/***********************license start*************** * Copyright (c) 2003-2010 Cavium Networks (support@cavium.com). All rights * reserved. * * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of Cavium Networks nor the names of * its contributors may be used to endorse or promote products * derived from this software without specific prior written * permission. * This Software, including technical data, may be subject to U.S. export control * laws, including the U.S. Export Administration Act and its associated * regulations, and may be subject to export or import regulations in other * countries. * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS" * AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS OR * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION OR * DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE, * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR * PERFORMANCE OF THE SOFTWARE LIES WITH YOU. ***********************license end**************************************/ /** * cvmx-smix-defs.h * * Configuration and status register (CSR) type definitions for * Octeon smix. * * This file is auto generated. Do not edit. * *
$Revision$
* */ #ifndef __CVMX_SMIX_TYPEDEFS_H__ #define __CVMX_SMIX_TYPEDEFS_H__ #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_SMIX_CLK(unsigned long offset) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && ((offset == 0))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && ((offset == 0))) || (OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset == 0))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset == 0))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 1))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 1))) || (OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 1))))) cvmx_warn("CVMX_SMIX_CLK(%lu) is invalid on this chip\n", offset); return CVMX_ADD_IO_SEG(0x0001180000001818ull) + ((offset) & 1) * 256; } #else #define CVMX_SMIX_CLK(offset) (CVMX_ADD_IO_SEG(0x0001180000001818ull) + ((offset) & 1) * 256) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_SMIX_CMD(unsigned long offset) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && ((offset == 0))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && ((offset == 0))) || (OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset == 0))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset == 0))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 1))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 1))) || (OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 1))))) cvmx_warn("CVMX_SMIX_CMD(%lu) is invalid on this chip\n", offset); return CVMX_ADD_IO_SEG(0x0001180000001800ull) + ((offset) & 1) * 256; } #else #define CVMX_SMIX_CMD(offset) (CVMX_ADD_IO_SEG(0x0001180000001800ull) + ((offset) & 1) * 256) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_SMIX_EN(unsigned long offset) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && ((offset == 0))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && ((offset == 0))) || (OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset == 0))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset == 0))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 1))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 1))) || (OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 1))))) cvmx_warn("CVMX_SMIX_EN(%lu) is invalid on this chip\n", offset); return CVMX_ADD_IO_SEG(0x0001180000001820ull) + ((offset) & 1) * 256; } #else #define CVMX_SMIX_EN(offset) (CVMX_ADD_IO_SEG(0x0001180000001820ull) + ((offset) & 1) * 256) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_SMIX_RD_DAT(unsigned long offset) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && ((offset == 0))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && ((offset == 0))) || (OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset == 0))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset == 0))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 1))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 1))) || (OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 1))))) cvmx_warn("CVMX_SMIX_RD_DAT(%lu) is invalid on this chip\n", offset); return CVMX_ADD_IO_SEG(0x0001180000001810ull) + ((offset) & 1) * 256; } #else #define CVMX_SMIX_RD_DAT(offset) (CVMX_ADD_IO_SEG(0x0001180000001810ull) + ((offset) & 1) * 256) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_SMIX_WR_DAT(unsigned