#include __FBSDID("$FreeBSD$"); /*- * Copyright (c) 2009 Hans Petter Selasky. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * This file contains the driver for the AVR32 series USB Device * Controller */ /* * NOTE: When the chip detects BUS-reset it will also reset the * endpoints, Function-address and more. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define USB_DEBUG_VAR avr32dci_debug #include #include #include #include #include #include #include #include #include #include #include #define AVR32_BUS2SC(bus) \ ((struct avr32dci_softc *)(((uint8_t *)(bus)) - \ ((uint8_t *)&(((struct avr32dci_softc *)0)->sc_bus)))) #define AVR32_PC2SC(pc) \ AVR32_BUS2SC(USB_DMATAG_TO_XROOT((pc)->tag_parent)->bus) #ifdef USB_DEBUG static int avr32dci_debug = 0; static SYSCTL_NODE(_hw_usb, OID_AUTO, avr32dci, CTLFLAG_RW, 0, "USB AVR32 DCI"); SYSCTL_INT(_hw_usb_avr32dci, OID_AUTO, debug, CTLFLAG_RW, &avr32dci_debug, 0, "AVR32 DCI debug level"); #endif #define AVR32_INTR_ENDPT 1 /* prototypes */ struct usb_bus_methods avr32dci_bus_methods; struct usb_pipe_methods avr32dci_device_non_isoc_methods; struct usb_pipe_methods avr32dci_device_isoc_fs_methods; static avr32dci_cmd_t avr32dci_setup_rx; static avr32dci_cmd_t avr32dci_data_rx; static avr32dci_cmd_t avr32dci_data_tx; static avr32dci_cmd_t avr32dci_data_tx_sync; static void avr32dci_device_done(struct usb_xfer *, usb_error_t); static void avr32dci_do_poll(struct usb_bus *); static void avr32dci_standard_done(struct usb_xfer *); static void avr32dci_root_intr(struct avr32dci_softc *sc); /* * Here is a list of what the chip supports: */ static const struct usb_hw_ep_profile avr32dci_ep_profile[4] = { [0] = { .max_in_frame_size = 64, .max_out_frame_size = 64, .is_simplex = 1, .support_control = 1, }, [1] = { .max_in_frame_size = 512, .max_out_frame_size = 512, .is_simplex = 1, .support_bulk = 1, .support_interrupt = 1, .support_isochronous = 1, .support_in = 1, .support_out = 1, }, [2] = { .max_in_frame_size = 64, .max_out_frame_size = 64, .is_simplex = 1, .support_bulk = 1, .support_interrupt = 1, .support_in = 1, .support_out = 1, }, [3] = { .max_in_frame_size = 1024, .max_out_frame_size = 1024, .is_simplex = 1, .support_bulk = 1, .support_interrupt = 1, .support_isochronous = 1, .support_in = 1, .support_out = 1, }, }; static void avr32dci_get_hw_ep_profile(struct usb_device *udev, const struct usb_hw_ep_profile **ppf, uint8_t ep_addr) { if (ep_addr == 0) *ppf = avr32dci_ep_profile; else if (ep_addr < 3) *ppf = avr32dci_ep_profile + 1; else if (ep_addr < 5) *ppf = avr32dci_ep_profile + 2; else if (ep_addr < 7) *ppf = avr32dci_ep_profile + 3; else *ppf = NULL; } static void avr32dci_mod_ctrl(struct avr32dci_softc *sc, uint32_t set, uint32_t clear) { uint32_t temp; temp = AVR32_READ_4(sc, AVR32_CTRL); temp |= set; temp &= ~clear; AVR32_WRITE_4(sc, AVR32_CTRL, temp); } static void avr32dci_mod_ien(struct avr32dci_softc *sc, uint32_t set, uint32_t clear) { uint32_t temp; temp = AVR32_READ_4(sc, AVR32_IEN); temp |= set; temp &= ~clear; AVR32_WRITE_4(sc, AVR32_IEN, temp); } static void avr32dci_clocks_on(struct avr32dci_softc *sc) { if (sc->sc_flags.clocks_off && sc->sc_flags.port_powered) { DPRINTFN(5, "\n"); /* turn on clocks */ (sc->sc_clocks_on) (&sc->sc_bus); avr32dci_mod_ctrl(sc, AVR32_CTRL_DEV_EN_USBA, 0); sc->sc_flags.clocks_off = 0; } } static void avr32dci_clocks_off(struct avr32dci_softc *sc) { if (!sc->sc_flags.clocks_off) { DPRINTFN(5, "\n"); avr32dci_mod_ctrl(sc, 0, AVR32_CTRL_DEV_EN_USBA); /* turn clocks off */ (sc->sc_clocks_off) (&sc->sc_bus); sc->sc_flags.clocks_off = 1; } } static void avr32dci_pull_up(struct avr32dci_softc *sc) { /* pullup D+, if possible */ if (!sc->sc_flags.d_pulled_up && sc->sc_flags.port_powered) { sc->sc_flags.d_pulled_up = 1; avr32dci_mod_ctrl(sc, 0, AVR32_CTRL_DEV_DETACH); } } static void avr32dci_pull_down(struct avr32dci_softc *sc) { /* pulldown D+, if possible */ if (sc->sc_flags.d_pulled_up) { sc->sc_flags.d_pulled_up = 0; avr32dci_mod_ctrl(sc, AVR32_CTRL_DEV_DETACH, 0); } } static void avr32dci_wakeup_peer(struct avr32dci_softc *sc) { if (!sc->sc_flags.status_suspend) { return; } avr32dci_mod_ctrl(sc, AVR32_CTRL_DEV_REWAKEUP, 0); /* wait 8 milliseconds */ /* Wait for reset to complete. */ usb_pause_mtx(&sc->sc_bus.bus_mtx, hz / 125); /* hardware should have cleared RMWKUP bit */ } static void avr32dci_set_address(struct avr32dci_softc *sc, uint8_t addr) { DPRINTFN(5, "addr=%d\n", addr); avr32dci_mod_ctrl(sc, AVR32_CTRL_DEV_FADDR_EN | addr, 0); } static uint8_t avr32dci_setup_rx(struct avr32dci_td *td) { struct avr32dci_softc *sc; struct usb_device_request req; uint16_t count; uint32_t temp; /* get pointer to softc */ sc = AVR32_PC2SC(td->pc); /* check endpoint status */ temp = AVR32_READ_4(sc, AVR32_EPTSTA(td->ep_no)); DPRINTFN(5, "EPTSTA(%u)=0x%08x\n", td->ep_no, temp); if (!