee exports any such software from the United States or * re-exports any such software from a foreign destination, Licensee shall * ensure that the distribution and export/re-export of the software is in * compliance with all laws, regulations, orders, or other restrictions of the * U.S. Export Administration Regulations. Licensee agrees that neither it nor * any of its subsidiaries will export/re-export any technical data, process, * software, or service, directly or indirectly, to any country for which the * United States government or any agency thereof requires an export license, * other governmental approval, or letter of assurance, without first obtaining * such license, approval or letter. * *****************************************************************************/ #include __FBSDID("$FreeBSD$"); #include "opt_acpi.h" #include #include #include #include #include #include #include #include #include #include #include /* Hooks for the ACPI CA debugging infrastructure */ #define _COMPONENT ACPI_EC ACPI_MODULE_NAME("EC") /* * EC_COMMAND: * ----------- */ typedef UINT8 EC_COMMAND; #define EC_COMMAND_UNKNOWN ((EC_COMMAND) 0x00) #define EC_COMMAND_READ ((EC_COMMAND) 0x80) #define EC_COMMAND_WRITE ((EC_COMMAND) 0x81) #define EC_COMMAND_BURST_ENABLE ((EC_COMMAND) 0x82) #define EC_COMMAND_BURST_DISABLE ((EC_COMMAND) 0x83) #define EC_COMMAND_QUERY ((EC_COMMAND) 0x84) /* * EC_STATUS: * ---------- * The encoding of the EC status register is illustrated below. * Note that a set bit (1) indicates the property is TRUE * (e.g. if bit 0 is set then the output buffer is full). * +-+-+-+-+-+-+-+-+ * |7|6|5|4|3|2|1|0| * +-+-+-+-+-+-+-+-+ * | | | | | | | | * | | | | | | | +- Output Buffer Full? * | | | | | | +--- Input Buffer Full? * | | | | | +----- * | | | | +------- Data Register is Command Byte? * | | | +--------- Burst Mode Enabled? * | | +----------- SCI Event? * | +------------- SMI Event? * +--------------- * */ typedef UINT8 EC_STATUS; #define EC_FLAG_OUTPUT_BUFFER ((EC_STATUS) 0x01) #define EC_FLAG_INPUT_BUFFER ((EC_STATUS) 0x02) #define EC_FLAG_DATA_IS_CMD ((EC_STATUS) 0x08) #define EC_FLAG_BURST_MODE ((EC_STATUS) 0x10) /* * EC_EVENT: * --------- */ typedef UINT8 EC_EVENT; #define EC_EVENT_UNKNOWN ((EC_EVENT) 0x00) #define EC_EVENT_OUTPUT_BUFFER_FULL ((EC_EVENT) 0x01) #define EC_EVENT_INPUT_BUFFER_EMPTY ((EC_EVENT) 0x02) #define EC_EVENT_SCI ((EC_EVENT) 0x20) #define EC_EVENT_SMI ((EC_EVENT) 0x40) /* Data byte returned after burst enable indicating it was successful. */ #define EC_BURST_ACK 0x90 /* * Register access primitives */ #define EC_GET_DATA(sc) \ bus_space_read_1((sc)->ec_data_tag, (sc)->ec_data_handle, 0) #define EC_SET_DATA(sc, v) \ bus_space_write_1((sc)->ec_data_tag, (sc)->ec_data_handle, 0, (v)) #define EC_GET_CSR(sc) \ bus_space_read_1((sc)->ec_csr_tag, (sc)->ec_csr_handle, 0) #define EC_SET_CSR(sc, v) \ bus_space_write_1((sc)->ec_csr_tag, (sc)->ec_csr_handle, 0, (v)) /* Embedded Controller Boot Resources Table (ECDT) */ typedef struct { ACPI_TABLE_HEADER header; ACPI_GENERIC_ADDRESS control; ACPI_GENERIC_ADDRESS data; UINT32 uid; UINT8 gpe_bit; char ec_id[0]; } ACPI_TABLE_ECDT; /* Additional params to pass from the probe routine */ struct acpi_ec_params { int glk; int gpe_bit; ACPI_HANDLE gpe_handle; int uid; }; /* Indicate that this device has already been probed via ECDT. */ #define DEV_ECDT(x) (acpi_get_magic(x) == (int)&acpi_ec_devclass) /* * Driver