/* * Copyright (c) 1998-2002 Katsushi Kobayashi and Hidetoshi Shimokawa * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the acknowledgement as bellow: * * This product includes software developed by K. Kobayashi and H. Shimokawa * * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ * */ #define ATRQ_CH 0 #define ATRS_CH 1 #define ARRQ_CH 2 #define ARRS_CH 3 #define ITX_CH 4 #define IRX_CH 0x24 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* for rdtsc proto for clock.h below */ #include #include #include #include #include #include /* for vtophys proto */ #include #include #include #include #include #include #undef OHCI_DEBUG static char dbcode[16][0x10]={"OUTM", "OUTL","INPM","INPL", "STOR","LOAD","NOP ","STOP",}; static char dbkey[8][0x10]={"ST0", "ST1","ST2","ST3", "UNDEF","REG","SYS","DEV"}; char fwohcicode[32][0x20]={ "No stat","Undef","long","miss Ack err", "underrun","overrun","desc err", "data read err", "data write err","bus reset","timeout","tcode err", "Undef","Undef","unknown event","flushed", "Undef","ack complete","ack pend","Undef", "ack busy_X","ack busy_A","ack busy_B","Undef", "Undef","Undef","Undef","ack tardy", "Undef","ack data_err","ack type_err",""}; #define MAX_SPEED 2 extern char linkspeed[MAX_SPEED+1][0x10]; static char dbcond[4][0x10]={"NEV","C=1", "C=0", "ALL"}; u_int32_t tagbit[4] = { 1 << 28, 1 << 29, 1 << 30, 1 << 31}; static struct tcode_info tinfo[] = { /* hdr_len block flag*/ /* 0 WREQQ */ {16, FWTI_REQ | FWTI_TLABEL}, /* 1 WREQB */ {16, FWTI_REQ | FWTI_TLABEL | FWTI_BLOCK_ASY}, /* 2 WRES */ {12, FWTI_RES}, /* 3 XXX */ { 0, 0}, /* 4 RREQQ */ {12, FWTI_REQ | FWTI_TLABEL}, /* 5 RREQB */ {16, FWTI_REQ | FWTI_TLABEL}, /* 6 RRESQ */ {16, FWTI_RES}, /* 7 RRESB */ {16, FWTI_RES | FWTI_BLOCK_ASY}, /* 8 CYCS */ { 0, 0}, /* 9 LREQ */ {16, FWTI_REQ | FWTI_TLABEL | FWTI_BLOCK_ASY}, /* a STREAM */ { 4, FWTI_REQ | FWTI_BLOCK_STR}, /* b LRES */ {16, FWTI_RES | FWTI_BLOCK_ASY}, /* c XXX */ { 0, 0}, /* d XXX */ { 0, 0}, /* e PHY */ {12, FWTI_REQ}, /* f XXX */ { 0, 0} }; #define OHCI_WRITE_SIGMASK 0xffff0000 #define OHCI_READ_SIGMASK 0xffff0000 #define OWRITE(sc, r, x) bus_space_write_4((sc)->bst, (sc)->bsh, (r), (x)) #define OREAD(sc, r) bus_space_read_4((sc)->bst, (sc)->bsh, (r)) static void fwohci_ibr __P((struct firewire_comm *)); static void fwohci_db_init __P((struct fwohci_dbch *)); static void fwohci_db_free __P((struct fwohci_dbch *)); static void fwohci_arcv __P((struct fwohci_softc *, struct fwohci_dbch *, int)); static void fwohci_ircv __P((struct fwohci_softc *, struct fwohci_dbch *, int)); static void fwohci_txd __P((struct fwohci_softc *, struct fwohci_dbch *)); static void fwohci_start_atq __P((struct firewire_comm *)); static void fwohci_start_ats __P((struct firewire_comm *)); static void fwohci_start __P((struct fwohci_softc *, struct fwohci_dbch *)); static void fwohci_drain_atq __P((struct firewire_comm *, struct fw_xfer *)); static void fwohci_drain_ats __P((struct firewire_comm *, struct fw_xfer *)); static void fwohci_drain __P((struct firewire_comm *, struct fw_xfer *, struct fwohci_dbch *)); static u_int32_t fwphy_wrdata __P(( struct fwohci_softc *, u_int32_t, u_int32_t)); static u_int32_t fwphy_rddata __P(( struct fwohci_softc *, u_int32_t)); static int fwohci_rx_enable __P((struct fwohci_softc *, struct fwohci_dbch *)); static int fwohci_tx_enable __P((struct fwohci_softc *, struct fwohci_dbch *)); static int fwohci_irx_enable __P((struct firewire_comm *, int)); static int fwohci_irxpp_enable __P((struct firewire_comm *, int)); static int fwohci_irxbuf_enable __P((struct firewire_comm *, int)); static int fwohci_irx_disable __P((struct firewire_comm *, int)); static void fwohci_irx_post __P((struct firewire_comm *, u_int32_t *)); static int fwohci_itxbuf_enable __P((struct firewire_comm *, int)); static int fwohci_itx_disable __P((struct firewire_comm *, int)); static void fwohci_timeout __P((void *)); static void fwohci_poll __P((struct firewire_comm *, int, int)); static void fwohci_set_intr __P((struct firewire_comm *, int)); static int fwohci_add_rx_buf __P((struct fwohcidb_tr *, unsigned short, int, void *, void *)); static int fwohci_add_tx_buf __P((struct fwohcidb_tr *, unsigned short, int, void *)); static void dump_db __P((struct fwohci_softc *, u_int32_t)); static void print_db __P((volatile struct fwohcidb *, u_int32_t , u_int32_t)); static void dump_dma __P((struct fwohci_softc *, u_int32_t)); static u_int32_t fwohci_cyctimer __P((struct firewire_comm *)); static void fwohci_rbuf_update __P((struct fwohci_softc *, int)); static void fwohci_tbuf_update __P((struct fwohci_softc *, int)); void fwohci_txbufdb __P((struct fwohci_softc *, int , struct fw_bulkxfer *)); /* * memory allocated for DMA programs */ #define DMA_PROG_ALLOC (8 * PAGE_SIZE) /* #define NDB 1024 */ #define NDB FWMAXQUEUE #define NDVDB (DVBUF * NDB) #define OHCI_VERSION 0x00 #define OHCI_CROMHDR 0x18 #define OHCI_BUS_OPT 0x20 #define OHCI_BUSIRMC (1 << 31) #define OHCI_BUSCMC (1 << 30) #define OHCI_BUSISC (1 << 29) #define OHCI_BUSBMC (1 << 28) #define OHCI_BUSPMC (1 << 27) #define OHCI_BUSFNC OHCI_BUSIRMC | OHCI_BUSCMC | OHCI_BUSISC |\ OHCI_BUSBMC | OHCI_BUSPMC #define OHCI_EUID_HI 0x24 #define OHCI_EUID_LO 0x28 #define OHCI_CROMPTR 0x34 #define OHCI_HCCCTL 0x50 #define OHCI_HCCCTLCLR 0x54 #define OHCI_AREQHI 0x100 #define OHCI_AREQHICLR 0x104 #define OHCI_AREQLO 0x108 #define OHCI_AREQLOCLR 0x10c #define OHCI_PREQHI 0x110 #define OHCI_PREQHICLR 0x114 #define OHCI_PREQLO 0x118 #define OHCI_PREQLOCLR 0x11c #define OHCI_PREQUPPER 0x120 #define OHCI_SID_BUF 0x64 #define OHCI_SID_CNT 0x68 #define OHCI_SID_CNT_MASK 0xffc #define OHCI_IT_STAT 0x90 #define OHCI_IT_STATCLR 0x94 #define OHCI_IT_MASK 0x98 #define OHCI_IT_MASKCLR 0x9c #define OHCI_IR_STAT 0xa0 #define OHCI_IR_STATCLR 0xa4 #define OHCI_IR_MASK 0xa8 #define OHCI_IR_MASKCLR 0xac #define OHCI_LNKCTL 0xe0 #define OHCI_LNKCTLCLR 0xe4 #define OHCI_PHYACCESS 0xec #define OHCI_CYCLETIMER 0xf0 #define OHCI_DMACTL(off) (off) #define OHCI_DMACTLCLR(off) (off + 4) #define OHCI_DMACMD(off) (off + 0xc) #define OHCI_DMAMATCH(off) (off + 0x10) #define OHCI_ATQOFF 0x180 #define OHCI_ATQCTL OHCI_ATQOFF #define OHCI_ATQCTLCLR (OHCI_ATQOFF + 4) #define OHCI_ATQCMD (OHCI_ATQOFF + 0xc) #define OHCI_ATQMATCH (OHCI_ATQOFF + 0x10) #define OHCI_ATSOFF 0x1a0 #define OHCI_ATSCTL OHCI_ATSOFF #define OHCI_ATSCTLCLR (OHCI_ATSOFF + 4) #define OHCI_ATSCMD (OHCI_ATSOFF + 0xc) #define OHCI_ATSMATCH (OHCI_ATSOFF + 0x10) #define OHCI_ARQOFF 0x1c0 #define OHCI_ARQCTL OHCI_ARQOFF #define OHCI_ARQCTLCLR (OHCI_ARQOFF + 4) #define OHCI_ARQCMD (OHCI_ARQOFF + 0xc) #define OHCI_ARQMATCH (OHCI_ARQOFF + 0x10) #define OHCI_ARSOFF 0x1e0 #define OHCI_ARSCTL OHCI_ARSOFF #define OHCI_ARSCTLCLR (OHCI_ARSOFF + 4) #define OHCI_ARSCMD (OHCI_ARSOFF + 0xc) #define OHCI_ARSMATCH (OHCI_ARSOFF + 0x10) #define OHCI_ITOFF(CH) (0x200 + 0x10 * (CH)) #define OHCI_ITCTL(CH) (OHCI_ITOFF(CH)) #define OHCI_ITCTLCLR(CH) (OHCI_ITOFF(CH) + 4) #define OHCI_ITCMD(CH) (OHCI_ITOFF(CH) + 0xc) #define OHCI_IROFF(CH) (0x400 + 0x20 * (CH)) #define OHCI_IRCTL(CH) (OHCI_IROFF(CH)) #define OHCI_IRCTLCLR(CH) (OHCI_IROFF(CH) + 4) #define OHCI_IRCMD(CH) (OHCI_IROFF(CH) + 0xc) #define OHCI_IRMATCH(CH) (OHCI_IROFF(CH) + 0x10) d_ioctl_t fwohci_ioctl; /* * Communication with PHY device */ static u_int32_t fwphy_wrdata( struct fwohci_softc *sc, u_int32_t addr, u_int32_t data) { u_int32_t fun; addr &= 0xf; data &= 0xff; fun = (PHYDEV_WRCMD | (addr << PHYDEV_REGADDR) | (data << PHYDEV_WRDATA)); OWRITE(sc, OHCI_PHYACCESS, fun); DELAY(100); return(fwphy_rddata( sc, addr)); } static u_int32_t fwohci_set_bus_manager(struct firewire_comm *fc, u_int node) { struct fwohci_softc *sc = (struct fwohci_softc *)fc; int i; u_int32_t bm; #define OHCI_CSR_DATA 0x0c #define OHCI_CSR_COMP 0x10 #define OHCI_CSR_CONT 0x14 #define OHCI_BUS_MANAGER_ID 0 OWRITE(sc, OHCI_CSR_DATA, node); OWRITE(sc, OHCI_CSR_COMP, 0x3f); OWRITE(sc, OHCI_CSR_CONT, OHCI_BUS_MANAGER_ID); for (i = 0; !(OREAD(sc, OHCI_CSR_CONT) & (1<<31)) && (i < 1000); i++) DELAY(10); bm = OREAD(sc, OHCI_CSR_DATA); if((bm & 0x3f) == 0x3f) bm = node; if (bootverbose) device_printf(sc->fc.dev, "fw_set_bus_manager: %d->%d (loop=%d)\n", bm, node, i); return(bm); } static u_int32_t fwphy_rddata(struct fwohci_softc *sc, u_int addr) { u_int32_t fun, stat; u_int i, retry = 0; addr &= 0xf; #define MAX_RETRY 100 again: OWRITE(sc, FWOHCI_INTSTATCLR, OHCI_INT_REG_FAIL); fun = PHYDEV_RDCMD | (addr << PHYDEV_REGADDR); OWRITE(sc, OHCI_PHYACCESS, fun); for ( i = 0 ; i < MAX_RETRY ; i ++ ){ fun = OREAD(sc, OHCI_PHYACCESS); if ((fun & PHYDEV_RDCMD) == 0 && (fun & PHYDEV_RDDONE) != 0) break; DELAY(100); } if(i >= MAX_RETRY) { if (bootverbose) device_printf(sc->fc.dev, "phy read failed(1).\n"); if (++retry < MAX_RETRY) { DELAY(100); goto again; } } /* Make sure that SCLK is started */ stat = OREAD(sc, FWOHCI_INTSTAT); if ((stat & OHCI_INT_REG_FAIL) != 0 || ((fun >> PHYDEV_REGADDR) & 0xf) != addr) { if (bootverbose) device_printf(sc->fc.dev, "phy read failed(2).\n"); if (++retry < MAX_RETRY) { DELAY(100); goto again; } } if (bootverbose || retry >= MAX_RETRY) device_printf(sc->fc.dev, "fwphy_rddata: loop=%d, retry=%d\n", i, retry); #undef MAX_RETRY return((fun >> PHYDEV_RDDATA )& 0xff); } /* Device specific ioctl. */ int fwohci_ioctl (dev_t dev, u_long cmd, caddr_t data, int flag, fw_proc *td) { struct firewire_softc *sc; struct fwohci_softc *fc; int unit = DEV2UNIT(dev); int err = 0; struct fw_reg_req_t *reg = (struct fw_reg_req_t *) data; u_int32_t *dmach = (u_int32_t *) data; sc = devclass_get_softc(firewire_devclass, unit); if(sc == NULL){ return(EINVAL); } fc = (struct fwohci_softc *)sc->fc; if (!data) return(EINVAL); switch (cmd) { case FWOHCI_WRREG: #define OHCI_MAX_REG 0x800 if(reg->addr <= OHCI_MAX_REG){ OWRITE(fc, reg->addr, reg->data); reg->data = OREAD(fc, reg->addr); }else{ err = EINVAL; } break; case FWOHCI_RDREG: if(reg->addr <= OHCI_MAX_REG){ reg->data = OREAD(fc, reg->addr); }else{ err = EINVAL; } break; /* Read DMA descriptors for debug */ case DUMPDMA: if(*dmach <= OHCI_MAX_DMA_CH ){ dump_dma(fc, *dmach); dump_db(fc, *dmach); }else{ err = EINVAL; } break; default: break; } return err; } static int fwohci_probe_phy(struct fwohci_softc *sc, device_t dev) { u_int32_t reg, reg2; int e1394a = 1; /* * probe PHY parameters * 0. to prove PHY version, whether compliance of 1394a. * 1. to probe maximum speed supported by the PHY and * number of port supported by core-logic. * It is not actually available port on your PC . */ OWRITE(sc, OHCI_HCCCTL, OHCI_HCC_LPS); #if 0 /* XXX wait for SCLK. */ DELAY(100000); #endif reg = fwphy_rddata(sc, FW_PHY_SPD_REG); if((reg >> 5) != 7 ){ sc->fc.mode &= ~FWPHYASYST; sc->fc.nport = reg & FW_PHY_NP; sc->fc.speed = reg & FW_PHY_SPD >> 6; if (sc->fc.speed > MAX_SPEED) { device_printf(dev, "invalid speed %d (fixed to %d).\n", sc->fc.speed, MAX_SPEED); sc->fc.speed = MAX_SPEED; } device_printf(dev, "Phy 1394 only %s, %d ports.\n", linkspeed[sc->fc.speed], sc->fc.nport); }else{ reg2 = fwphy_rddata(sc, FW_PHY_ESPD_REG); sc->fc.mode |= FWPHYASYST; sc->fc.nport = reg & FW_PHY_NP; sc->fc.speed = (reg2 & FW_PHY_ESPD) >> 5; if (sc->fc.speed > MAX_SPEED) { device_printf(dev, "invalid speed %d (fixed to %d).\n", sc->fc.speed, MAX_SPEED); sc->fc.speed = MAX_SPEED; } device_printf(dev, "Phy 1394a available %s, %d ports.