(temp & AVR32_EPTSTA_RX_SETUP)) { goto not_complete; } /* clear did stall */ td->did_stall = 0; /* get the packet byte count */ count = AVR32_EPTSTA_BYTE_COUNT(temp); /* verify data length */ if (count != td->remainder) { DPRINTFN(0, "Invalid SETUP packet " "length, %d bytes\n", count); goto not_complete; } if (count != sizeof(req)) { DPRINTFN(0, "Unsupported SETUP packet " "length, %d bytes\n", count); goto not_complete; } /* receive data */ memcpy(&req, sc->physdata, sizeof(req)); /* copy data into real buffer */ usbd_copy_in(td->pc, 0, &req, sizeof(req)); td->offset = sizeof(req); td->remainder = 0; /* sneak peek the set address */ if ((req.bmRequestType == UT_WRITE_DEVICE) && (req.bRequest == UR_SET_ADDRESS)) { sc->sc_dv_addr = req.wValue[0] & 0x7F; /* must write address before ZLP */ avr32dci_mod_ctrl(sc, 0, AVR32_CTRL_DEV_FADDR_EN | AVR32_CTRL_DEV_ADDR); avr32dci_mod_ctrl(sc, sc->sc_dv_addr, 0); } else { sc->sc_dv_addr = 0xFF; } /* clear SETUP packet interrupt */ AVR32_WRITE_4(sc, AVR32_EPTCLRSTA(td->ep_no), AVR32_EPTSTA_RX_SETUP); return (0); /* complete */ not_complete: if (temp & AVR32_EPTSTA_RX_SETUP) { /* clear SETUP packet interrupt */ AVR32_WRITE_4(sc, AVR32_EPTCLRSTA(td->ep_no), AVR32_EPTSTA_RX_SETUP); } /* abort any ongoing transfer */ if (!td->did_stall) { DPRINTFN(5, "stalling\n"); AVR32_WRITE_4(sc, AVR32_EPTSETSTA(td->ep_no), AVR32_EPTSTA_FRCESTALL); td->did_stall = 1; } return (1); /* not complete */ } static uint8_t avr32dci_data_rx(struct avr32dci_td *td) { struct avr32dci_softc *sc; struct usb_page_search buf_res; uint16_t count; uint32_t temp; uint8_t to; uint8_t got_short; to = 4; /* don't loop forever! */ got_short = 0; /* get pointer to softc */ sc = AVR32_PC2SC(td->pc); repeat: /* check if any of the FIFO banks have data */ /* check endpoint status */ temp = AVR32_READ_4(sc, AVR32_EPTSTA(td->ep_no)); DPRINTFN(5, "EPTSTA(%u)=0x%08x\n", td->ep_no, temp); if (temp & AVR32_EPTSTA_RX_SETUP) { if (td->remainder == 0) { /* * We are actually complete and have * received the next SETUP */ DPRINTFN(5, "faking complete\n"); return (0); /* complete */ } /* * USB Host Aborted the transfer. */ td->error = 1; return (0); /* complete */ } /* check status */ if (!(temp & AVR32_EPTSTA_RX_BK_RDY)) { /* no data */ goto not_complete; } /* get the packet byte count */ count = AVR32_EPTSTA_BYTE_COUNT(temp); /* verify the packet byte count */ if (count != td->max_packet_size) { if (count < td->max_packet_size) { /* we have a short packet */ td->short_pkt = 1; got_short = 1; } else { /* invalid USB packet */ td->error = 1; return (0); /* we are complete */ } } /* verify the packet byte count */ if (count > td->remainder) { /* invalid USB packet */ td->error = 1; return (0); /* we are complete */ } while (count > 0) { usbd_get_page(td->pc, td->offset, &buf_res); /* get correct length */ if (buf_res.length > count) { buf_res.length = count; } /* receive data */ memcpy(buf_res.buffer, sc->physdata + (AVR32_EPTSTA_CURRENT_BANK(temp) << td->bank_shift) + (td->ep_no << 16) + (td->offset % td->max_packet_size), buf_res.length); /* update counters */ count -= buf_res.length; td->offset += buf_res.length; td->remainder -= buf_res.length; } /* clear OUT packet interrupt */ AVR32_WRITE_4(sc, AVR32_EPTCLRSTA(td->ep_no), AVR32_EPTSTA_RX_BK_RDY); /* check if we are complete */ if ((td->remainder == 0) || got_short) { if (td->short_pkt) { /* we are complete */ return (0); } /* else need to receive a zero length packet */ } if (--to) { goto repeat; } not_complete: return (1); /* not complete */ } static uint8_t avr32dci_data_tx(struct avr32dci_td *td) { struct avr32dci_softc *sc; struct usb_page_search buf_res; uint16_t count; uint8_t to; uint32_t temp; to = 4; /* don't loop forever! */ /* get pointer to softc */ sc = AVR32_PC2SC(td->pc); repeat: /* check endpoint status */ temp = AVR32_READ_4(sc, AVR32_EPTSTA(td->ep_no)); DPRINTFN(5, "EPTSTA(%u)=0x%08x\n", td->ep_no, temp); if (temp & AVR32_EPTSTA_RX_SETUP) { /* * The current transfer was aborted * by the USB Host */ td->error = 1; return (0); /* complete */ } if (temp & AVR32_EPTSTA_TX_PK_RDY) { /* cannot write any data - all banks are busy */ goto not_complete; } count = td->max_packet_size; if (td->remainder < count) { /* we have a short packet */ td->short_pkt = 1; count = td->remainder; } while (count > 0) { usbd_get_page(td->pc, td->offset, &buf_res); /* get correct length */ if (buf_res.length > count) { buf_res.length = count; } /* transmit data */ memcpy(sc->physdata + (AVR32_EPTSTA_CURRENT_BANK(temp) << td->bank_shift) + (td->ep_no << 16) + (td->offset % td->max_packet_size), buf_res.buffer, buf_res.length); /* update counters */ count -= buf_res.length; td->offset += buf_res.length; td->remainder -= buf_res.length; } /* allocate FIFO bank */ AVR32_WRITE_4(sc, AVR32_EPTCTL(td->ep_no), AVR32_EPTCTL_TX_PK_RDY); /* check remainder */ if (td->remainder == 0) { if (td->short_pkt) { return (0); /* complete */ } /* else we need to transmit a short packet */ } if (--to) { goto repeat; } not_complete: return (1); /* not complete */ } static uint8_t avr32dci_data_tx_sync(struct avr32dci_td *td) { struct avr32dci_softc *sc; uint32_t temp; /* get pointer to softc */ sc = AVR32_PC2SC(td->pc); /* check endpoint status */ temp = AVR32_READ_4(sc, AVR32_EPTSTA(td->ep_no)); DPRINTFN(5, "EPTSTA(%u)=0x%08x\n", td->ep_no, temp); if (temp & AVR32_EPTSTA_RX_SETUP) { DPRINTFN(5, "faking complete\n"); /* Race condition */ return (0); /* complete */ } /* * The control endpoint has only got one bank, so if that bank * is free the packet has been transferred! */ if (AVR32_EPTSTA_BUSY_BANK_STA(temp) != 0) { /* cannot write any data - a bank is busy */ goto not_complete; } if (sc->sc_dv_addr != 0xFF) { /* set new address */ avr32dci_set_address(sc, sc->sc_dv_addr); } return (0); /* complete */ not_complete: return (1); /* not complete */ } static uint8_t avr32dci_xfer_do_fifo(struct usb_xfer *xfer) { struct avr32dci_td *td; DPRINTFN(9, "\n"); td = xfer->td_transfer_cache; while (1) { if ((td->func) (td)) { /* operation in progress */ break; } if (((void *)td) == xfer->td_transfer_last) { goto done; } if (td->error) { goto done; } else if (td->remainder > 0) { /* * We had a short transfer. If there is no alternate * next, stop processing ! */ if (!td->alt_next) { goto done; } } /* * Fetch the next transfer descriptor and transfer * some flags to the next transfer descriptor */ td = td->obj_next; xfer->td_transfer_cache = td; } return (1); /* not complete */ done: /* compute all actual lengths */ avr32dci_standard_done(xfer); return (0); /* complete */ } static void avr32dci_interrupt_poll(struct avr32dci_softc *sc) { struct usb_xfer *xfer; repeat: TAILQ_FOREACH(xfer, &sc->sc_bus.intr_q.head, wait_entry) { if (!avr32dci_xfer_do_fifo(xfer)) { /* queue has been modified */ goto repeat; } } } void avr32dci_vbus_interrupt(struct avr32dci_softc *sc, uint8_t is_on) { DPRINTFN(5, "vbus = %u\n", is_on); if (is_on) { if (!sc->sc_flags.status_vbus) { sc->sc_flags.status_vbus = 1; /* complete root HUB interrupt endpoint */ avr32dci_root_intr(sc); } } else { if (sc->sc_flags.status_vbus) { sc->sc_flags.status_vbus = 0; sc->sc_flags.status_bus_reset = 0; sc->sc_flags.status_suspend = 0; sc->sc_flags.change_suspend = 0; sc->sc_flags.change_connect = 1; /* complete root HUB interrupt endpoint */ avr32dci_root_intr(sc); } } } void avr32dci_interrupt(struct avr32dci_softc *sc) { uint32_t status; USB_BUS_LOCK(&sc->sc_bus); /* read interrupt status */ status = AVR32_READ_4(sc, AVR32_INTSTA); /* clear all set interrupts */ AVR32_WRITE_4(sc, AVR32_CLRINT, status); DPRINTFN(14, "INTSTA=0x%08x\n", status); /* check for any bus state change interrupts */ if (status & AVR32_INT_ENDRESET) { DPRINTFN(5, "end of reset\n"); /* set correct state */ sc->sc_flags.status_bus_reset = 1; sc->sc_flags.status_suspend = 0; sc->sc_flags.change_suspend = 0; sc->sc_flags.change_connect = 1; /* disable resume interrupt */ avr32dci_mod_ien(sc, AVR32_INT_DET_SUSPD | AVR32_INT_ENDRESET, AVR32_INT_WAKE_UP); /* complete root HUB interrupt endpoint */ avr32dci_root_intr(sc); } /* * If resume and suspend is set at the same time we interpret * that like RESUME. Resume is set when there is at least 3 * milliseconds of inactivity on the USB BUS. */ if (status & AVR32_INT_WAKE_UP) { DPRINTFN(5, "resume interrupt\n"); if (sc->sc_flags.status_suspend) { /* update status bits */ sc->sc_flags.status_suspend = 0; sc->sc_flags.change_suspend = 1; /* disable resume interrupt */ avr32dci_mod_ien(sc, AVR32_INT_DET_SUSPD | AVR32_INT_ENDRESET, AVR32_INT_WAKE_UP); /* complete root HUB interrupt endpoint */ avr32dci_root_intr(sc); } } else if (status & AVR32_INT_DET_SUSPD) { DPRINTFN(5, "suspend interrupt\n"); if (!sc->sc_flags.status_suspend) { /* update status bits */ sc->sc_flags.status_suspend = 1; sc->sc_flags.change_suspend = 1; /* disable suspend interrupt */ avr32dci_mod_ien(sc, AVR32_INT_WAKE_UP | AVR32_INT_ENDRESET, AVR32_INT_DET_SUSPD); /* complete root HUB interrupt endpoint */ avr32dci_root_intr(sc); } } /* check for any endpoint interrupts */ if (status & -AVR32_INT_EPT_INT(0)) { DPRINTFN(5, "real endpoint interrupt\n"); avr32dci_interrupt_poll(sc); } USB_BUS_UNLOCK(&sc->sc_bus); } static void avr32dci_setup_standard_chain_sub(struct avr32dci_std_temp *temp) { struct avr32dci_td *td; /* get current Transfer Descriptor */ td = temp->td_next; temp->td = td; /* prepare for next TD */ temp->td_next = td->obj_next; /* fill out the Transfer Descriptor */ td->func = temp->func; td->pc = temp->pc; td->offset = temp->offset; td->remainder = temp->len; td->error = 0; td->did_stall = temp->did_stall; td->short_pkt = temp->short_pkt; td->alt_next = temp->setup_alt_next; } static void avr32dci_setup_standard_chain(struct usb_xfer *xfer) { struct avr32dci_std_temp temp; struct avr32dci_softc *sc; struct avr32dci_td *td; uint32_t x; uint8_t ep_no; uint8_t need_sync; DPRINTFN(9, "addr=%d endpt=%d sumlen=%d speed=%d\n", xfer->address, UE_GET_ADDR(xfer->endpointno), xfer->sumlen, usbd_get_speed(xfer->xroot->udev)); temp.max_frame_size = xfer->max_frame_size; td = xfer->td_start[0]; xfer->td_transfer_first = td; xfer->td_transfer_cache = td; /* setup temp */ temp.pc = NULL; temp.td = NULL; temp.td_next = xfer->td_start[0]; temp.offset = 0; temp.setup_alt_next = xfer->flags_int.short_frames_ok; temp.did_stall = !xfer->flags_int.control_stall; sc = AVR32_BUS2SC(xfer->xroot->bus); ep_no = (xfer->endpointno & UE_ADDR); /* check if we should prepend a setup message */ if (xfer->flags_int.control_xfr) { if (xfer->flags_int.control_hdr) { temp.func = &avr32dci_setup_rx; temp.len = xfer->frlengths[0]; temp.pc = xfer->frbuffers + 0; temp.short_pkt = temp.len ? 