softc. */ struct acpi_ec_softc { device_t ec_dev; ACPI_HANDLE ec_handle; int ec_uid; ACPI_HANDLE ec_gpehandle; UINT8 ec_gpebit; UINT8 ec_csrvalue; int ec_data_rid; struct resource *ec_data_res; bus_space_tag_t ec_data_tag; bus_space_handle_t ec_data_handle; int ec_csr_rid; struct resource *ec_csr_res; bus_space_tag_t ec_csr_tag; bus_space_handle_t ec_csr_handle; struct mtx ec_mtx; int ec_glk; int ec_glkhandle; int ec_burstactive; int ec_sci_pend; }; /* * XXX njl * I couldn't find it in the spec but other implementations also use a * value of 1 ms for the time to acquire global lock. */ #define EC_LOCK_TIMEOUT 1000 /* Default delay in microseconds between each run of the status polling loop. */ #define EC_POLL_DELAY 10 /* Default time in microseconds spent polling before sleep waiting. */ #define EC_POLL_TIME 500 /* Total time in ms spent waiting for a response from EC. */ #define EC_TIMEOUT 500 #define EVENT_READY(event, status) \ (((event) == EC_EVENT_OUTPUT_BUFFER_FULL && \ ((status) & EC_FLAG_OUTPUT_BUFFER) != 0) || \ ((event) == EC_EVENT_INPUT_BUFFER_EMPTY && \ ((status) & EC_FLAG_INPUT_BUFFER) == 0)) ACPI_SERIAL_DECL(ec, "ACPI embedded controller"); SYSCTL_DECL(_debug_acpi); SYSCTL_NODE(_debug_acpi, OID_AUTO, ec, CTLFLAG_RD, NULL, "EC debugging"); static int ec_burst_mode; TUNABLE_INT("debug.acpi.ec.burst", &ec_burst_mode); SYSCTL_INT(_debug_acpi_ec, OID_AUTO, burst, CTLFLAG_RW, &ec_burst_mode, 0, "Enable use of burst mode (faster for nearly all systems)"); static int ec_poll_time = EC_POLL_TIME; TUNABLE_INT("debug.acpi.ec.poll_time", &ec_poll_time); SYSCTL_INT(_debug_acpi_ec, OID_AUTO, poll_time, CTLFLAG_RW, &ec_poll_time, EC_POLL_TIME, "Time spent polling vs. sleeping (CPU intensive)"); static int ec_timeout = EC_TIMEOUT; TUNABLE_INT("debug.acpi.ec.timeout", &ec_timeout); SYSCTL_INT(_debug_acpi_ec, OID_AUTO, timeout, CTLFLAG_RW, &ec_timeout, EC_TIMEOUT, "Total time spent waiting for a response (poll+sleep)"); static __inline ACPI_STATUS EcLock(struct acpi_ec_softc *sc, int serialize) { ACPI_STATUS status; /* * If caller is executing a series of commands, acquire the exclusive lock * to serialize with other users. * To sync with bottom-half interrupt handler, always acquire the mutex. */ status = AE_OK; if (serialize) ACPI_SERIAL_BEGIN(ec); mtx_lock(&sc->ec_mtx); /* If _GLK is non-zero, also acquire the global lock. */ if (sc->ec_glk) { status = AcpiAcquireGlobalLock(EC_LOCK_TIMEOUT, &sc->ec_glkhandle); if (ACPI_FAILURE(status)) { mtx_unlock(&sc->ec_mtx); if (serialize) ACPI_SERIAL_END(ec); } } return (status); } static __inline void EcUnlock(struct acpi_ec_softc *sc) { if (sc->ec_glk) AcpiReleaseGlobalLock(sc->ec_glkhandle); mtx_unlock(&sc->ec_mtx); if (sx_xlocked(&ec_sxlock)) ACPI_SERIAL_END(ec); } static uint32_t EcGpeHandler(void *Context); static ACPI_STATUS EcSpaceSetup(ACPI_HANDLE Region, UINT32 Function, void *Context, void **return_Context); static ACPI_STATUS EcSpaceHandler(UINT32 Function, ACPI_PHYSICAL_ADDRESS Address, UINT32 width, ACPI_INTEGER *Value, void *Context, void *RegionContext); static ACPI_STATUS EcWaitEvent(struct acpi_ec_softc *sc, EC_EVENT Event); static ACPI_STATUS EcCommand(struct acpi_ec_softc *sc, EC_COMMAND cmd); static ACPI_STATUS EcRead(struct acpi_ec_softc *sc, UINT8 Address, UINT8 *Data); static ACPI_STATUS EcWrite(struct acpi_ec_softc *sc, UINT8 Address, UINT8 *Data); static int acpi_ec_probe(device_t dev); static int