\n", linkspeed[sc->fc.speed], sc->fc.nport); /* check programPhyEnable */ reg2 = fwphy_rddata(sc, 5); #if 0 if (e1394a && (OREAD(sc, OHCI_HCCCTL) & OHCI_HCC_PRPHY)) { #else /* XXX force to enable 1394a */ if (e1394a) { #endif if (bootverbose) device_printf(dev, "Enable 1394a Enhancements\n"); /* enable EAA EMC */ reg2 |= 0x03; /* set aPhyEnhanceEnable */ OWRITE(sc, OHCI_HCCCTL, OHCI_HCC_PHYEN); OWRITE(sc, OHCI_HCCCTLCLR, OHCI_HCC_PRPHY); } else { /* for safe */ reg2 &= ~0x83; } reg2 = fwphy_wrdata(sc, 5, reg2); } reg = fwphy_rddata(sc, FW_PHY_SPD_REG); if((reg >> 5) == 7 ){ reg = fwphy_rddata(sc, 4); reg |= 1 << 6; fwphy_wrdata(sc, 4, reg); reg = fwphy_rddata(sc, 4); } return 0; } void fwohci_reset(struct fwohci_softc *sc, device_t dev) { int i, max_rec, speed; u_int32_t reg, reg2; struct fwohcidb_tr *db_tr; /* Disable interrupt */ OWRITE(sc, FWOHCI_INTMASKCLR, ~0); /* Now stopping all DMA channel */ OWRITE(sc, OHCI_ARQCTLCLR, OHCI_CNTL_DMA_RUN); OWRITE(sc, OHCI_ARSCTLCLR, OHCI_CNTL_DMA_RUN); OWRITE(sc, OHCI_ATQCTLCLR, OHCI_CNTL_DMA_RUN); OWRITE(sc, OHCI_ATSCTLCLR, OHCI_CNTL_DMA_RUN); OWRITE(sc, OHCI_IR_MASKCLR, ~0); for( i = 0 ; i < sc->fc.nisodma ; i ++ ){ OWRITE(sc, OHCI_IRCTLCLR(i), OHCI_CNTL_DMA_RUN); OWRITE(sc, OHCI_ITCTLCLR(i), OHCI_CNTL_DMA_RUN); } /* FLUSH FIFO and reset Transmitter/Reciever */ OWRITE(sc, OHCI_HCCCTL, OHCI_HCC_RESET); if (bootverbose) device_printf(dev, "resetting OHCI..."); i = 0; while(OREAD(sc, OHCI_HCCCTL) & OHCI_HCC_RESET) { if (i++ > 100) break; DELAY(1000); } if (bootverbose) printf("done (loop=%d)\n", i); /* Probe phy */ fwohci_probe_phy(sc, dev); /* Probe link */ reg = OREAD(sc, OHCI_BUS_OPT); reg2 = reg | OHCI_BUSFNC; max_rec = (reg & 0x0000f000) >> 12; speed = (reg & 0x00000007); device_printf(dev, "Link %s, max_rec %d bytes.\n", linkspeed[speed], MAXREC(max_rec)); /* XXX fix max_rec */ sc->fc.maxrec = sc->fc.speed + 8; if (max_rec != sc->fc.maxrec) { reg2 = (reg2 & 0xffff0fff) | (sc->fc.maxrec << 12); device_printf(dev, "max_rec %d -> %d\n", MAXREC(max_rec), MAXREC(sc->fc.maxrec)); } if (bootverbose) device_printf(dev, "BUS_OPT 0x%x -> 0x%x\n", reg, reg2); OWRITE(sc, OHCI_BUS_OPT, reg2); /* Initialize registers */ OWRITE(sc, OHCI_CROMHDR, sc->fc.config_rom[0]); OWRITE(sc, OHCI_CROMPTR, vtophys(&sc->fc.config_rom[0])); OWRITE(sc, OHCI_HCCCTLCLR, OHCI_HCC_BIGEND); OWRITE(sc, OHCI_HCCCTL, OHCI_HCC_POSTWR); OWRITE(sc, OHCI_SID_BUF, vtophys(sc->fc.sid_buf)); OWRITE(sc, OHCI_LNKCTL, OHCI_CNTL_SID); fw_busreset(&sc->fc); /* Enable link */ OWRITE(sc, OHCI_HCCCTL, OHCI_HCC_LINKEN); /* Force to start async RX DMA */ sc->arrq.xferq.flag &= ~FWXFERQ_RUNNING; sc->arrs.xferq.flag &= ~FWXFERQ_RUNNING; fwohci_rx_enable(sc, &sc->arrq); fwohci_rx_enable(sc, &sc->arrs); /* Initialize async TX */ OWRITE(sc, OHCI_ATQCTLCLR, OHCI_CNTL_DMA_RUN | OHCI_CNTL_DMA_DEAD); OWRITE(sc, OHCI_ATSCTLCLR, OHCI_CNTL_DMA_RUN | OHCI_CNTL_DMA_DEAD); /* AT Retries */ OWRITE(sc, FWOHCI_RETRY, /* CycleLimit PhyRespRetries ATRespRetries ATReqRetries */ (0xffff << 16 ) | (0x0f << 8) | (0x0f << 4) | 0x0f) ; for( i = 0, db_tr = sc->atrq.top; i < sc->atrq.ndb ; i ++, db_tr = STAILQ_NEXT(db_tr, link)){ db_tr->xfer = NULL; } for( i = 0, db_tr = sc->atrs.top; i < sc->atrs.ndb ; i ++, db_tr = STAILQ_NEXT(db_tr, link)){ db_tr->xfer = NULL; } /* Enable interrupt */ OWRITE(sc, FWOHCI_INTMASK, OHCI_INT_ERR | OHCI_INT_PHY_SID | OHCI_INT_DMA_ATRQ | OHCI_INT_DMA_ATRS | OHCI_INT_DMA_PRRQ | OHCI_INT_DMA_PRRS | OHCI_INT_PHY_BUS_R | OHCI_INT_PW_ERR); fwohci_set_intr(&sc->fc, 1); } int fwohci_init(struct fwohci_softc *sc, device_t dev) { int i; u_int32_t reg; u_int8_t ui[8]; reg = OREAD(sc, OHCI_VERSION); device_printf(dev, "OHCI version %x.%x (ROM=%d)\n", (reg>>16) & 0xff, reg & 0xff, (reg>>24) & 1); /* Available Isochrounous DMA channel probe */ OWRITE(sc, OHCI_IT_MASK, 0xffffffff); OWRITE(sc, OHCI_IR_MASK, 0xffffffff); reg = OREAD(sc, OHCI_IT_MASK) & OREAD(sc, OHCI_IR_MASK); OWRITE(sc, OHCI_IT_MASKCLR, 0xffffffff); OWRITE(sc, OHCI_IR_MASKCLR, 0xffffffff); for (i = 0; i < 0x20; i++) if ((reg & (1 << i)) == 0) break; sc->fc.nisodma = i; device_printf(dev, "No. of Isochronous channel is %d.\n", i); sc->fc.arq = &sc->arrq.xferq; sc->fc.ars = &sc->arrs.xferq; sc->fc.atq = &sc->atrq.xferq; sc->fc.ats = &sc->atrs.xferq; sc->arrq.xferq.start = NULL; sc->arrs.xferq.start = NULL; sc->atrq.xferq.start = fwohci_start_atq; sc->atrs.xferq.start = fwohci_start_ats; sc->arrq.xferq.drain = NULL; sc->arrs.xferq.drain = NULL; sc->atrq.xferq.drain = fwohci_drain_atq; sc->atrs.xferq.drain = fwohci_drain_ats; sc->arrq.ndesc = 1; sc->arrs.ndesc = 1; sc->atrq.ndesc = 6; /* equal to maximum of mbuf chains */ sc->atrs.ndesc = 6 / 2; sc->arrq.ndb = NDB; sc->arrs.ndb = NDB / 2; sc->atrq.ndb = NDB; sc->atrs.ndb = NDB / 2; sc->arrq.dummy = NULL; sc->arrs.dummy = NULL; sc->atrq.dummy = NULL; sc->atrs.dummy = NULL; for( i = 0 ; i < sc->fc.nisodma ; i ++ ){ sc->fc.it[i] = &sc->it[i].xferq; sc->fc.ir[i] = &sc->ir[i].xferq; sc->it[i].ndb = 0; sc->ir[i].ndb = 0; } sc->fc.tcode = tinfo; sc->cromptr = (u_int32_t *) malloc(CROMSIZE * 2, M_FW, M_NOWAIT); if(sc->cromptr == NULL){ device_printf(dev, "cromptr alloc failed."); return ENOMEM; } sc->fc.dev = dev; sc->fc.config_rom = &(sc->cromptr[CROMSIZE/4]); sc->fc.config_rom[1] = 0x31333934; sc->fc.config_rom[2] = 0xf000a002; sc->fc.config_rom[3] = OREAD(sc, OHCI_EUID_HI); sc->fc.config_rom[4] = OREAD(sc, OHCI_EUID_LO); sc->fc.config_rom[5] = 0; sc->fc.config_rom[0] = (4 << 24) | (5 << 16); sc->fc.config_rom[0] |= fw_crc16(&sc->fc.config_rom[1], 5*4); /* SID recieve buffer must allign 2^11 */ #define OHCI_SIDSIZE (1 << 11) sc->fc.sid_buf = (u_int32_t *) malloc(OHCI_SIDSIZE, M_FW, M_NOWAIT); if (sc->fc.sid_buf == NULL) { device_printf(dev, "sid_buf alloc failed.\n"); return ENOMEM; } if (((vm_offset_t) sc->fc.sid_buf & (OHCI_SIDSIZE - 1)) != 0) { device_printf(dev, "sid_buf(%p) not aligned.