long offset) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && ((offset == 0))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && ((offset == 0))) || (OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset == 0))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset == 0))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 1))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 1))) || (OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 1))))) cvmx_warn("CVMX_SMIX_WR_DAT(%lu) is invalid on this chip\n", offset); return CVMX_ADD_IO_SEG(0x0001180000001808ull) + ((offset) & 1) * 256; } #else #define CVMX_SMIX_WR_DAT(offset) (CVMX_ADD_IO_SEG(0x0001180000001808ull) + ((offset) & 1) * 256) #endif /** * cvmx_smi#_clk * * SMI_CLK = Clock Control Register * */ union cvmx_smix_clk { uint64_t u64; struct cvmx_smix_clk_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_25_63 : 39; uint64_t mode : 1; /**< IEEE operating mode 0=Clause 22 complient 1=Clause 45 complient */ uint64_t reserved_21_23 : 3; uint64_t sample_hi : 5; /**< When to sample read data (extended bits) */ uint64_t sample_mode : 1; /**< Read Data sampling mode According to the 802.3 spec, on reads, the STA transitions MDC and the PHY drives MDIO with some delay relative to that edge. This is edge1. The STA then samples MDIO on the next rising edge of MDC. This is edge2. Octeon can sample the read data relative to either edge. 0=[SAMPLE_HI,SAMPLE] specify the sample time relative to edge2 1=[SAMPLE_HI,SAMPLE] specify the sample time relative to edge1 */ uint64_t reserved_14_14 : 1; uint64_t clk_idle : 1; /**< Do not toggle MDC on idle cycles */ uint64_t preamble : 1; /**< Send PREAMBLE on SMI transacton PREAMBLE must be set 1 when MODE=1 in order for the receiving PHY to correctly frame the transaction. */ uint64_t sample : 4; /**< When to sample read data (number of eclks after the rising edge of mdc) ( [SAMPLE_HI,SAMPLE] > 1 ) ( [SAMPLE_HI, SAMPLE] + 3 <= 2*PHASE ) */ uint64_t phase : 8; /**< MDC Clock Phase (number of eclks that make up an mdc phase) (PHASE > 2) */ #else uint64_t phase : 8; uint64_t sample : 4; uint64_t preamble : 1; uint64_t clk_idle : 1; uint64_t reserved_14_14 : 1; uint64_t sample_mode : 1; uint64_t sample_hi : 5; uint64_t reserved_21_23 : 3; uint64_t mode : 1; uint64_t reserved_25_63 : 39; #endif } s; struct cvmx_smix_clk_cn30xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_21_63 : 43; uint64_t sample_hi : 5; /**< When to sample read data (extended bits) */ uint64_t sample_mode : 1; /**< Read Data sampling mode According to the 802.3 spec, on reads, the STA transitions MDC and the PHY drives MDIO with some delay relative to that edge. This is edge1. The STA then samples MDIO on the next rising edge of MDC. This is edge2. Octeon can sample the read data relative to either edge. 0=[SAMPLE_HI,SAMPLE] specify the sample time relative to edge2 1=[SAMPLE_HI,SAMPLE] specify the sample time relative to edge1 */ uint64_t reserved_14_14 : 1; uint64_t clk_idle : 1; /**< Do not toggle MDC on idle cycles */ uint64_t preamble : 1; /**< Send PREAMBLE on SMI transacton */ uint64_t sample : 4; /**< When to sample read data (number of eclks after the rising edge of mdc) ( [SAMPLE_HI,SAMPLE] > 1 ) ( [SAMPLE_HI, SAMPLE] + 3 <= 2*PHASE ) */ uint64_t phase : 8; /**< MDC Clock Phase (number of eclks that make up an mdc phase) (PHASE > 2) */ #else uint64_t phase : 8; uint64_t sample : 4; uint64_t preamble : 1; uint64_t clk_idle : 1; uint64_t reserved_14_14 : 1; uint64_t sample_mode : 1; uint64_t sample_hi : 5; uint64_t reserved_21_63 : 43; #endif } cn30xx; struct cvmx_smix_clk_cn30xx cn31xx; struct cvmx_smix_clk_cn30xx cn38xx; struct cvmx_smix_clk_cn30xx cn38xxp2; struct cvmx_smix_clk_s cn50xx; struct cvmx_smix_clk_s cn52xx; struct cvmx_smix_clk_s cn52xxp1; struct cvmx_smix_clk_s cn56xx; struct cvmx_smix_clk_s cn56xxp1; struct cvmx_smix_clk_cn30xx cn58xx; struct cvmx_smix_clk_cn30xx cn58xxp1; struct cvmx_smix_clk_s cn63xx; struct cvmx_smix_clk_s cn63xxp1; }; typedef union cvmx_smix_clk cvmx_smix_clk_t; /** * cvmx_smi#_cmd * * SMI_CMD = Force a Read/Write command to the PHY * * * Notes: * Writes to this register will create SMI xactions. Software will poll on (depending on the xaction type). * */ union cvmx_smix_cmd { uint64_t u64; struct cvmx_smix_cmd_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_18_63 : 46; uint64_t phy_op : 2; /**< PHY Opcode