acpi_ec_attach(device_t dev); static int acpi_ec_shutdown(device_t dev); static int acpi_ec_read_method(device_t dev, u_int addr, ACPI_INTEGER *val, int width); static int acpi_ec_write_method(device_t dev, u_int addr, ACPI_INTEGER val, int width); static device_method_t acpi_ec_methods[] = { /* Device interface */ DEVMETHOD(device_probe, acpi_ec_probe), DEVMETHOD(device_attach, acpi_ec_attach), DEVMETHOD(device_shutdown, acpi_ec_shutdown), /* Embedded controller interface */ DEVMETHOD(acpi_ec_read, acpi_ec_read_method), DEVMETHOD(acpi_ec_write, acpi_ec_write_method), {0, 0} }; static driver_t acpi_ec_driver = { "acpi_ec", acpi_ec_methods, sizeof(struct acpi_ec_softc), }; static devclass_t acpi_ec_devclass; DRIVER_MODULE(acpi_ec, acpi, acpi_ec_driver, acpi_ec_devclass, 0, 0); MODULE_DEPEND(acpi_ec, acpi, 1, 1, 1); /* * Look for an ECDT and if we find one, set up default GPE and * space handlers to catch attempts to access EC space before * we have a real driver instance in place. * TODO: if people report invalid ECDTs, add a tunable to disable them. */ void acpi_ec_ecdt_probe(device_t parent) { ACPI_TABLE_ECDT *ecdt; ACPI_TABLE_HEADER *hdr; ACPI_STATUS status; device_t child; ACPI_HANDLE h; struct acpi_ec_params *params; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); /* Find and validate the ECDT. */ status = AcpiGetFirmwareTable("ECDT", 1, ACPI_LOGICAL_ADDRESSING, &hdr); ecdt = (ACPI_TABLE_ECDT *)hdr; if (ACPI_FAILURE(status) || ecdt->control.RegisterBitWidth != 8 || ecdt->data.RegisterBitWidth != 8) { return; } /* Create the child device with the given unit number. */ child = BUS_ADD_CHILD(parent, 0, "acpi_ec", ecdt->uid); if (child == NULL) { printf("%s: can't add child\n", __func__); return; } /* Find and save the ACPI handle for this device. */ status = AcpiGetHandle(NULL, ecdt->ec_id, &h); if (ACPI_FAILURE(status)) { device_delete_child(parent, child); printf("%s: can't get handle\n", __func__); return; } acpi_set_handle(child, h); /* Set the data and CSR register addresses. */ bus_set_resource(child, SYS_RES_IOPORT, 0, ecdt->data.Address, /*count*/1); bus_set_resource(child, SYS_RES_IOPORT, 1, ecdt->control.Address, /*count*/1); /* * Store values for the probe/attach routines to use. Store the * ECDT GPE bit and set the global lock flag according to _GLK. * Note that it is not perfectly correct to be evaluating a method * before initializing devices, but in practice this function * should be safe to call at this point. */ params = malloc(sizeof(struct acpi_ec_params), M_TEMP, M_WAITOK | M_ZERO); params->gpe_handle = NULL; params->gpe_bit = ecdt->gpe_bit; params->uid = ecdt->uid; acpi_GetInteger(h, "_GLK", ¶ms->glk); acpi_set_private(child, params); acpi_set_magic(child, (int)&acpi_ec_devclass); /* Finish the attach process. */ if (device_probe_and_attach(child) != 0) device_delete_child(parent, child); } static int acpi_ec_probe(device_t dev) { ACPI_BUFFER buf; ACPI_HANDLE h; ACPI_OBJECT *obj; ACPI_STATUS status; device_t peer; char desc[64]; int ret; struct acpi_ec_params *params; static char *ec_ids[] = { "PNP0C09", NULL }; /* Check that this is a device and that EC is not disabled. */ if (acpi_get_type(dev) != ACPI_TYPE_DEVICE || acpi_disabled("ec")) return (ENXIO); /* * If probed via ECDT, set description and continue. Otherwise, * we can access the namespace and make sure this is not a * duplicate probe. */ ret = ENXIO; params = NULL; buf.Pointer = NULL; buf.Length = ACPI_ALLOCATE_BUFFER; if (DEV_ECDT(dev)) { params = acpi_get_private(dev); ret = 0; } else if (!acpi_disabled("ec") && ACPI_ID_PROBE(device_get_parent(dev), dev, ec_ids)) { params = malloc(sizeof(struct acpi_ec_params), M_TEMP, M_WAITOK | M_ZERO); h = acpi_get_handle(dev); /* * Read the unit ID to check for duplicate attach and the * global lock value to see if we should acquire it when * accessing the EC. */ status = acpi_GetInteger(h, "_UID", ¶ms->uid); if (ACPI_FAILURE(status)) params->uid = 0; status = acpi_GetInteger(h, "_GLK", ¶ms->glk); if (ACPI_FAILURE(status)) params->glk = 0; /* * Evaluate the _GPE method to find the GPE bit used by the EC to * signal status (SCI). If it's a package, it contains a reference * and GPE bit, similar to _PRW. */ status = AcpiEvaluateObject(h, "_GPE", NULL, &buf); if (ACPI_FAILURE(status)) { device_printf(dev, "can't evaluate _GPE - %s\n", AcpiFormatException(status)); goto out; } obj = (ACPI_OBJECT *)buf.Pointer; if (obj == NULL) goto out; switch (obj->Type) { case ACPI_TYPE_INTEGER: params->gpe_handle = NULL; params->gpe_bit = obj->Integer.Value; break; case ACPI_TYPE_PACKAGE: if (!ACPI_PKG_VALID(obj, 2)) goto out; params->gpe_handle = acpi_GetReference(NULL, &obj->Package.Elements[0]); if (params->gpe_handle == NULL || acpi_PkgInt32(obj, 1, ¶ms->gpe_bit) != 0) goto out; break; default: device_printf(dev, "_GPE has invalid type %d\n", obj->Type); goto out; } /* Store the values we got from the namespace for attach. */ acpi_set_private(dev, params); /* * Check for a duplicate probe. This can happen when a probe * via ECDT succeeded already. If this is a duplicate, disable * this device. */ peer = devclass_get_device(acpi_ec_devclass, params->uid); if (peer == NULL || !device_is_alive(peer)) ret = 0; else device_disable(dev); } out: if (ret == 0) { snprintf(desc, sizeof(desc), "Embedded Controller: GPE %#x%s%s", params->gpe_bit, (params->glk) ? ", GLK" : "", DEV_ECDT(dev) ? ", ECDT" : ""); device_set_desc_copy(dev, desc); } if (ret > 0 && params) free(params, M_TEMP); if (buf.Pointer) AcpiOsFree(buf.Pointer); return (ret); } static int acpi_ec_attach(device_t dev) { struct acpi_ec_softc *sc; struct acpi_ec_params *params; ACPI_STATUS Status; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); /* Fetch/initialize softc (assumes softc is pre-zeroed). */ sc = device_get_softc(dev); params = acpi_get_private(dev); sc->ec_dev = dev; sc->ec_handle = acpi_get_handle(dev); mtx_init(&sc->ec_mtx, "ACPI EC lock", NULL, MTX_DEF); /* Retrieve previously probed values via device ivars. */ sc->ec_glk = params->glk; sc->ec_gpebit = params->gpe_bit; sc->ec_gpehandle = params->gpe_handle; sc->ec_uid = params->uid; free(params, M_TEMP); /* Attach bus resources for data and command/status ports. */ sc->ec_data_rid = 0; sc->ec_data_res = bus_alloc_resource_any(sc->ec_dev, SYS_RES_IOPORT, &sc->ec_data_rid, RF_ACTIVE); if (sc->ec_data_res == NULL) { device_printf(dev, "can't allocate data port\n"); goto error; } sc->ec_data_tag = rman_get_bustag(sc->ec_data_res); sc->ec_data_handle = rman_get_bushandle(sc->ec_data_res); sc->ec_csr_rid = 1; sc->ec_csr_res = bus_alloc_resource_any(sc->ec_dev, SYS_RES_IOPORT, &sc->ec_csr_rid, RF_ACTIVE); if (sc->ec_csr_res == NULL) { device_printf(dev, "can't allocate command/status port\n"); goto error; } sc->ec_csr_tag = rman_get_bustag(sc->ec_csr_res); sc->ec_csr_handle = rman_get_bushandle(sc->ec_csr_res); /* * Install