\n", sc->fc.sid_buf); return ENOMEM; } fwohci_db_init(&sc->arrq); if ((sc->arrq.flags & FWOHCI_DBCH_INIT) == 0) return ENOMEM; fwohci_db_init(&sc->arrs); if ((sc->arrs.flags & FWOHCI_DBCH_INIT) == 0) return ENOMEM; fwohci_db_init(&sc->atrq); if ((sc->atrq.flags & FWOHCI_DBCH_INIT) == 0) return ENOMEM; fwohci_db_init(&sc->atrs); if ((sc->atrs.flags & FWOHCI_DBCH_INIT) == 0) return ENOMEM; sc->fc.eui.hi = OREAD(sc, FWOHCIGUID_H); sc->fc.eui.lo = OREAD(sc, FWOHCIGUID_L); for( i = 0 ; i < 8 ; i ++) ui[i] = FW_EUI64_BYTE(&sc->fc.eui,i); device_printf(dev, "EUI64 %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n", ui[0], ui[1], ui[2], ui[3], ui[4], ui[5], ui[6], ui[7]); sc->fc.ioctl = fwohci_ioctl; sc->fc.cyctimer = fwohci_cyctimer; sc->fc.set_bmr = fwohci_set_bus_manager; sc->fc.ibr = fwohci_ibr; sc->fc.irx_enable = fwohci_irx_enable; sc->fc.irx_disable = fwohci_irx_disable; sc->fc.itx_enable = fwohci_itxbuf_enable; sc->fc.itx_disable = fwohci_itx_disable; sc->fc.irx_post = fwohci_irx_post; sc->fc.itx_post = NULL; sc->fc.timeout = fwohci_timeout; sc->fc.poll = fwohci_poll; sc->fc.set_intr = fwohci_set_intr; fw_init(&sc->fc); fwohci_reset(sc, dev); return 0; } void fwohci_timeout(void *arg) { struct fwohci_softc *sc; sc = (struct fwohci_softc *)arg; callout_reset(&sc->fc.timeout_callout, FW_XFERTIMEOUT * hz * 10, (void *)fwohci_timeout, (void *)sc); } u_int32_t fwohci_cyctimer(struct firewire_comm *fc) { struct fwohci_softc *sc = (struct fwohci_softc *)fc; return(OREAD(sc, OHCI_CYCLETIMER)); } int fwohci_detach(struct fwohci_softc *sc, device_t dev) { int i; if (sc->fc.sid_buf != NULL) free((void *)(uintptr_t)sc->fc.sid_buf, M_FW); if (sc->cromptr != NULL) free((void *)sc->cromptr, M_FW); fwohci_db_free(&sc->arrq); fwohci_db_free(&sc->arrs); fwohci_db_free(&sc->atrq); fwohci_db_free(&sc->atrs); for( i = 0 ; i < sc->fc.nisodma ; i ++ ){ fwohci_db_free(&sc->it[i]); fwohci_db_free(&sc->ir[i]); } return 0; } #define LAST_DB(dbtr, db) do { \ struct fwohcidb_tr *_dbtr = (dbtr); \ int _cnt = _dbtr->dbcnt; \ db = &_dbtr->db[ (_cnt > 2) ? (_cnt -1) : 0]; \ } while (0) static void fwohci_start(struct fwohci_softc *sc, struct fwohci_dbch *dbch) { int i, s; int tcode, hdr_len, hdr_off, len; int fsegment = -1; u_int32_t off; struct fw_xfer *xfer; struct fw_pkt *fp; volatile struct fwohci_txpkthdr *ohcifp; struct fwohcidb_tr *db_tr; volatile struct fwohcidb *db; struct mbuf *m; struct tcode_info *info; static int maxdesc=0; if(&sc->atrq == dbch){ off = OHCI_ATQOFF; }else if(&sc->atrs == dbch){ off = OHCI_ATSOFF; }else{ return; } if (dbch->flags & FWOHCI_DBCH_FULL) return; s = splfw(); db_tr = dbch->top; txloop: xfer = STAILQ_FIRST(&dbch->xferq.q); if(xfer == NULL){ goto kick; } if(dbch->xferq.queued == 0 ){ device_printf(sc->fc.dev, "TX queue empty\n"); } STAILQ_REMOVE_HEAD(&dbch->xferq.q, link); db_tr->xfer = xfer; xfer->state = FWXF_START; dbch->xferq.packets++; fp = (struct fw_pkt *)(xfer->send.buf + xfer->send.off); tcode = fp->mode.common.tcode; ohcifp = (volatile struct fwohci_txpkthdr *) db_tr->db[1].db.immed; info = &tinfo[tcode]; hdr_len = hdr_off = info->hdr_len; /* fw_asyreq must pass valid send.len */ len = xfer->send.len; for( i = 0 ; i < hdr_off ; i+= 4){ ohcifp->mode.ld[i/4] = ntohl(fp->mode.ld[i/4]); } ohcifp->mode.common.spd = xfer->spd; if (tcode == FWTCODE_STREAM ){ hdr_len = 8; ohcifp->mode.stream.len = ntohs(fp->mode.stream.len); } else if (tcode == FWTCODE_PHY) { hdr_len = 12; ohcifp->mode.ld[1] = ntohl(fp->mode.ld[1]); ohcifp->mode.ld[2] = ntohl(fp->mode.ld[2]); ohcifp->mode.common.spd = 0; ohcifp->mode.common.tcode = FWOHCITCODE_PHY; } else { ohcifp->mode.asycomm.dst = ntohs(fp->mode.hdr.dst); ohcifp->mode.asycomm.srcbus = OHCI_ASYSRCBUS; ohcifp->mode.asycomm.tlrt |= FWRETRY_X; } db = &db_tr->db[0]; db->db.desc.control = OHCI_OUTPUT_MORE | OHCI_KEY_ST2; db->db.desc.reqcount = hdr_len; db->db.desc.status = 0; /* Specify bound timer of asy. responce */ if(&sc->atrs == dbch){ db->db.desc.count = (OREAD(sc, OHCI_CYCLETIMER) >> 12) + (1 << 13); } db_tr->dbcnt = 2; db = &db_tr->db[db_tr->dbcnt]; if(len > hdr_off){ if (xfer->mbuf == NULL) { db->db.desc.addr = vtophys(xfer->send.buf + xfer->send.off) + hdr_off; db->db.desc.control = OHCI_OUTPUT_MORE; db->db.desc.reqcount = len - hdr_off; db->db.desc.status = 0; db_tr->dbcnt++; } else { int mchain=0; /* XXX we assume mbuf chain is shorter than ndesc */ for (m = xfer->mbuf; m != NULL; m = m->m_next) { if (m->m_len == 0) /* unrecoverable error could occur. */ continue; mchain++; if (db_tr->dbcnt >= dbch->ndesc) continue; db->db.desc.addr = vtophys(mtod(m, caddr_t)); db->db.desc.control = OHCI_OUTPUT_MORE; db->db.desc.reqcount = m->m_len; db->db.desc.status = 0; db++; db_tr->dbcnt++; } if (mchain > dbch->ndesc - 2) device_printf(sc->fc.dev, "dbch->ndesc(%d) is too small for" " mbuf chain(%d), trancated.\n", dbch->ndesc, mchain); } } if (maxdesc < db_tr->dbcnt) { maxdesc = db_tr->dbcnt; if (bootverbose) device_printf(sc->fc.dev, "maxdesc: %d\n", maxdesc); } /* last db */ LAST_DB(db_tr, db); db->db.desc.control |= OHCI_OUTPUT_LAST | OHCI_INTERRUPT_ALWAYS | OHCI_BRANCH_ALWAYS; db->db.desc.depend = vtophys(STAILQ_NEXT(db_tr, link)->db); if(fsegment == -1 ) fsegment = db_tr->dbcnt; if (dbch->pdb_tr != NULL) { LAST_DB(dbch->pdb_tr, db); db->db.desc.depend |= db_tr->dbcnt; } dbch->pdb_tr = db_tr; db_tr = STAILQ_NEXT(db_tr, link); if(db_tr != dbch->bottom){ goto txloop; } else { device_printf(sc->fc.dev, "fwohci_start: lack of db_trq\n"); dbch->flags |= FWOHCI_DBCH_FULL; } kick: /* kick asy q */ if(dbch->xferq.flag & FWXFERQ_RUNNING) { OWRITE(sc, OHCI_DMACTL(off), OHCI_CNTL_DMA_WAKE); } else { if (bootverbose) device_printf(sc->fc.dev, "start AT DMA status=%x\n", OREAD(sc, OHCI_DMACTL(off))); OWRITE(sc, OHCI_DMACMD(off), vtophys(dbch->top->db) | fsegment); OWRITE(sc, OHCI_DMACTL(off), OHCI_CNTL_DMA_RUN); dbch->xferq.flag |= FWXFERQ_RUNNING; } dbch->top = db_tr; splx(s); return; } static void fwohci_drain_atq(struct firewire_comm *fc, struct fw_xfer *xfer) { struct fwohci_softc *sc = (struct fwohci_softc *)fc; fwohci_drain(&sc->fc, xfer, &(sc->atrq)); return; } static void fwohci_drain_ats(struct firewire_comm *fc, struct fw_xfer *xfer) { struct fwohci_softc *sc = (struct fwohci_softc *)fc; fwohci_drain(&sc->fc, xfer, &(sc->atrs)); return; } static void fwohci_start_atq(struct firewire_comm *fc) { struct fwohci_softc *sc = (struct fwohci_softc *)fc; fwohci_start( sc, &(sc->atrq)); return; } static void fwohci_start_ats(struct firewire_comm *fc) { struct fwohci_softc *sc = (struct fwohci_softc *)fc; fwohci_start( sc, &(sc->atrs)); return; } void fwohci_txd(struct fwohci_softc *sc, struct fwohci_dbch *dbch) { int s, err = 0; struct fwohcidb_tr *tr; volatile struct fwohcidb *db; struct fw_xfer *xfer; u_int32_t off; u_int stat; int packets; struct firewire_comm *fc = (struct firewire_comm *)sc; if(&sc->atrq == dbch){ off = OHCI_ATQOFF; }else if(&sc->atrs == dbch){ off = OHCI_ATSOFF; }else{ return; } s = splfw(); tr = dbch->bottom; packets = 0; while(dbch->xferq.queued > 0){ LAST_DB(tr, db); if(!(db->db.desc.status & OHCI_CNTL_DMA_ACTIVE)){ if (fc->status != FWBUSRESET) /* maybe out of order?? */ goto out; } if(db->db.desc.status & OHCI_CNTL_DMA_DEAD) { #ifdef OHCI_DEBUG dump_dma(sc, ch); dump_db(sc, ch); #endif /* Stop DMA */ OWRITE(sc, OHCI_DMACTLCLR(off), OHCI_CNTL_DMA_RUN); device_printf(sc->fc.dev, "force reset AT FIFO\n"); OWRITE(sc, OHCI_HCCCTLCLR, OHCI_HCC_LINKEN); OWRITE(sc, OHCI_HCCCTL, OHCI_HCC_LPS | OHCI_HCC_LINKEN); OWRITE(sc, OHCI_DMACTLCLR(off), OHCI_CNTL_DMA_RUN); } stat = db->db.desc.status & FWOHCIEV_MASK; switch(stat){ case FWOHCIEV_ACKCOMPL: case FWOHCIEV_ACKPEND: err = 0; break; case FWOHCIEV_ACKBSA: case FWOHCIEV_ACKBSB: device_printf(sc->fc.dev, "txd err=%2x %s\n", stat, fwohcicode[stat]); case FWOHCIEV_ACKBSX: err = EBUSY; break; case FWOHCIEV_FLUSHED: case FWOHCIEV_ACKTARD: device_printf(sc->fc.dev, "txd err=%2x %s\n", stat, fwohcicode[stat]); err = EAGAIN; break; case FWOHCIEV_MISSACK: case FWOHCIEV_UNDRRUN: case FWOHCIEV_OVRRUN: case FWOHCIEV_DESCERR: case FWOHCIEV_DTRDERR: case FWOHCIEV_TIMEOUT: case FWOHCIEV_TCODERR: case FWOHCIEV_UNKNOWN: case FWOHCIEV_ACKDERR: case FWOHCIEV_ACKTERR: default: device_printf(sc->fc.dev, "txd err=%2x %s\n", stat, fwohcicode[stat]); err = EINVAL; break; } if(tr->xfer != NULL){ xfer = tr->xfer; xfer->state = FWXF_SENT; if(err == EBUSY && fc->status != FWBUSRESET){ xfer->state = FWXF_BUSY; switch(xfer->act_type){ case FWACT_XFER: xfer->resp = err; if(xfer->retry_req != NULL){ xfer->retry_req(xfer); } break; default: break; } } else if( stat != FWOHCIEV_ACKPEND){ if (stat != FWOHCIEV_ACKCOMPL) xfer->state = FWXF_SENTERR; xfer->resp = err; switch(xfer->act_type){ case FWACT_XFER: fw_xfer_done(xfer); break; default: break; } } } dbch->xferq.queued --; tr->xfer = NULL; packets ++; tr = STAILQ_NEXT(tr, link); dbch->bottom = tr; } out: if ((dbch->flags & FWOHCI_DBCH_FULL) && packets > 0) { printf("make free slot\n"); dbch->flags &= ~FWOHCI_DBCH_FULL; fwohci_start(sc, dbch); } splx(s); } static void fwohci_drain(struct firewire_comm *fc, struct fw_xfer *xfer, struct fwohci_dbch *dbch) { int i, s, found=0; struct fwohcidb_tr *tr; if(xfer->state != FWXF_START) return; s = splfw(); tr = dbch->bottom; for (i = 0; i < dbch->xferq.queued; i ++) { if(tr->xfer == xfer){ tr->xfer = NULL; #if 0 dbch->xferq.queued --; /* XXX */ if (tr == dbch->bottom) dbch->bottom = STAILQ_NEXT(tr, link); if (dbch->flags & FWOHCI_DBCH_FULL) { printf("fwohci_drain: make slot\n"); dbch->flags &= ~FWOHCI_DBCH_FULL; fwohci_start((struct fwohci_softc *)fc, dbch); } #endif found ++; break; } tr = STAILQ_NEXT(tr, link); } splx(s); if (!found) device_printf(fc->dev, "fwochi_drain: xfer not found\n"); return; } static void fwohci_db_free(struct fwohci_dbch *dbch) { struct fwohcidb_tr *db_tr; int idb, i; if ((dbch->flags & FWOHCI_DBCH_INIT) == 0) return; if(!(dbch->xferq.flag & FWXFERQ_EXTBUF)){ for(db_tr = STAILQ_FIRST(&dbch->db_trq), idb = 0; idb < dbch->ndb; db_tr = STAILQ_NEXT(db_tr, link), idb++){ if (db_tr->buf != NULL) { free(db_tr->buf, M_FW); db_tr->buf = NULL; } } } dbch->ndb = 0; db_tr = STAILQ_FIRST(&dbch->db_trq); for (i = 0; i < dbch->npages; i++) free(dbch->pages[i], M_FW); free(db_tr, M_FW); STAILQ_INIT(&dbch->db_trq); dbch->flags &= ~FWOHCI_DBCH_INIT; } static void fwohci_db_init(struct fwohci_dbch *dbch) { int idb; struct fwohcidb_tr *db_tr; int ndbpp, i, j; if ((dbch->flags & FWOHCI_DBCH_INIT) != 0) goto out; /* allocate DB entries and attach one to each DMA channels */ /* DB entry must start at 16 bytes bounary. */ STAILQ_INIT(&dbch->db_trq); db_tr = (struct fwohcidb_tr *) malloc(sizeof(struct fwohcidb_tr) * dbch->ndb, M_FW, M_ZERO); if(db_tr == NULL){ printf("fwohci_db_init: malloc(1) failed\n"); return; } ndbpp = PAGE_SIZE / (sizeof(struct fwohcidb) * dbch->ndesc); dbch->npages = (dbch->ndb + ndbpp - 1)/ ndbpp; if (firewire_debug) printf("ndesc: %d, ndbpp: %d, ndb: %d, npages: %d\n", dbch->ndesc, ndbpp, dbch->ndb, dbch->npages); if (dbch->npages > FWOHCI_DBCH_MAX_PAGES) { printf("npages(%d) > DBCH_MAX_PAGES(%d)\n", dbch->npages, FWOHCI_DBCH_MAX_PAGES); return; } for (i = 0; i < dbch->npages; i++) { dbch->pages[i] = malloc(PAGE_SIZE, M_FW, M_ZERO); if (dbch->pages[i] == NULL) { printf("fwohci_db_init: malloc(2) failed\n"); for (j = 0; j < i; j ++) free(dbch->pages[j], M_FW); free(db_tr, M_FW); return; } } /* Attach DB to DMA ch. */ for(idb = 0 ; idb < dbch->ndb ; idb++){ db_tr->dbcnt = 0; db_tr->db = (struct fwohcidb *)dbch->pages[idb/ndbpp] + dbch->ndesc * (idb % ndbpp); STAILQ_INSERT_TAIL(&dbch->db_trq, db_tr, link); if (!