1 : 0; /* check for last frame */ if (xfer->nframes == 1) { /* no STATUS stage yet, SETUP is last */ if (xfer->flags_int.control_act) temp.setup_alt_next = 0; } avr32dci_setup_standard_chain_sub(&temp); } x = 1; } else { x = 0; } if (x != xfer->nframes) { if (xfer->endpointno & UE_DIR_IN) { temp.func = &avr32dci_data_tx; need_sync = 1; } else { temp.func = &avr32dci_data_rx; need_sync = 0; } /* setup "pc" pointer */ temp.pc = xfer->frbuffers + x; } else { need_sync = 0; } while (x != xfer->nframes) { /* DATA0 / DATA1 message */ temp.len = xfer->frlengths[x]; x++; if (x == xfer->nframes) { if (xfer->flags_int.control_xfr) { if (xfer->flags_int.control_act) { temp.setup_alt_next = 0; } } else { temp.setup_alt_next = 0; } } if (temp.len == 0) { /* make sure that we send an USB packet */ temp.short_pkt = 0; } else { /* regular data transfer */ temp.short_pkt = (xfer->flags.force_short_xfer) ? 0 : 1; } avr32dci_setup_standard_chain_sub(&temp); if (xfer->flags_int.isochronous_xfr) { temp.offset += temp.len; } else { /* get next Page Cache pointer */ temp.pc = xfer->frbuffers + x; } } if (xfer->flags_int.control_xfr) { /* always setup a valid "pc" pointer for status and sync */ temp.pc = xfer->frbuffers + 0; temp.len = 0; temp.short_pkt = 0; temp.setup_alt_next = 0; /* check if we need to sync */ if (need_sync) { /* we need a SYNC point after TX */ temp.func = &avr32dci_data_tx_sync; avr32dci_setup_standard_chain_sub(&temp); } /* check if we should append a status stage */ if (!xfer->flags_int.control_act) { /* * Send a DATA1 message and invert the current * endpoint direction. */ if (xfer->endpointno & UE_DIR_IN) { temp.func = &avr32dci_data_rx; need_sync = 0; } else { temp.func = &avr32dci_data_tx; need_sync = 1; } avr32dci_setup_standard_chain_sub(&temp); if (need_sync) { /* we need a SYNC point after TX */ temp.func = &avr32dci_data_tx_sync; avr32dci_setup_standard_chain_sub(&temp); } } } /* must have at least one frame! */ td = temp.td; xfer->td_transfer_last = td; } static void avr32dci_timeout(void *arg) { struct usb_xfer *xfer = arg; DPRINTF("xfer=%p\n", xfer); USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED); /* transfer is transferred */ avr32dci_device_done(xfer, USB_ERR_TIMEOUT); } static void avr32dci_start_standard_chain(struct usb_xfer *xfer) { DPRINTFN(9, "\n"); /* poll one time - will turn on interrupts */ if (avr32dci_xfer_do_fifo(xfer)) { uint8_t ep_no = xfer->endpointno & UE_ADDR; struct avr32dci_softc *sc = AVR32_BUS2SC(xfer->xroot->bus); avr32dci_mod_ien(sc, AVR32_INT_EPT_INT(ep_no), 0); /* put transfer on interrupt queue */ usbd_transfer_enqueue(&xfer->xroot->bus->intr_q, xfer); /* start timeout, if any */ if (xfer->timeout != 0) { usbd_transfer_timeout_ms(xfer, &avr32dci_timeout, xfer->timeout); } } } static void avr32dci_root_intr(struct avr32dci_softc *sc) { DPRINTFN(9, "\n"); USB_BUS_LOCK_ASSERT(&sc->sc_bus, MA_OWNED); /* set port bit */ sc->sc_hub_idata[0] = 0x02; /* we only have one port */ uhub_root_intr(&sc->sc_bus, sc->sc_hub_idata, sizeof(sc->sc_hub_idata)); } static usb_error_t avr32dci_standard_done_sub(struct usb_xfer *xfer) { struct avr32dci_td *td; uint32_t len; uint8_t error; DPRINTFN(9, "\n"); td = xfer->td_transfer_cache; do { len = td->remainder; if (xfer->aframes != xfer->nframes) { /* * Verify the length and subtract * the remainder from "frlengths[]": */ if (len > xfer->frlengths[xfer->aframes]) { td->error = 1; } else { xfer->frlengths[xfer->aframes] -= len; } } /* Check for transfer error */ if (td->error) { /* the transfer is finished */ error = 1; td = NULL; break; } /* Check for short transfer */ if (len > 0) { if (xfer->flags_int.short_frames_ok) { /* follow alt next */ if (td->alt_next) { td = td->obj_next; } else { td = NULL; } } else { /* the transfer is finished */ td = NULL; } error = 0; break; } td = td->obj_next; /* this USB frame is complete */ error = 0; break; } while (0); /* update transfer cache */ xfer->td_transfer_cache = td; return (error ? USB_ERR_STALLED : USB_ERR_NORMAL_COMPLETION); } static void avr32dci_standard_done(struct usb_xfer *xfer) { usb_error_t err = 0; DPRINTFN(13, "xfer=%p pipe=%p transfer done\n", xfer, xfer->endpoint); /* reset scanner */ xfer->td_transfer_cache = xfer->td_transfer_first; if (xfer->flags_int.control_xfr) { if (xfer->flags_int.control_hdr) { err = avr32dci_standard_done_sub(xfer); } xfer->aframes = 1; if (xfer->td_transfer_cache == NULL) { goto done; } } while (xfer->aframes != xfer->nframes) { err = avr32dci_standard_done_sub(xfer); xfer->aframes++; if (xfer->td_transfer_cache == NULL) { goto done; } } if (xfer->flags_int.control_xfr && !xfer->flags_int.control_act) { err = avr32dci_standard_done_sub(xfer); } done: avr32dci_device_done(xfer, err); } /*------------------------------------------------------------------------* * avr32dci_device_done * * NOTE: this function can be called more than one time on the * same USB transfer! *------------------------------------------------------------------------*/ static void avr32dci_device_done(struct usb_xfer *xfer, usb_error_t error) { struct avr32dci_softc *sc = AVR32_BUS2SC(xfer->xroot->bus); uint8_t ep_no; USB_BUS_LOCK_ASSERT(&sc->sc_bus, MA_OWNED); DPRINTFN(9, "xfer=%p, pipe=%p, error=%d\n", xfer, xfer->endpoint, error); if (xfer->flags_int.usb_mode == USB_MODE_DEVICE) { ep_no = (xfer->endpointno & UE_ADDR); /* disable endpoint interrupt */ avr32dci_mod_ien(sc, 0, AVR32_INT_EPT_INT(ep_no)); DPRINTFN(15, "disabled interrupts!