a handler for this EC's GPE bit. We want edge-triggered * behavior. */ ACPI_DEBUG_PRINT((ACPI_DB_RESOURCES, "attaching GPE handler\n")); Status = AcpiInstallGpeHandler(sc->ec_gpehandle, sc->ec_gpebit, ACPI_GPE_EDGE_TRIGGERED, &EcGpeHandler, sc); if (ACPI_FAILURE(Status)) { device_printf(dev, "can't install GPE handler for %s - %s\n", acpi_name(sc->ec_handle), AcpiFormatException(Status)); goto error; } /* * Install address space handler */ ACPI_DEBUG_PRINT((ACPI_DB_RESOURCES, "attaching address space handler\n")); Status = AcpiInstallAddressSpaceHandler(sc->ec_handle, ACPI_ADR_SPACE_EC, &EcSpaceHandler, &EcSpaceSetup, sc); if (ACPI_FAILURE(Status)) { device_printf(dev, "can't install address space handler for %s - %s\n", acpi_name(sc->ec_handle), AcpiFormatException(Status)); goto error; } /* Enable runtime GPEs for the handler. */ Status = AcpiSetGpeType(sc->ec_gpehandle, sc->ec_gpebit, ACPI_GPE_TYPE_RUNTIME); if (ACPI_FAILURE(Status)) { device_printf(dev, "AcpiSetGpeType failed: %s\n", AcpiFormatException(Status)); goto error; } Status = AcpiEnableGpe(sc->ec_gpehandle, sc->ec_gpebit, ACPI_NOT_ISR); if (ACPI_FAILURE(Status)) { device_printf(dev, "AcpiEnableGpe failed: %s\n", AcpiFormatException(Status)); goto error; } ACPI_DEBUG_PRINT((ACPI_DB_RESOURCES, "acpi_ec_attach complete\n")); return (0); error: AcpiRemoveGpeHandler(sc->ec_gpehandle, sc->ec_gpebit, &EcGpeHandler); AcpiRemoveAddressSpaceHandler(sc->ec_handle, ACPI_ADR_SPACE_EC, EcSpaceHandler); if (sc->ec_csr_res) bus_release_resource(sc->ec_dev, SYS_RES_IOPORT, sc->ec_csr_rid, sc->ec_csr_res); if (sc->ec_data_res) bus_release_resource(sc->ec_dev, SYS_RES_IOPORT, sc->ec_data_rid, sc->ec_data_res); mtx_destroy(&sc->ec_mtx); return (ENXIO); } static int acpi_ec_shutdown(device_t dev) { struct acpi_ec_softc *sc; /* Disable the GPE so we don't get EC events during shutdown. */ sc = device_get_softc(dev); AcpiDisableGpe(sc->ec_gpehandle, sc->ec_gpebit, ACPI_NOT_ISR); return (0); } /* Methods to allow other devices (e.g., smbat) to read/write EC space. */ static int acpi_ec_read_method(device_t dev, u_int addr, ACPI_INTEGER *val, int width) { struct acpi_ec_softc *sc; ACPI_STATUS status; sc = device_get_softc(dev); status = EcSpaceHandler(ACPI_READ, addr, width * 8, val, sc, NULL); if (ACPI_FAILURE(status)) return (ENXIO); return (0); } static int acpi_ec_write_method(device_t dev, u_int addr, ACPI_INTEGER val, int width) { struct acpi_ec_softc *sc; ACPI_STATUS status; sc = device_get_softc(dev); status = EcSpaceHandler(ACPI_WRITE, addr, width * 8, &val, sc, NULL); if (ACPI_FAILURE(status)) return (ENXIO); return (0); } static void EcGpeQueryHandler(void *Context) { struct acpi_ec_softc *sc = (struct acpi_ec_softc *)Context; UINT8 Data; ACPI_STATUS Status; char qxx[5]; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); KASSERT(Context != NULL, ("EcGpeQueryHandler called with NULL")); /* Serialize user access with EcSpaceHandler(). */ Status = EcLock(sc, TRUE); if (ACPI_FAILURE(Status)) { ACPI_VPRINT(sc->ec_dev, acpi_device_get_parent_softc(sc->ec_dev), "GpeQuery lock error: %s\n", AcpiFormatException(Status)); return; } /* * Send a query command to the EC to find out which _Qxx call it * wants to make. This command clears the SCI bit and also the * interrupt source since we are edge-triggered. */ Status = EcCommand(sc, EC_COMMAND_QUERY); if (ACPI_FAILURE(Status)) { EcUnlock(sc); ACPI_VPRINT(sc->ec_dev, acpi_device_get_parent_softc(sc->ec_dev), "GPE