(dbch->xferq.flag & FWXFERQ_PACKET) && dbch->xferq.bnpacket != 0) { if (idb % dbch->xferq.bnpacket == 0) dbch->xferq.bulkxfer[idb / dbch->xferq.bnpacket ].start = (caddr_t)db_tr; if ((idb + 1) % dbch->xferq.bnpacket == 0) dbch->xferq.bulkxfer[idb / dbch->xferq.bnpacket ].end = (caddr_t)db_tr; } db_tr++; } STAILQ_LAST(&dbch->db_trq, fwohcidb_tr,link)->link.stqe_next = STAILQ_FIRST(&dbch->db_trq); out: dbch->frag.buf = NULL; dbch->frag.len = 0; dbch->frag.plen = 0; dbch->xferq.queued = 0; dbch->pdb_tr = NULL; dbch->top = STAILQ_FIRST(&dbch->db_trq); dbch->bottom = dbch->top; dbch->flags = FWOHCI_DBCH_INIT; } static int fwohci_itx_disable(struct firewire_comm *fc, int dmach) { struct fwohci_softc *sc = (struct fwohci_softc *)fc; int dummy; OWRITE(sc, OHCI_ITCTLCLR(dmach), OHCI_CNTL_DMA_RUN); OWRITE(sc, OHCI_IT_MASKCLR, 1 << dmach); OWRITE(sc, OHCI_IT_STATCLR, 1 << dmach); /* XXX we cannot free buffers until the DMA really stops */ tsleep((void *)&dummy, FWPRI, "fwitxd", hz); fwohci_db_free(&sc->it[dmach]); sc->it[dmach].xferq.flag &= ~FWXFERQ_RUNNING; return 0; } static int fwohci_irx_disable(struct firewire_comm *fc, int dmach) { struct fwohci_softc *sc = (struct fwohci_softc *)fc; int dummy; OWRITE(sc, OHCI_IRCTLCLR(dmach), OHCI_CNTL_DMA_RUN); OWRITE(sc, OHCI_IR_MASKCLR, 1 << dmach); OWRITE(sc, OHCI_IR_STATCLR, 1 << dmach); /* XXX we cannot free buffers until the DMA really stops */ tsleep((void *)&dummy, FWPRI, "fwirxd", hz); if(sc->ir[dmach].dummy != NULL){ free(sc->ir[dmach].dummy, M_FW); } sc->ir[dmach].dummy = NULL; fwohci_db_free(&sc->ir[dmach]); sc->ir[dmach].xferq.flag &= ~FWXFERQ_RUNNING; return 0; } static void fwohci_irx_post (struct firewire_comm *fc , u_int32_t *qld) { qld[0] = ntohl(qld[0]); return; } static int fwohci_irxpp_enable(struct firewire_comm *fc, int dmach) { struct fwohci_softc *sc = (struct fwohci_softc *)fc; int err = 0; unsigned short tag, ich; tag = (sc->ir[dmach].xferq.flag >> 6) & 3; ich = sc->ir[dmach].xferq.flag & 0x3f; #if 0 if(STAILQ_FIRST(&fc->ir[dmach]->q) != NULL){ wakeup(fc->ir[dmach]); return err; } #endif OWRITE(sc, OHCI_IRMATCH(dmach), tagbit[tag] | ich); if(!(sc->ir[dmach].xferq.flag & FWXFERQ_RUNNING)){ sc->ir[dmach].xferq.queued = 0; sc->ir[dmach].ndb = NDB; sc->ir[dmach].xferq.psize = PAGE_SIZE; sc->ir[dmach].ndesc = 1; fwohci_db_init(&sc->ir[dmach]); if ((sc->ir[dmach].flags & FWOHCI_DBCH_INIT) == 0) return ENOMEM; err = fwohci_rx_enable(sc, &sc->ir[dmach]); } if(err){ device_printf(sc->fc.dev, "err in IRX setting\n"); return err; } if(!(OREAD(sc, OHCI_IRCTL(dmach)) & OHCI_CNTL_DMA_ACTIVE)){ OWRITE(sc, OHCI_IRCTLCLR(dmach), OHCI_CNTL_DMA_RUN); OWRITE(sc, OHCI_IR_MASKCLR, 1 << dmach); OWRITE(sc, OHCI_IR_STATCLR, 1 << dmach); OWRITE(sc, OHCI_IR_MASK, 1 << dmach); OWRITE(sc, OHCI_IRCTLCLR(dmach), 0xf8000000); OWRITE(sc, OHCI_IRCTL(dmach), OHCI_CNTL_ISOHDR); OWRITE(sc, OHCI_IRCMD(dmach), vtophys(sc->ir[dmach].top->db) | 1); OWRITE(sc, OHCI_IRCTL(dmach), OHCI_CNTL_DMA_RUN); OWRITE(sc, FWOHCI_INTMASK, OHCI_INT_DMA_IR); } return err; } static int fwohci_tx_enable(struct fwohci_softc *sc, struct fwohci_dbch *dbch) { int err = 0; int idb, z, i, dmach = 0; u_int32_t off = NULL; struct fwohcidb_tr *db_tr; volatile struct fwohcidb *db; if(!(dbch->xferq.flag & FWXFERQ_EXTBUF)){ err = EINVAL; return err; } z = dbch->ndesc; for(dmach = 0 ; dmach < sc->fc.nisodma ; dmach++){ if( &sc->it[dmach] == dbch){ off = OHCI_ITOFF(dmach); break; } } if(off == NULL){ err = EINVAL; return err; } if(dbch->xferq.flag & FWXFERQ_RUNNING) return err; dbch->xferq.flag |= FWXFERQ_RUNNING; for( i = 0, dbch->bottom = dbch->top; i < (dbch->ndb - 1); i++){ dbch->bottom = STAILQ_NEXT(dbch->bottom, link); } db_tr = dbch->top; for( idb = 0 ; idb < dbch->ndb ; idb ++){ fwohci_add_tx_buf(db_tr, dbch->xferq.psize, dbch->xferq.flag, dbch->xferq.buf + dbch->xferq.psize * idb); if(STAILQ_NEXT(db_tr, link) == NULL){ break; } db = db_tr->db; db[0].db.desc.depend = db[db_tr->dbcnt - 1].db.desc.depend = vtophys(STAILQ_NEXT(db_tr, link)->db) | z; if(dbch->xferq.flag & FWXFERQ_EXTBUF){ if(((idb + 1 ) % dbch->xferq.bnpacket) == 0){ db[db_tr->dbcnt - 1].db.desc.control |= OHCI_INTERRUPT_ALWAYS; /* OHCI 1.1 and above */ db[0].db.desc.control |= OHCI_INTERRUPT_ALWAYS; #if 0 db[0].db.desc.depend &= ~0xf; db[db_tr->dbcnt - 1].db.desc.depend &= ~0xf; #endif } } db_tr = STAILQ_NEXT(db_tr, link); } dbch->bottom->db[db_tr->dbcnt - 1].db.desc.depend &= 0xfffffff0; return err; } static int fwohci_rx_enable(struct fwohci_softc *sc, struct fwohci_dbch *dbch) { int err = 0; int idb, z, i, dmach = 0, ldesc; u_int32_t off = NULL; struct fwohcidb_tr *db_tr; volatile struct fwohcidb *db; z = dbch->ndesc; if(&sc->arrq == dbch){ off = OHCI_ARQOFF; }else if(&sc->arrs == dbch){ off = OHCI_ARSOFF; }else{ for(dmach = 0 ; dmach < sc->fc.nisodma ; dmach++){ if( &sc->ir[dmach] == dbch){ off = OHCI_IROFF(dmach); break; } } } if(off == NULL){ err = EINVAL; return err; } if(dbch->xferq.flag & FWXFERQ_STREAM){ if(dbch->xferq.flag & FWXFERQ_RUNNING) return err; }else{ if(dbch->xferq.flag & FWXFERQ_RUNNING){ err = EBUSY; return err; } } dbch->xferq.flag |= FWXFERQ_RUNNING; dbch->top = STAILQ_FIRST(&dbch->db_trq); for( i = 0, dbch->bottom = dbch->top; i < (dbch->ndb - 1); i++){ dbch->bottom = STAILQ_NEXT(dbch->bottom, link); } db_tr = dbch->top; for( idb = 0 ; idb < dbch->ndb ; idb ++){ if(!