\n"); } /* dequeue transfer and start next transfer */ usbd_transfer_done(xfer, error); } static void avr32dci_xfer_stall(struct usb_xfer *xfer) { avr32dci_device_done(xfer, USB_ERR_STALLED); } static void avr32dci_set_stall(struct usb_device *udev, struct usb_endpoint *pipe, uint8_t *did_stall) { struct avr32dci_softc *sc; uint8_t ep_no; USB_BUS_LOCK_ASSERT(udev->bus, MA_OWNED); DPRINTFN(5, "pipe=%p\n", pipe); sc = AVR32_BUS2SC(udev->bus); /* get endpoint number */ ep_no = (pipe->edesc->bEndpointAddress & UE_ADDR); /* set stall */ AVR32_WRITE_4(sc, AVR32_EPTSETSTA(ep_no), AVR32_EPTSTA_FRCESTALL); } static void avr32dci_clear_stall_sub(struct avr32dci_softc *sc, uint8_t ep_no, uint8_t ep_type, uint8_t ep_dir) { const struct usb_hw_ep_profile *pf; uint32_t temp; uint32_t epsize; uint8_t n; if (ep_type == UE_CONTROL) { /* clearing stall is not needed */ return; } /* set endpoint reset */ AVR32_WRITE_4(sc, AVR32_EPTRST, AVR32_EPTRST_MASK(ep_no)); /* set stall */ AVR32_WRITE_4(sc, AVR32_EPTSETSTA(ep_no), AVR32_EPTSTA_FRCESTALL); /* reset data toggle */ AVR32_WRITE_4(sc, AVR32_EPTCLRSTA(ep_no), AVR32_EPTSTA_TOGGLESQ); /* clear stall */ AVR32_WRITE_4(sc, AVR32_EPTCLRSTA(ep_no), AVR32_EPTSTA_FRCESTALL); if (ep_type == UE_BULK) { temp = AVR32_EPTCFG_TYPE_BULK; } else if (ep_type == UE_INTERRUPT) { temp = AVR32_EPTCFG_TYPE_INTR; } else { temp = AVR32_EPTCFG_TYPE_ISOC | AVR32_EPTCFG_NB_TRANS(1); } if (ep_dir & UE_DIR_IN) { temp |= AVR32_EPTCFG_EPDIR_IN; } avr32dci_get_hw_ep_profile(NULL, &pf, ep_no); /* compute endpoint size (use maximum) */ epsize = pf->max_in_frame_size | pf->max_out_frame_size; n = 0; while ((epsize /= 2)) n++; temp |= AVR32_EPTCFG_EPSIZE(n); /* use the maximum number of banks supported */ if (ep_no < 1) temp |= AVR32_EPTCFG_NBANK(1); else if (ep_no < 3) temp |= AVR32_EPTCFG_NBANK(2); else temp |= AVR32_EPTCFG_NBANK(3); AVR32_WRITE_4(sc, AVR32_EPTCFG(ep_no), temp); temp = AVR32_READ_4(sc, AVR32_EPTCFG(ep_no)); if (!(temp & AVR32_EPTCFG_EPT_MAPD)) { device_printf(sc->sc_bus.bdev, "Chip rejected configuration\n"); } else { AVR32_WRITE_4(sc, AVR32_EPTCTLENB(ep_no), AVR32_EPTCTL_EPT_ENABL); } } static void avr32dci_clear_stall(struct usb_device *udev, struct usb_endpoint *pipe) { struct avr32dci_softc *sc; struct usb_endpoint_descriptor *ed; DPRINTFN(5, "pipe=%p\n", pipe); USB_BUS_LOCK_ASSERT(udev->bus, MA_OWNED); /* check mode */ if (udev->flags.usb_mode != USB_MODE_DEVICE) { /* not supported */ return; } /* get softc */ sc = AVR32_BUS2SC(udev->bus); /* get endpoint descriptor */ ed = pipe->edesc; /* reset endpoint */ avr32dci_clear_stall_sub(sc, (ed->bEndpointAddress & UE_ADDR), (ed->bmAttributes & UE_XFERTYPE), (ed->bEndpointAddress & (UE_DIR_IN | UE_DIR_OUT))); } usb_error_t avr32dci_init(struct avr32dci_softc *sc) { uint8_t n; DPRINTF("start\n"); /* set up the bus structure */ sc->sc_bus.usbrev = USB_REV_1_1; sc->sc_bus.methods = &avr32dci_bus_methods; USB_BUS_LOCK(&sc->sc_bus); /* make sure USB is enabled */ avr32dci_mod_ctrl(sc, AVR32_CTRL_DEV_EN_USBA, 0); /* turn on clocks */ (sc->sc_clocks_on) (&sc->sc_bus); /* make sure device is re-enumerated */ avr32dci_mod_ctrl(sc, AVR32_CTRL_DEV_DETACH, 0); /* wait a little for things to stabilise */ usb_pause_mtx(&sc->sc_bus.bus_mtx, hz / 20); /* disable interrupts */ avr32dci_mod_ien(sc, 0, 0xFFFFFFFF); /* enable interrupts */ avr32dci_mod_ien(sc, AVR32_INT_DET_SUSPD | AVR32_INT_ENDRESET, 0); /* reset all endpoints */ AVR32_WRITE_4(sc, AVR32_EPTRST, (1 << AVR32_EP_MAX) - 1); /* disable all endpoints */ for (n = 0; n != AVR32_EP_MAX; n++) { /* disable endpoint */ AVR32_WRITE_4(sc, AVR32_EPTCTLDIS(n), AVR32_EPTCTL_EPT_ENABL); } /* turn off clocks */ avr32dci_clocks_off(sc); USB_BUS_UNLOCK(&sc->sc_bus); /* catch any lost interrupts */ avr32dci_do_poll(&sc->sc_bus); return (0); /* success */ } void avr32dci_uninit(struct avr32dci_softc *sc) { uint8_t n; USB_BUS_LOCK(&sc->sc_bus); /* turn on clocks */ (sc->sc_clocks_on) (&sc->sc_bus); /* disable interrupts */ avr32dci_mod_ien(sc, 0, 0xFFFFFFFF); /* reset all endpoints */ AVR32_WRITE_4(sc, AVR32_EPTRST, (1 << AVR32_EP_MAX) - 1); /* disable all endpoints */ for (n = 0; n != AVR32_EP_MAX; n++) { /* disable endpoint */ AVR32_WRITE_4(sc, AVR32_EPTCTLDIS(n), AVR32_EPTCTL_EPT_ENABL); } sc->sc_flags.port_powered = 0; sc->sc_flags.status_vbus = 0; sc->sc_flags.status_bus_reset = 0; sc->sc_flags.status_suspend = 0; sc->sc_flags.change_suspend = 0; sc->sc_flags.change_connect = 1; avr32dci_pull_down(sc); avr32dci_clocks_off(sc); USB_BUS_UNLOCK(&sc->sc_bus); } static void avr32dci_suspend(struct avr32dci_softc *sc) { /* TODO */ } static void avr32dci_resume(struct avr32dci_softc *sc) { /* TODO */ } static void avr32dci_do_poll(struct usb_bus *bus) { struct avr32dci_softc *sc = AVR32_BUS2SC(bus); USB_BUS_LOCK(&sc->sc_bus); avr32dci_interrupt_poll(sc); USB_BUS_UNLOCK(&sc->sc_bus); } /*------------------------------------------------------------------------* * at91dci bulk support * at91dci control support * at91dci interrupt support *------------------------------------------------------------------------*/ static void avr32dci_device_non_isoc_open(struct usb_xfer *xfer) { return; } static void avr32dci_device_non_isoc_close(struct usb_xfer *xfer) { avr32dci_device_done(xfer, USB_ERR_CANCELLED); } static void avr32dci_device_non_isoc_enter(struct usb_xfer *xfer) { return; } static void avr32dci_device_non_isoc_start(struct usb_xfer *xfer) { /* setup TDs */ avr32dci_setup_standard_chain(xfer); avr32dci_start_standard_chain(xfer); } struct usb_pipe_methods