depending on SMI_CLK[MODE] SMI_CLK[MODE] == 0 (<=1Gbs / Clause 22) x0=write x1=read SMI_CLK[MODE] == 1 (>1Gbs / Clause 45) 00=address 01=write 11=read 10=post-read-increment-address */ uint64_t reserved_13_15 : 3; uint64_t phy_adr : 5; /**< PHY Address */ uint64_t reserved_5_7 : 3; uint64_t reg_adr : 5; /**< PHY Register Offset */ #else uint64_t reg_adr : 5; uint64_t reserved_5_7 : 3; uint64_t phy_adr : 5; uint64_t reserved_13_15 : 3; uint64_t phy_op : 2; uint64_t reserved_18_63 : 46; #endif } s; struct cvmx_smix_cmd_cn30xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_17_63 : 47; uint64_t phy_op : 1; /**< PHY Opcode 0=write 1=read */ uint64_t reserved_13_15 : 3; uint64_t phy_adr : 5; /**< PHY Address */ uint64_t reserved_5_7 : 3; uint64_t reg_adr : 5; /**< PHY Register Offset */ #else uint64_t reg_adr : 5; uint64_t reserved_5_7 : 3; uint64_t phy_adr : 5; uint64_t reserved_13_15 : 3; uint64_t phy_op : 1; uint64_t reserved_17_63 : 47; #endif } cn30xx; struct cvmx_smix_cmd_cn30xx cn31xx; struct cvmx_smix_cmd_cn30xx cn38xx; struct cvmx_smix_cmd_cn30xx cn38xxp2; struct cvmx_smix_cmd_s cn50xx; struct cvmx_smix_cmd_s cn52xx; struct cvmx_smix_cmd_s cn52xxp1; struct cvmx_smix_cmd_s cn56xx; struct cvmx_smix_cmd_s cn56xxp1; struct cvmx_smix_cmd_cn30xx cn58xx; struct cvmx_smix_cmd_cn30xx cn58xxp1; struct cvmx_smix_cmd_s cn63xx; struct cvmx_smix_cmd_s cn63xxp1; }; typedef union cvmx_smix_cmd cvmx_smix_cmd_t; /** * cvmx_smi#_en * * SMI_EN = Enable the SMI interface * */ union cvmx_smix_en { uint64_t u64; struct cvmx_smix_en_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_1_63 : 63; uint64_t en : 1; /**< Interface enable 0=SMI Interface is down / no transactions, no MDC 1=SMI Interface is up */ #else uint64_t en : 1; uint64_t reserved_1_63 : 63; #endif } s; struct cvmx_smix_en_s cn30xx; struct cvmx_smix_en_s cn31xx; struct cvmx_smix_en_s cn38xx; struct cvmx_smix_en_s cn38xxp2; struct cvmx_smix_en_s cn50xx; struct cvmx_smix_en_s cn52xx; struct cvmx_smix_en_s cn52xxp1; struct cvmx_smix_en_s cn56xx; struct cvmx_smix_en_s cn56xxp1; struct cvmx_smix_en_s cn58xx; struct cvmx_smix_en_s cn58xxp1; struct cvmx_smix_en_s cn63xx; struct cvmx_smix_en_s cn63xxp1; }; typedef union cvmx_smix_en cvmx_smix_en_t; /** * cvmx_smi#_rd_dat * * SMI_RD_DAT = SMI Read Data * * * Notes: * VAL will assert when the read xaction completes. A read to this register * will clear VAL. PENDING indicates that an SMI RD transaction is in flight. */ union cvmx_smix_rd_dat { uint64_t u64; struct cvmx_smix_rd_dat_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_18_63 : 46; uint64_t pending : 1; /**< Read Xaction Pending */ uint64_t val : 1; /**< Read Data Valid */ uint64_t dat : 16; /**< Read Data */ #else uint64_t dat : 16; uint64_t val : 1; uint64_t pending : 1; uint64_t reserved_18_63 : 46; #endif } s; struct cvmx_smix_rd_dat_s cn30xx; struct cvmx_smix_rd_dat_s cn31xx; struct cvmx_smix_rd_dat_s cn38xx; struct cvmx_smix_rd_dat_s cn38xxp2; struct cvmx_smix_rd_dat_s cn50xx; struct cvmx_smix_rd_dat_s cn52xx; struct cvmx_smix_rd_dat_s cn52xxp1; struct cvmx_smix_rd_dat_s cn56xx; struct cvmx_smix_rd_dat_s cn56xxp1; struct cvmx_smix_rd_dat_s cn58xx; struct cvmx_smix_rd_dat_s cn58xxp1; struct cvmx_smix_rd_dat_s cn63xx; struct cvmx_smix_rd_dat_s cn63xxp1; }; typedef union cvmx_smix_rd_dat cvmx_smix_rd_dat_t; /** * cvmx_smi#_wr_dat * * SMI_WR_DAT = SMI Write Data * * * Notes: * VAL will assert when the write xaction completes. A read to this register * will clear VAL. PENDING indicates that an SMI WR transaction is in flight. */ union cvmx_smix_wr_dat { uint64_t u64; struct cvmx_smix_wr_dat_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_18_63 : 46; uint64_t pending : 1; /**< Write Xaction Pending */ uint64_t val : 1; /**< Write Data Valid */ uint64_t dat : 16; /**< Write Data */ #else uint64_t dat : 16; uint64_t val : 1; uint64_t pending : 1; uint64_t reserved_18_63 : 46; #endif } s; struct cvmx_smix_wr_dat_s cn30xx; struct cvmx_smix_wr_dat_s cn31xx; struct cvmx_smix_wr_dat_s cn38xx; struct cvmx_smix_wr_dat_s cn38xxp2; struct cvmx_smix_wr_dat_s cn50xx; struct cvmx_smix_wr_dat_s cn52xx; struct cvmx_smix_wr_dat_s cn52xxp1; struct cvmx_smix_wr_dat_s cn56xx; struct cvmx_smix_wr_dat_s cn56xxp1; struct cvmx_smix_wr_dat_s cn58xx; struct cvmx_smix_wr_dat_s cn58xxp1; struct cvmx_smix_wr_dat_s cn63xx; struct cvmx_smix_wr_dat_s cn63xxp1; }; typedef union cvmx_smix_wr_dat cvmx_smix_wr_dat_t; #endif