(dbch->xferq.flag & FWXFERQ_EXTBUF)){ fwohci_add_rx_buf(db_tr, dbch->xferq.psize, dbch->xferq.flag, 0, NULL); }else{ fwohci_add_rx_buf(db_tr, dbch->xferq.psize, dbch->xferq.flag, dbch->xferq.buf + dbch->xferq.psize * idb, dbch->dummy + sizeof(u_int32_t) * idb); } if(STAILQ_NEXT(db_tr, link) == NULL){ break; } db = db_tr->db; ldesc = db_tr->dbcnt - 1; db[ldesc].db.desc.depend = vtophys(STAILQ_NEXT(db_tr, link)->db) | z; if(dbch->xferq.flag & FWXFERQ_EXTBUF){ if(((idb + 1 ) % dbch->xferq.bnpacket) == 0){ db[ldesc].db.desc.control |= OHCI_INTERRUPT_ALWAYS; db[ldesc].db.desc.depend &= ~0xf; } } db_tr = STAILQ_NEXT(db_tr, link); } dbch->bottom->db[db_tr->dbcnt - 1].db.desc.depend &= 0xfffffff0; dbch->buf_offset = 0; if(dbch->xferq.flag & FWXFERQ_STREAM){ return err; }else{ OWRITE(sc, OHCI_DMACMD(off), vtophys(dbch->top->db) | z); } OWRITE(sc, OHCI_DMACTL(off), OHCI_CNTL_DMA_RUN); return err; } static int fwochi_next_cycle(struct firewire_comm *fc, int cycle_now) { int sec, cycle, cycle_match; cycle = cycle_now & 0x1fff; sec = cycle_now >> 13; #define CYCLE_MOD 0x10 #define CYCLE_DELAY 8 /* min delay to start DMA */ cycle = cycle + CYCLE_DELAY; if (cycle >= 8000) { sec ++; cycle -= 8000; } cycle = ((cycle + CYCLE_MOD - 1) / CYCLE_MOD) * CYCLE_MOD; if (cycle >= 8000) { sec ++; if (cycle == 8000) cycle = 0; else cycle = CYCLE_MOD; } cycle_match = ((sec << 13) | cycle) & 0x7ffff; return(cycle_match); } static int fwohci_itxbuf_enable(struct firewire_comm *fc, int dmach) { struct fwohci_softc *sc = (struct fwohci_softc *)fc; int err = 0; unsigned short tag, ich; struct fwohci_dbch *dbch; int cycle_match, cycle_now, s, ldesc; u_int32_t stat; struct fw_bulkxfer *first, *chunk, *prev; struct fw_xferq *it; dbch = &sc->it[dmach]; it = &dbch->xferq; tag = (it->flag >> 6) & 3; ich = it->flag & 0x3f; if ((dbch->flags & FWOHCI_DBCH_INIT) == 0) { dbch->ndb = it->bnpacket * it->bnchunk; dbch->ndesc = 3; fwohci_db_init(dbch); if ((dbch->flags & FWOHCI_DBCH_INIT) == 0) return ENOMEM; err = fwohci_tx_enable(sc, dbch); } if(err) return err; ldesc = dbch->ndesc - 1; s = splfw(); prev = STAILQ_LAST(&it->stdma, fw_bulkxfer, link); while ((chunk = STAILQ_FIRST(&it->stvalid)) != NULL) { volatile struct fwohcidb *db; fwohci_txbufdb(sc, dmach, chunk); #if 0 db = ((struct fwohcidb_tr *)(chunk->end))->db; db[ldesc].db.desc.status = db[0].db.desc.status = 0; db[ldesc].db.desc.count = db[0].db.desc.count = 0; db[ldesc].db.desc.depend &= ~0xf; db[0].db.desc.depend &= ~0xf; #endif if (prev != NULL) { db = ((struct fwohcidb_tr *)(prev->end))->db; db[ldesc].db.desc.control |= OHCI_BRANCH_ALWAYS; #if 0 /* if bulkxfer->npacket changes */ db[ldesc].db.desc.depend = db[0].db.desc.depend = vtophys(((struct fwohcidb_tr *) (chunk->start))->db) | dbch->ndesc; #else db[0].db.desc.depend |= dbch->ndesc; db[ldesc].db.desc.depend |= dbch->ndesc; #endif } STAILQ_REMOVE_HEAD(&it->stvalid, link); STAILQ_INSERT_TAIL(&it->stdma, chunk, link); prev = chunk; } splx(s); stat = OREAD(sc, OHCI_ITCTL(dmach)); if (stat & (OHCI_CNTL_DMA_ACTIVE | OHCI_CNTL_CYCMATCH_S)) return 0; OWRITE(sc, OHCI_ITCTLCLR(dmach), OHCI_CNTL_DMA_RUN); OWRITE(sc, OHCI_IT_MASKCLR, 1 << dmach); OWRITE(sc, OHCI_IT_STATCLR, 1 << dmach); OWRITE(sc, OHCI_IT_MASK, 1 << dmach); first = STAILQ_FIRST(&it->stdma); OWRITE(sc, OHCI_ITCMD(dmach), vtophys(((struct fwohcidb_tr *) (first->start))->db) | dbch->ndesc); if (firewire_debug) printf("fwohci_itxbuf_enable: kick 0x%08x\n", stat); if ((stat & OHCI_CNTL_DMA_RUN) == 0) { #if 1 /* Don't start until all chunks are buffered */ if (STAILQ_FIRST(&it->stfree) != NULL) goto out; #endif #ifdef FWXFERQ_DV #define CYCLE_OFFSET 1 if(dbch->xferq.flag & FWXFERQ_DV){ struct fw_pkt *fp; struct fwohcidb_tr *db_tr; db_tr = (struct fwohcidb_tr *)dbch->xferq.stdma->start; fp = (struct fw_pkt *)db_tr->buf; dbch->xferq.dvoffset = CYCLE_OFFSET; fp->mode.ld[2] |= htonl(dbch->xferq.dvoffset << 12); } #endif /* Clear cycle match counter bits */ OWRITE(sc, OHCI_ITCTLCLR(dmach), 0xffff0000); OWRITE(sc, FWOHCI_INTMASK, OHCI_INT_DMA_IT); /* 2bit second + 13bit cycle */ cycle_now = (fc->cyctimer(fc) >> 12) & 0x7fff; cycle_match = fwochi_next_cycle(fc, cycle_now); OWRITE(sc, OHCI_ITCTL(dmach), OHCI_CNTL_CYCMATCH_S | (cycle_match << 16) | OHCI_CNTL_DMA_RUN); if (firewire_debug) printf("cycle_match: 0x%04x->0x%04x\n", cycle_now, cycle_match); } else if ((stat & OHCI_CNTL_CYCMATCH_S) == 0) { device_printf(sc->fc.dev, "IT DMA underrun (0x%08x)\n", stat); OWRITE(sc, OHCI_ITCTL(dmach), OHCI_CNTL_DMA_RUN); } out: return err; } static int fwohci_irxbuf_enable(struct firewire_comm *fc, int dmach) { struct fwohci_softc *sc = (struct fwohci_softc *)fc; int err = 0, s, ldesc; unsigned short tag, ich; u_int32_t stat; struct fwohci_dbch *dbch; struct fw_bulkxfer *first, *prev, *chunk; struct fw_xferq *ir; dbch = &sc->ir[dmach]; ir = &dbch->xferq; ldesc = dbch->ndesc - 1; if ((ir->flag & FWXFERQ_RUNNING) == 0) { tag = (ir->flag >> 6) & 3; ich = ir->flag & 0x3f; OWRITE(sc, OHCI_IRMATCH(dmach), tagbit[tag] | ich); ir->queued = 0; dbch->ndb = ir->bnpacket * ir->bnchunk; dbch->dummy = malloc(sizeof(u_int32_t) * dbch->ndb, M_FW, 0); if (dbch->dummy == NULL) { err = ENOMEM; return err; } dbch->ndesc = 2; fwohci_db_init(dbch); if ((dbch->flags & FWOHCI_DBCH_INIT) == 0) return ENOMEM; err = fwohci_rx_enable(sc, dbch); } if(err) return err; s = splfw(); first = STAILQ_FIRST(&ir->stfree); if (first == NULL) { device_printf(fc->dev, "IR DMA no free chunk\n"); splx(s); return 0; } prev = STAILQ_LAST(&ir->stdma, fw_bulkxfer, link); while ((chunk = STAILQ_FIRST(&ir->stfree)) != NULL) { volatile struct fwohcidb *db; db = ((struct fwohcidb_tr *)(chunk->end))->db; db[ldesc].db.desc.status = db[ldesc].db.desc.count = 0; db[ldesc].db.desc.depend &= ~0xf; if (prev != NULL) { db = ((struct fwohcidb_tr *)(prev->end))->db; #if 0 db[ldesc].db.desc.depend = vtophys(((struct fwohcidb_tr *) (chunk->start))->db) | dbch->ndesc; #else db[ldesc].db.desc.depend |= dbch->ndesc; #endif } STAILQ_REMOVE_HEAD(&ir->stfree, link); STAILQ_INSERT_TAIL(&ir->stdma, chunk, link); prev = chunk; } splx(s); stat = OREAD(sc, OHCI_IRCTL(dmach)); if (stat & OHCI_CNTL_DMA_ACTIVE) return 0; if (stat & OHCI_CNTL_DMA_RUN) { OWRITE(sc, OHCI_IRCTLCLR(dmach), OHCI_CNTL_DMA_RUN); device_printf(sc->fc.dev, "IR DMA overrun (0x%08x)\n", stat); } OWRITE(sc, OHCI_IR_MASKCLR, 