query failed - %s\n", AcpiFormatException(Status)); goto re_enable; } Data = EC_GET_DATA(sc); sc->ec_sci_pend = FALSE; /* Drop locks before evaluating _Qxx method since it may trigger GPEs. */ EcUnlock(sc); /* Ignore the value for "no outstanding event". (13.3.5) */ CTR2(KTR_ACPI, "ec query ok,%s running _Q%02x", Data ? "" : " not", Data); if (Data == 0) goto re_enable; /* Evaluate _Qxx to respond to the controller. */ snprintf(qxx, sizeof(qxx), "_Q%02x", Data); AcpiUtStrupr(qxx); Status = AcpiEvaluateObject(sc->ec_handle, qxx, NULL, NULL); if (ACPI_FAILURE(Status) && Status != AE_NOT_FOUND) { ACPI_VPRINT(sc->ec_dev, acpi_device_get_parent_softc(sc->ec_dev), "evaluation of GPE query method %s failed - %s\n", qxx, AcpiFormatException(Status)); } re_enable: /* Re-enable the GPE event so we'll get future requests. */ Status = AcpiEnableGpe(sc->ec_gpehandle, sc->ec_gpebit, ACPI_ISR); if (ACPI_FAILURE(Status)) printf("EcGpeQueryHandler: AcpiEnableEvent failed\n"); } /* * Handle a GPE. Currently we only handle SCI events as others must * be handled by polling in EcWaitEvent(). This is because some ECs * treat events as level when they should be edge-triggered. */ static uint32_t EcGpeHandler(void *Context) { struct acpi_ec_softc *sc = Context; ACPI_STATUS Status; EC_STATUS EcStatus; int query_pend; KASSERT(Context != NULL, ("EcGpeHandler called with NULL")); /* * Disable further GPEs while we handle this one. Since we are directly * called by ACPI-CA and it may have unknown locks held, we specify the * ACPI_ISR flag to keep it from acquiring any more mutexes (although * sleeping would be ok since we're in an ithread.) */ AcpiDisableGpe(sc->ec_gpehandle, sc->ec_gpebit, ACPI_ISR); /* For interrupt (GPE) handler, don't acquire serialization lock. */ Status = EcLock(sc, FALSE); if (ACPI_FAILURE(Status)) { ACPI_VPRINT(sc->ec_dev, acpi_device_get_parent_softc(sc->ec_dev), "GpeQuery lock error: %s\n", AcpiFormatException(Status)); return (-1); } /* * If burst was active, but the status bit was cleared, the EC had to * exit burst mode for some reason. Record this for later. */ EcStatus = EC_GET_CSR(sc); if (sc->ec_burstactive && (EcStatus & EC_FLAG_BURST_MODE) == 0) { CTR0(KTR_ACPI, "ec burst disabled in query handler"); sc->ec_burstactive = FALSE; } /* * If the EC_SCI bit of the status register is not set, then pass * it along to any potential waiters as it may be an IBE/OBF event. * If it is set, queue a query handler. */ query_pend = FALSE; if ((EcStatus & EC_EVENT_SCI) == 0) { CTR1(KTR_ACPI, "ec event was IBE/OBF, status %#x", EcStatus); sc->ec_csrvalue = EcStatus; wakeup(&sc->ec_csrvalue); } else if (!sc->ec_sci_pend) { /* SCI bit set and no pending query handler, so schedule one. */ CTR0(KTR_ACPI, "ec queueing gpe handler"); Status = AcpiOsQueueForExecution(OSD_PRIORITY_GPE, EcGpeQueryHandler, Context); if (ACPI_SUCCESS(Status)) { sc->ec_sci_pend = TRUE; query_pend = TRUE; } else printf("Queuing GPE query handler failed.