avr32dci_device_non_isoc_methods = { .open = avr32dci_device_non_isoc_open, .close = avr32dci_device_non_isoc_close, .enter = avr32dci_device_non_isoc_enter, .start = avr32dci_device_non_isoc_start, }; /*------------------------------------------------------------------------* * at91dci full speed isochronous support *------------------------------------------------------------------------*/ static void avr32dci_device_isoc_fs_open(struct usb_xfer *xfer) { return; } static void avr32dci_device_isoc_fs_close(struct usb_xfer *xfer) { avr32dci_device_done(xfer, USB_ERR_CANCELLED); } static void avr32dci_device_isoc_fs_enter(struct usb_xfer *xfer) { struct avr32dci_softc *sc = AVR32_BUS2SC(xfer->xroot->bus); uint32_t temp; uint32_t nframes; uint8_t ep_no; DPRINTFN(6, "xfer=%p next=%d nframes=%d\n", xfer, xfer->endpoint->isoc_next, xfer->nframes); /* get the current frame index */ ep_no = xfer->endpointno & UE_ADDR; nframes = (AVR32_READ_4(sc, AVR32_FNUM) / 8); nframes &= AVR32_FRAME_MASK; /* * check if the frame index is within the window where the frames * will be inserted */ temp = (nframes - xfer->endpoint->isoc_next) & AVR32_FRAME_MASK; if ((xfer->endpoint->is_synced == 0) || (temp < xfer->nframes)) { /* * If there is data underflow or the pipe queue is * empty we schedule the transfer a few frames ahead * of the current frame position. Else two isochronous * transfers might overlap. */ xfer->endpoint->isoc_next = (nframes + 3) & AVR32_FRAME_MASK; xfer->endpoint->is_synced = 1; DPRINTFN(3, "start next=%d\n", xfer->endpoint->isoc_next); } /* * compute how many milliseconds the insertion is ahead of the * current frame position: */ temp = (xfer->endpoint->isoc_next - nframes) & AVR32_FRAME_MASK; /* * pre-compute when the isochronous transfer will be finished: */ xfer->isoc_time_complete = usb_isoc_time_expand(&sc->sc_bus, nframes) + temp + xfer->nframes; /* compute frame number for next insertion */ xfer->endpoint->isoc_next += xfer->nframes; /* setup TDs */ avr32dci_setup_standard_chain(xfer); } static void avr32dci_device_isoc_fs_start(struct usb_xfer *xfer) { /* start TD chain */ avr32dci_start_standard_chain(xfer); } struct usb_pipe_methods avr32dci_device_isoc_fs_methods = { .open = avr32dci_device_isoc_fs_open, .close = avr32dci_device_isoc_fs_close, .enter = avr32dci_device_isoc_fs_enter, .start = avr32dci_device_isoc_fs_start, }; /*------------------------------------------------------------------------* * at91dci root control support *------------------------------------------------------------------------* * Simulate a hardware HUB by handling all the necessary requests. *------------------------------------------------------------------------*/ static const struct usb_device_descriptor avr32dci_devd = { .bLength = sizeof(struct usb_device_descriptor), .bDescriptorType = UDESC_DEVICE, .bcdUSB = {0x00, 0x02}, .bDeviceClass = UDCLASS_HUB, .bDeviceSubClass = UDSUBCLASS_HUB, .bDeviceProtocol = UDPROTO_HSHUBSTT, .bMaxPacketSize = 64, .bcdDevice = {0x00, 0x01}, .iManufacturer = 1, .iProduct = 2, .bNumConfigurations = 1, }; static const struct usb_device_qualifier avr32dci_odevd = { .bLength = sizeof(struct usb_device_qualifier), .bDescriptorType = UDESC_DEVICE_QUALIFIER, .bcdUSB = {0x00, 0x02}, .bDeviceClass = UDCLASS_HUB, .bDeviceSubClass = UDSUBCLASS_HUB, .bDeviceProtocol = UDPROTO_FSHUB, .bMaxPacketSize0 = 0, .bNumConfigurations = 0, }; static const struct avr32dci_config_desc avr32dci_confd = { .confd = { .bLength = sizeof(struct usb_config_descriptor), .bDescriptorType = UDESC_CONFIG, .wTotalLength[0] = sizeof(avr32dci_confd), .bNumInterface = 1, .bConfigurationValue = 1, .iConfiguration = 0, .bmAttributes = UC_SELF_POWERED, .bMaxPower = 0, }, .ifcd = { .bLength = sizeof(struct usb_interface_descriptor), .bDescriptorType = UDESC_INTERFACE, .bNumEndpoints = 1, .bInterfaceClass = UICLASS_HUB, .bInterfaceSubClass = UISUBCLASS_HUB, .bInterfaceProtocol = 0, }, .endpd = { .bLength = sizeof(struct usb_endpoint_descriptor), .bDescriptorType = UDESC_ENDPOINT, .bEndpointAddress = (UE_DIR_IN | AVR32_INTR_ENDPT), .bmAttributes = UE_INTERRUPT, .wMaxPacketSize[0] = 8, .bInterval = 255, }, }; #define HSETW(ptr, val) ptr = { (uint8_t)(val), (uint8_t)((val) >> 8) } static const struct usb_hub_descriptor_min avr32dci_hubd = { .bDescLength = sizeof(avr32dci_hubd), .bDescriptorType = UDESC_HUB, .bNbrPorts = 1, HSETW(.wHubCharacteristics, (UHD_PWR_NO_SWITCH | UHD_OC_INDIVIDUAL)), .bPwrOn2PwrGood = 50, .bHubContrCurrent = 0, .DeviceRemovable = {0}, /* port is removable */ }; #define STRING_LANG \ 0x09, 0x04, /* American English */ #define STRING_VENDOR \ 'A', 0, 'V', 0, 'R', 0, '3', 0, '2', 0 #define STRING_PRODUCT \ 'D', 0, 'C', 0, 'I', 0, ' ', 0, 'R', 0, \ 'o', 0, 'o', 0, 't', 0, ' ', 0, 'H', 0, \ 'U', 0, 'B', 0, USB_MAKE_STRING_DESC(STRING_LANG, avr32dci_langtab); USB_MAKE_STRING_DESC(STRING_VENDOR, avr32dci_vendor); USB_MAKE_STRING_DESC(STRING_PRODUCT, avr32dci_product); static usb_error_t avr32dci_roothub_exec(struct usb_device *udev, struct usb_device_request *req, const void **pptr, uint16_t *plength) { struct avr32dci_softc *sc = AVR32_BUS2SC(udev->bus); const void *ptr; uint16_t len; uint16_t value; uint16_t index; uint32_t temp; usb_error_t err; USB_BUS_LOCK_ASSERT(&sc->sc_bus, MA_OWNED); /* buffer reset */ ptr = (const void *)&sc->sc_hub_temp; len = 0; err = 0; value = UGETW(req->wValue); index = UGETW(req->wIndex); /* demultiplex the control request */ switch (req->bmRequestType) { case UT_READ_DEVICE: switch (req->bRequest) { case UR_GET_DESCRIPTOR: goto tr_handle_get_descriptor; case UR_GET_CONFIG: goto tr_handle_get_config; case UR_GET_STATUS: goto tr_handle_get_status; default: goto tr_stalled; } break; case UT_WRITE_DEVICE: switch (req->bRequest) { case UR_SET_ADDRESS: goto tr_handle_set_address; case UR_SET_CONFIG: goto tr_handle_set_config; case UR_CLEAR_FEATURE: goto tr_valid; /* nop */ case UR_SET_DESCRIPTOR: goto tr_valid; /* nop */ case UR_SET_FEATURE: default: goto tr_stalled; } break; case UT_WRITE_ENDPOINT: switch (req->bRequest) { case UR_CLEAR_FEATURE: switch (UGETW(req->wValue)) { case UF_ENDPOINT_HALT: goto tr_handle_clear_halt; case UF_DEVICE_REMOTE_WAKEUP: goto tr_handle_clear_wakeup; default: goto tr_stalled; } break; case UR_SET_FEATURE: switch (UGETW(req->wValue)) { case UF_ENDPOINT_HALT: goto tr_handle_set_halt; case UF_DEVICE_REMOTE_WAKEUP: goto tr_handle_set_wakeup; default: goto tr_stalled; } break; case UR_SYNCH_FRAME: goto tr_valid; /* nop */ default: goto tr_stalled; } break; case UT_READ_ENDPOINT: switch (req->bRequest) { case UR_GET_STATUS: goto tr_handle_get_ep_status; default: goto tr_stalled; } break; case UT_WRITE_INTERFACE: switch (req->bRequest) { case UR_SET_INTERFACE: goto tr_handle_set_interface; case UR_CLEAR_FEATURE: goto tr_valid; /* nop */ case UR_SET_FEATURE: default: goto tr_stalled; } break; case UT_READ_INTERFACE: switch (req->bRequest) { case UR_GET_INTERFACE: goto tr_handle_get_interface; case UR_GET_STATUS: goto tr_handle_get_iface_status; default: goto tr_stalled; } break; case UT_WRITE_CLASS_INTERFACE: case UT_WRITE_VENDOR_INTERFACE: /* XXX forward */ break; case UT_READ_CLASS_INTERFACE: case UT_READ_VENDOR_INTERFACE: /* XXX forward */ break; case UT_WRITE_CLASS_DEVICE: switch (req->bRequest) { case UR_CLEAR_FEATURE: goto tr_valid; case UR_SET_DESCRIPTOR: case UR_SET_FEATURE: break; default: goto tr_stalled; } break; case UT_WRITE_CLASS_OTHER: switch (req->bRequest) { case UR_CLEAR_FEATURE: goto tr_handle_clear_port_feature; case UR_SET_FEATURE: goto tr_handle_set_port_feature; case UR_CLEAR_TT_BUFFER: case UR_RESET_TT: case UR_STOP_TT: goto tr_valid; default: goto tr_stalled; } break; case UT_READ_CLASS_OTHER: switch (req->bRequest) { case UR_GET_TT_STATE: goto tr_handle_get_tt_state; case UR_GET_STATUS: goto tr_handle_get_port_status; default: goto tr_stalled; } break; case UT_READ_CLASS_DEVICE: switch (req->bRequest) { case UR_GET_DESCRIPTOR: goto tr_handle_get_class_descriptor; case UR_GET_STATUS: goto tr_handle_get_class_status; default: goto tr_stalled; } break; default: goto tr_stalled; } goto tr_valid; tr_handle_get_descriptor: switch (value >> 8) { case UDESC_DEVICE: if (value & 0xff) { goto tr_stalled; } len = sizeof(avr32dci_devd); ptr = (const void *)&avr32dci_devd; goto tr_valid; case UDESC_CONFIG: if (value & 0xff) { goto tr_stalled; } len = sizeof(avr32dci_confd); ptr = (const void *)&avr32dci_confd; goto tr_valid; case UDESC_STRING: switch (value & 0xff) { case 0: /* Language table */ len = sizeof(avr32dci_langtab); ptr = (const void *)&avr32dci_langtab; goto tr_valid; case 1: /* Vendor */ len = sizeof(avr32dci_vendor); ptr = (const void *)&avr32dci_vendor; goto tr_valid; case 2: /* Product */ len = sizeof(avr32dci_product); ptr = (const void *)&avr32dci_product; goto tr_valid; default: break; } break; default: goto tr_stalled; } goto tr_stalled; tr_handle_get_config: len = 1; sc->sc_hub_temp.wValue[0] = sc->sc_conf; goto tr_valid; tr_handle_get_status: len = 2; USETW(sc->sc_hub_temp.wValue, UDS_SELF_POWERED); goto tr_valid; tr_handle_set_address: if (value & 0xFF00) { goto tr_stalled; } sc->sc_rt_addr = value; goto tr_valid; tr_handle_set_config: if (value >= 2) { goto tr_stalled; } sc->sc_conf = value; goto tr_valid; tr_handle_get_interface: len = 1; sc->sc_hub_temp.wValue[0] = 0; goto tr_valid; tr_handle_get_tt_state: tr_handle_get_class_status: tr_handle_get_iface_status: tr_handle_get_ep_status: len = 2; USETW(sc->sc_hub_temp.wValue, 0); goto tr_valid; tr_handle_set_halt: tr_handle_set_interface: tr_handle_set_wakeup: tr_handle_clear_wakeup: tr_handle_clear_halt: goto tr_valid; tr_handle_clear_port_feature: if (index != 1) { goto tr_stalled; } DPRINTFN(9, "UR_CLEAR_PORT_FEATURE on port %d\n", index); switch (value) { case UHF_PORT_SUSPEND: avr32dci_wakeup_peer(sc); break; case UHF_PORT_ENABLE: sc->sc_flags.port_enabled = 0; break; case UHF_PORT_TEST: case UHF_PORT_INDICATOR: case UHF_C_PORT_ENABLE: case UHF_C_PORT_OVER_CURRENT: case UHF_C_PORT_RESET: /* nops */ break; case UHF_PORT_POWER: sc->sc_flags.port_powered = 0; avr32dci_pull_down(sc); avr32dci_clocks_off(sc); break; case UHF_C_PORT_CONNECTION: /* clear connect change flag */ sc->sc_flags.change_connect = 0; if (!sc->sc_flags.status_bus_reset) { /* we are not connected */ break; } /* configure the control endpoint */ /* set endpoint reset */ AVR32_WRITE_4(sc, AVR32_EPTRST, AVR32_EPTRST_MASK(0)); /* set stall */ AVR32_WRITE_4(sc, AVR32_EPTSETSTA(0), AVR32_EPTSTA_FRCESTALL); /* reset data toggle */ AVR32_WRITE_4(sc, AVR32_EPTCLRSTA(0), AVR32_EPTSTA_TOGGLESQ); /* clear stall */ AVR32_WRITE_4(sc, AVR32_EPTCLRSTA(0), AVR32_EPTSTA_FRCESTALL); /* configure */ AVR32_WRITE_4(sc, AVR32_EPTCFG(0), AVR32_EPTCFG_TYPE_CTRL | AVR32_EPTCFG_NBANK(1) | AVR32_EPTCFG_EPSIZE(6)); temp = AVR32_READ_4(sc, AVR32_EPTCFG(0)); if (!