\n"); } /* * If we didn't queue a query handler, which will eventually re-enable * the GPE, re-enable it right now so we can get more events. */ if (!query_pend) { Status = AcpiEnableGpe(sc->ec_gpehandle, sc->ec_gpebit, ACPI_ISR); if (ACPI_FAILURE(Status)) printf("EcGpeHandler: AcpiEnableGpe failed\n"); } EcUnlock(sc); return (0); } static ACPI_STATUS EcSpaceSetup(ACPI_HANDLE Region, UINT32 Function, void *Context, void **RegionContext) { ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); /* * If deactivating a region, always set the output to NULL. Otherwise, * just pass the context through. */ if (Function == ACPI_REGION_DEACTIVATE) *RegionContext = NULL; else *RegionContext = Context; return_ACPI_STATUS (AE_OK); } static ACPI_STATUS EcSpaceHandler(UINT32 Function, ACPI_PHYSICAL_ADDRESS Address, UINT32 width, ACPI_INTEGER *Value, void *Context, void *RegionContext) { struct acpi_ec_softc *sc = (struct acpi_ec_softc *)Context; ACPI_STATUS Status; UINT8 EcAddr, EcData; int i; ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, (UINT32)Address); if (width % 8 != 0 || Value == NULL || Context == NULL) return_ACPI_STATUS (AE_BAD_PARAMETER); if (Address + (width / 8) - 1 > 0xFF) return_ACPI_STATUS (AE_BAD_ADDRESS); if (Function == ACPI_READ) *Value = 0; EcAddr = Address; Status = AE_ERROR; /* Grab serialization lock to hold across command sequence. */ Status = EcLock(sc, TRUE); if (ACPI_FAILURE(Status)) return_ACPI_STATUS (Status); /* Perform the transaction(s), based on width. */ for (i = 0; i < width; i += 8, EcAddr++) { switch (Function) { case ACPI_READ: Status = EcRead(sc, EcAddr, &EcData); if (ACPI_SUCCESS(Status)) *Value |= ((ACPI_INTEGER)EcData) << i; break; case ACPI_WRITE: EcData = (UINT8)((*Value) >> i); Status = EcWrite(sc, EcAddr, &EcData); break; default: device_printf(sc->ec_dev, "invalid EcSpaceHandler function %d\n", Function); Status = AE_BAD_PARAMETER; break; } if (ACPI_FAILURE(Status)) break; } EcUnlock(sc); return_ACPI_STATUS (Status); } static ACPI_STATUS EcWaitEvent(struct acpi_ec_softc *sc, EC_EVENT Event) { EC_STATUS EcStatus; ACPI_STATUS Status; int count, i, retval, slp_ival; ACPI_SERIAL_ASSERT(ec); Status = AE_NO_HARDWARE_RESPONSE; EcStatus = 0; /* * Poll for up to ec_poll_time microseconds since many ECs complete * the command quickly, especially if in burst mode. */ #if 0 /* Enable this as a possible workaround if EC times out. */ AcpiOsStall(EC_POLL_DELAY); #endif count = ec_poll_time / EC_POLL_DELAY; if (count <= 0) count = 1; for (i = 0; i < count; i++) { EcStatus = EC_GET_CSR(sc); if (sc->ec_burstactive && (EcStatus & EC_FLAG_BURST_MODE) == 0) { CTR0(KTR_ACPI, "ec burst disabled in waitevent (poll)"); sc->ec_burstactive = FALSE; } if (EVENT_READY(Event, EcStatus)) { CTR1(KTR_ACPI, "ec poll wait ready, status %#x", EcStatus); Status = AE_OK; break; } AcpiOsStall(EC_POLL_DELAY); } /* * If we still don't have a response and we're up and running, wait up * to ec_timeout ms for completion, sleeping for chunks of 1 ms or the * smallest resolution hz supports. */ slp_ival = 0; if (Status != AE_OK) { retval = ENXIO; if (!cold) { slp_ival = hz / 1000; if (slp_ival != 0) { count = ec_timeout / slp_ival; } else { /* hz has less than 1000 Hz resolution so scale timeout. */ slp_ival = 1; count = ec_timeout / (1000 / hz); } } else count = ec_timeout; for (i = 0; i < count; i++) { if (retval != 0) EcStatus = EC_GET_CSR(sc); else EcStatus = sc->ec_csrvalue; if (sc->ec_burstactive && (EcStatus & EC_FLAG_BURST_MODE) == 0) { CTR0(KTR_ACPI, "ec burst disabled in waitevent (slp)"); sc->ec_burstactive = FALSE; } if (EVENT_READY(Event, EcStatus)) { CTR1(KTR_ACPI, "ec sleep wait ready, status %#x", EcStatus); Status = AE_OK; break; } if (!cold) { retval = msleep(&sc->ec_csrvalue, &sc->ec_mtx, PZERO, "ecpoll", slp_ival); } else AcpiOsStall(1000); } } return (Status); } static ACPI_STATUS EcCommand(struct acpi_ec_softc *sc, EC_COMMAND cmd) { ACPI_STATUS status; EC_EVENT event; EC_STATUS ec_status; ACPI_SERIAL_ASSERT(ec); /* Don't use burst mode if user disabled it. */ if (!ec_burst_mode && cmd == EC_COMMAND_BURST_ENABLE) return (AE_ERROR); /* Decide what to wait for based on command type. */ switch (cmd) { case EC_COMMAND_READ: case EC_COMMAND_WRITE: case EC_COMMAND_BURST_DISABLE: event = EC_EVENT_INPUT_BUFFER_EMPTY; break; case EC_COMMAND_QUERY: case EC_COMMAND_BURST_ENABLE: event = EC_EVENT_OUTPUT_BUFFER_FULL; break; default: ACPI_VPRINT(sc->ec_dev, acpi_device_get_parent_softc(sc->ec_dev), "EcCommand: Invalid command %#x\n", cmd); return (AE_BAD_PARAMETER); } /* Run the command and wait for the chosen event. */ CTR1(KTR_ACPI, "ec running command %#x", cmd); EC_SET_CSR(sc, cmd); status = EcWaitEvent(sc, event); if (ACPI_SUCCESS(status)) { /* If we succeeded, burst flag should now be present. */ if (cmd == EC_COMMAND_BURST_ENABLE) { ec_status = EC_GET_CSR(sc); if ((ec_status & EC_FLAG_BURST_MODE) == 0) status = AE_ERROR; } } else { ACPI_VPRINT(sc->ec_dev, acpi_device_get_parent_softc(sc->ec_dev), "EcCommand: no response to %#x\n", cmd); } return (status); } static ACPI_STATUS EcRead(struct acpi_ec_softc *sc, UINT8 Address, UINT8 *Data) { ACPI_STATUS status; UINT8 data; ACPI_SERIAL_ASSERT(ec); CTR1(KTR_ACPI, "ec read from %#x", Address); /* If we can't start burst mode, continue anyway. */ status = EcCommand(sc, EC_COMMAND_BURST_ENABLE); if (status == AE_OK) { data = EC_GET_DATA(sc); if (data == EC_BURST_ACK) { CTR0(KTR_ACPI, "ec burst enabled"); sc->ec_burstactive = TRUE; } } status = EcCommand(sc, EC_COMMAND_READ); if (ACPI_FAILURE(status)) return (status); EC_SET_DATA(sc, Address); status = EcWaitEvent(sc, EC_EVENT_OUTPUT_BUFFER_FULL); if (ACPI_FAILURE(status)) { ACPI_VPRINT(sc->ec_dev, acpi_device_get_parent_softc(sc->ec_dev), "EcRead: Failed waiting for EC to send data.\n"); return (status); } *Data = EC_GET_DATA(sc); if (sc->ec_burstactive) { status = EcCommand(sc, EC_COMMAND_BURST_DISABLE); if (ACPI_FAILURE(status)) return (status); sc->ec_burstactive = FALSE; CTR0(KTR_ACPI, "ec disabled burst ok"); } return (AE_OK); } static ACPI_STATUS EcWrite(struct acpi_ec_softc *sc, UINT8 Address, UINT8 *Data) { ACPI_STATUS status; UINT8 data; ACPI_SERIAL_ASSERT(ec); CTR2(KTR_ACPI, "ec write to %#x, data %#x", Address, *Data); /* If we can't start burst mode, continue anyway. */ status = EcCommand(sc, EC_COMMAND_BURST_ENABLE); if (status == AE_OK) { data = EC_GET_DATA(sc); if (data == EC_BURST_ACK) { CTR0(KTR_ACPI, "ec burst enabled"); sc->ec_burstactive = TRUE; } } status = EcCommand(sc, EC_COMMAND_WRITE); if (ACPI_FAILURE(status)) return (status); EC_SET_DATA(sc, Address); status = EcWaitEvent(sc, EC_EVENT_INPUT_BUFFER_EMPTY); if (ACPI_FAILURE(status)) { ACPI_VPRINT(sc->ec_dev, acpi_device_get_parent_softc(sc->ec_dev), "EcRead: Failed waiting for EC to process address\n"); return (status); } EC_SET_DATA(sc, *Data); status = EcWaitEvent(sc, EC_EVENT_INPUT_BUFFER_EMPTY); if (ACPI_FAILURE(status)) { ACPI_VPRINT(sc->ec_dev, acpi_device_get_parent_softc(sc->ec_dev), "EcWrite: Failed waiting for EC to process data\n"); return (status); } if (sc->ec_burstactive) { status = EcCommand(sc, EC_COMMAND_BURST_DISABLE); if (ACPI_FAILURE(status)) return (status); sc->ec_burstactive = FALSE; CTR0(KTR_ACPI, "ec disabled burst ok"); } return (AE_OK); }