(temp & AVR32_EPTCFG_EPT_MAPD)) { device_printf(sc->sc_bus.bdev, "Chip rejected configuration\n"); } else { AVR32_WRITE_4(sc, AVR32_EPTCTLENB(0), AVR32_EPTCTL_EPT_ENABL); } break; case UHF_C_PORT_SUSPEND: sc->sc_flags.change_suspend = 0; break; default: err = USB_ERR_IOERROR; goto done; } goto tr_valid; tr_handle_set_port_feature: if (index != 1) { goto tr_stalled; } DPRINTFN(9, "UR_SET_PORT_FEATURE\n"); switch (value) { case UHF_PORT_ENABLE: sc->sc_flags.port_enabled = 1; break; case UHF_PORT_SUSPEND: case UHF_PORT_RESET: case UHF_PORT_TEST: case UHF_PORT_INDICATOR: /* nops */ break; case UHF_PORT_POWER: sc->sc_flags.port_powered = 1; break; default: err = USB_ERR_IOERROR; goto done; } goto tr_valid; tr_handle_get_port_status: DPRINTFN(9, "UR_GET_PORT_STATUS\n"); if (index != 1) { goto tr_stalled; } if (sc->sc_flags.status_vbus) { avr32dci_clocks_on(sc); avr32dci_pull_up(sc); } else { avr32dci_pull_down(sc); avr32dci_clocks_off(sc); } /* Select Device Side Mode */ value = UPS_PORT_MODE_DEVICE; /* Check for High Speed */ if (AVR32_READ_4(sc, AVR32_INTSTA) & AVR32_INT_SPEED) value |= UPS_HIGH_SPEED; if (sc->sc_flags.port_powered) { value |= UPS_PORT_POWER; } if (sc->sc_flags.port_enabled) { value |= UPS_PORT_ENABLED; } if (sc->sc_flags.status_vbus && sc->sc_flags.status_bus_reset) { value |= UPS_CURRENT_CONNECT_STATUS; } if (sc->sc_flags.status_suspend) { value |= UPS_SUSPEND; } USETW(sc->sc_hub_temp.ps.wPortStatus, value); value = 0; if (sc->sc_flags.change_connect) { value |= UPS_C_CONNECT_STATUS; } if (sc->sc_flags.change_suspend) { value |= UPS_C_SUSPEND; } USETW(sc->sc_hub_temp.ps.wPortChange, value); len = sizeof(sc->sc_hub_temp.ps); goto tr_valid; tr_handle_get_class_descriptor: if (value & 0xFF) { goto tr_stalled; } ptr = (const void *)&avr32dci_hubd; len = sizeof(avr32dci_hubd); goto tr_valid; tr_stalled: err = USB_ERR_STALLED; tr_valid: done: *plength = len; *pptr = ptr; return (err); } static void avr32dci_xfer_setup(struct usb_setup_params *parm) { const struct usb_hw_ep_profile *pf; struct avr32dci_softc *sc; struct usb_xfer *xfer; void *last_obj; uint32_t ntd; uint32_t n; uint8_t ep_no; sc = AVR32_BUS2SC(parm->udev->bus); xfer = parm->curr_xfer; /* * NOTE: This driver does not use any of the parameters that * are computed from the following values. Just set some * reasonable dummies: */ parm->hc_max_packet_size = 0x400; parm->hc_max_packet_count = 1; parm->hc_max_frame_size = 0x400; usbd_transfer_setup_sub(parm); /* * compute maximum number of TDs */ if ((xfer->endpoint->edesc->bmAttributes & UE_XFERTYPE) == UE_CONTROL) { ntd = xfer->nframes + 1 /* STATUS */ + 1 /* SYNC 1 */ + 1 /* SYNC 2 */ ; } else { ntd = xfer->nframes + 1 /* SYNC */ ; } /* * check if "usbd_transfer_setup_sub" set an error */ if (parm->err) return; /* * allocate transfer descriptors */ last_obj = NULL; /* * get profile stuff */ ep_no = xfer->endpointno & UE_ADDR; avr32dci_get_hw_ep_profile(parm->udev, &pf, ep_no); if (pf == NULL) { /* should not happen */ parm->err = USB_ERR_INVAL; return; } /* align data */ parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); for (n = 0; n != ntd; n++) { struct avr32dci_td *td; if (parm->buf) { uint32_t temp; td = USB_ADD_BYTES(parm->buf, parm->size[0]); /* init TD */ td->max_packet_size = xfer->max_packet_size; td->ep_no = ep_no; temp = pf->max_in_frame_size | pf->max_out_frame_size; td->bank_shift = 0; while ((temp /= 2)) td->bank_shift++; if (pf->support_multi_buffer) { td->support_multi_buffer = 1; } td->obj_next = last_obj; last_obj = td; } parm->size[0] += sizeof(*td); } xfer->td_start[0] = last_obj; } static void avr32dci_xfer_unsetup(struct usb_xfer *xfer) { return; } static void avr32dci_ep_init(struct usb_device *udev, struct usb_endpoint_descriptor *edesc, struct usb_endpoint *pipe) { struct avr32dci_softc *sc = AVR32_BUS2SC(udev->bus); DPRINTFN(2, "pipe=%p, addr=%d, endpt=%d, mode=%d (%d,%d)\n", pipe, udev->address, edesc->bEndpointAddress, udev->flags.usb_mode, sc->sc_rt_addr, udev->device_index); if (udev->device_index != sc->sc_rt_addr) { if ((udev->speed != USB_SPEED_FULL) && (udev->speed != USB_SPEED_HIGH)) { /* not supported */ return; } if ((edesc->bmAttributes & UE_XFERTYPE) == UE_ISOCHRONOUS) pipe->methods = &avr32dci_device_isoc_fs_methods; else pipe->methods = &avr32dci_device_non_isoc_methods; } } static void avr32dci_set_hw_power_sleep(struct usb_bus *bus, uint32_t state) { struct avr32dci_softc *sc = AVR32_BUS2SC(bus); switch (state) { case USB_HW_POWER_SUSPEND: avr32dci_suspend(sc); break; case USB_HW_POWER_SHUTDOWN: avr32dci_uninit(sc); break; case USB_HW_POWER_RESUME: avr32dci_resume(sc); break; default: break; } } struct usb_bus_methods avr32dci_bus_methods = { .endpoint_init = &avr32dci_ep_init, .xfer_setup = &avr32dci_xfer_setup, .xfer_unsetup = &avr32dci_xfer_unsetup, .get_hw_ep_profile = &avr32dci_get_hw_ep_profile, .xfer_stall = &avr32dci_xfer_stall, .set_stall = &avr32dci_set_stall, .clear_stall = &avr32dci_clear_stall, .roothub_exec = &avr32dci_roothub_exec, .xfer_poll = &avr32dci_do_poll, .set_hw_power_sleep = &avr32dci_set_hw_power_sleep, };