1 << dmach); OWRITE(sc, OHCI_IR_STATCLR, 1 << dmach); OWRITE(sc, OHCI_IR_MASK, 1 << dmach); OWRITE(sc, OHCI_IRCTLCLR(dmach), 0xf0000000); OWRITE(sc, OHCI_IRCTL(dmach), OHCI_CNTL_ISOHDR); OWRITE(sc, OHCI_IRCMD(dmach), vtophys(((struct fwohcidb_tr *)(first->start))->db) | dbch->ndesc); OWRITE(sc, OHCI_IRCTL(dmach), OHCI_CNTL_DMA_RUN); OWRITE(sc, FWOHCI_INTMASK, OHCI_INT_DMA_IR); return err; } static int fwohci_irx_enable(struct firewire_comm *fc, int dmach) { struct fwohci_softc *sc = (struct fwohci_softc *)fc; int err = 0; if(sc->ir[dmach].xferq.flag & FWXFERQ_PACKET){ err = fwohci_irxpp_enable(fc, dmach); return err; }else{ err = fwohci_irxbuf_enable(fc, dmach); return err; } } int fwohci_stop(struct fwohci_softc *sc, device_t dev) { u_int i; /* Now stopping all DMA channel */ OWRITE(sc, OHCI_ARQCTLCLR, OHCI_CNTL_DMA_RUN); OWRITE(sc, OHCI_ARSCTLCLR, OHCI_CNTL_DMA_RUN); OWRITE(sc, OHCI_ATQCTLCLR, OHCI_CNTL_DMA_RUN); OWRITE(sc, OHCI_ATSCTLCLR, OHCI_CNTL_DMA_RUN); for( i = 0 ; i < sc->fc.nisodma ; i ++ ){ OWRITE(sc, OHCI_IRCTLCLR(i), OHCI_CNTL_DMA_RUN); OWRITE(sc, OHCI_ITCTLCLR(i), OHCI_CNTL_DMA_RUN); } /* FLUSH FIFO and reset Transmitter/Reciever */ OWRITE(sc, OHCI_HCCCTL, OHCI_HCC_RESET); /* Stop interrupt */ OWRITE(sc, FWOHCI_INTMASKCLR, OHCI_INT_EN | OHCI_INT_ERR | OHCI_INT_PHY_SID | OHCI_INT_PHY_INT | OHCI_INT_DMA_ATRQ | OHCI_INT_DMA_ATRS | OHCI_INT_DMA_PRRQ | OHCI_INT_DMA_PRRS | OHCI_INT_DMA_ARRQ | OHCI_INT_DMA_ARRS | OHCI_INT_PHY_BUS_R); /* XXX Link down? Bus reset? */ return 0; } int fwohci_resume(struct fwohci_softc *sc, device_t dev) { int i; fwohci_reset(sc, dev); /* XXX resume isochronus receive automatically. (how about TX?) */ for(i = 0; i < sc->fc.nisodma; i ++) { if((sc->ir[i].xferq.flag & FWXFERQ_RUNNING) != 0) { device_printf(sc->fc.dev, "resume iso receive ch: %d\n", i); sc->ir[i].xferq.flag &= ~FWXFERQ_RUNNING; sc->fc.irx_enable(&sc->fc, i); } } bus_generic_resume(dev); sc->fc.ibr(&sc->fc); return 0; } #define ACK_ALL static void fwohci_intr_body(struct fwohci_softc *sc, u_int32_t stat, int count) { u_int32_t irstat, itstat; u_int i; struct firewire_comm *fc = (struct firewire_comm *)sc; #ifdef OHCI_DEBUG if(stat & OREAD(sc, FWOHCI_INTMASK)) device_printf(fc->dev, "INTERRUPT < %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s> 0x%08x, 0x%08x\n", stat & OHCI_INT_EN ? "DMA_EN ":"", stat & OHCI_INT_PHY_REG ? "PHY_REG ":"", stat & OHCI_INT_CYC_LONG ? "CYC_LONG ":"", stat & OHCI_INT_ERR ? "INT_ERR ":"", stat & OHCI_INT_CYC_ERR ? "CYC_ERR ":"", stat & OHCI_INT_CYC_LOST ? "CYC_LOST ":"", stat & OHCI_INT_CYC_64SECOND ? "CYC_64SECOND ":"", stat & OHCI_INT_CYC_START ? "CYC_START ":"", stat & OHCI_INT_PHY_INT ? "PHY_INT ":"", stat & OHCI_INT_PHY_BUS_R ? "BUS_RESET ":"", stat & OHCI_INT_PHY_SID ? "SID ":"", stat & OHCI_INT_LR_ERR ? "DMA_LR_ERR ":"", stat & OHCI_INT_PW_ERR ? "DMA_PW_ERR ":"", stat & OHCI_INT_DMA_IR ? "DMA_IR ":"", stat & OHCI_INT_DMA_IT ? "DMA_IT " :"", stat & OHCI_INT_DMA_PRRS ? "DMA_PRRS " :"", stat & OHCI_INT_DMA_PRRQ ? "DMA_PRRQ " :"", stat & OHCI_INT_DMA_ARRS ? "DMA_ARRS " :"", stat & OHCI_INT_DMA_ARRQ ? "DMA_ARRQ " :"", stat & OHCI_INT_DMA_ATRS ? "DMA_ATRS " :"", stat & OHCI_INT_DMA_ATRQ ? "DMA_ATRQ " :"", stat, OREAD(sc, FWOHCI_INTMASK) ); #endif /* Bus reset */ if(stat & OHCI_INT_PHY_BUS_R ){ device_printf(fc->dev, "BUS reset\n"); OWRITE(sc, FWOHCI_INTMASKCLR, OHCI_INT_CYC_LOST); OWRITE(sc, OHCI_LNKCTLCLR, OHCI_CNTL_CYCSRC); OWRITE(sc, OHCI_ATQCTLCLR, OHCI_CNTL_DMA_RUN); sc->atrq.xferq.flag &= ~FWXFERQ_RUNNING; OWRITE(sc, OHCI_ATSCTLCLR, OHCI_CNTL_DMA_RUN); sc->atrs.xferq.flag &= ~FWXFERQ_RUNNING; #if 0 for( i = 0 ; i < fc->nisodma ; i ++ ){ OWRITE(sc, OHCI_IRCTLCLR(i), OHCI_CNTL_DMA_RUN); OWRITE(sc, OHCI_ITCTLCLR(i), OHCI_CNTL_DMA_RUN); } #endif fw_busreset(fc); /* XXX need to wait DMA to stop */ #ifndef ACK_ALL OWRITE(sc, FWOHCI_INTSTATCLR, OHCI_INT_PHY_BUS_R); #endif #if 0 /* pending all pre-bus_reset packets */ fwohci_txd(sc, &sc->atrq); fwohci_txd(sc, &sc->atrs); fwohci_arcv(sc, &sc->arrs, -1); fwohci_arcv(sc, &sc->arrq, -1); #endif OWRITE(sc, OHCI_AREQHI, 1 << 31); /* XXX insecure ?? */ OWRITE(sc, OHCI_PREQHI, 0x7fffffff); OWRITE(sc, OHCI_PREQLO, 0xffffffff); OWRITE(sc, OHCI_PREQUPPER, 0x10000); } if((stat & OHCI_INT_DMA_IR )){ #ifndef ACK_ALL OWRITE(sc, FWOHCI_INTSTATCLR, OHCI_INT_DMA_IR); #endif irstat = OREAD(sc, OHCI_IR_STAT); OWRITE(sc, OHCI_IR_STATCLR, irstat); for(i = 0; i < fc->nisodma ; i++){ struct fwohci_dbch *dbch; if((irstat & (1 << i)) != 0){ dbch = &sc->ir[i]; if ((dbch->xferq.flag & FWXFERQ_OPEN) == 0) { device_printf(sc->fc.dev, "dma(%d) not active\n", i); continue; } if (dbch->xferq.flag & FWXFERQ_PACKET) { fwohci_ircv(sc, dbch, count); } else { fwohci_rbuf_update(sc, i); } } } } if((stat & OHCI_INT_DMA_IT )){ #ifndef ACK_ALL OWRITE(sc, FWOHCI_INTSTATCLR, OHCI_INT_DMA_IT); #endif itstat = OREAD(sc, OHCI_IT_STAT); OWRITE(sc, OHCI_IT_STATCLR, itstat); for(i = 0; i < fc->nisodma ; i++){ if((itstat & (1 << i)) != 0){ fwohci_tbuf_update(sc, i); } } } if((stat & OHCI_INT_DMA_PRRS )){ #ifndef ACK_ALL OWRITE(sc, FWOHCI_INTSTATCLR, OHCI_INT_DMA_PRRS); #endif #if 0 dump_dma(sc, ARRS_CH); dump_db(sc, ARRS_CH); #endif fwohci_arcv(sc, &sc->arrs, count); } if((stat & OHCI_INT_DMA_PRRQ )){ #ifndef ACK_ALL OWRITE(sc, FWOHCI_INTSTATCLR, OHCI_INT_DMA_PRRQ); #endif #if 0 dump_dma(sc, ARRQ_CH); dump_db(sc, ARRQ_CH); #endif fwohci_arcv(sc, &sc->arrq, count); } if(stat & OHCI_INT_PHY_SID){ caddr_t buf; int plen; #ifndef ACK_ALL OWRITE(sc, FWOHCI_INTSTATCLR, OHCI_INT_PHY_SID); #endif /* ** Checking whether the node is root or not. If root, turn on ** cycle master. */ device_printf(fc->dev, "node_id = 0x%08x, ", OREAD(sc, FWOHCI_NODEID)); if(!(OREAD(sc, FWOHCI_NODEID) & OHCI_NODE_VALID)){ printf("Bus reset failure\n"); goto sidout; } if( OREAD(sc, FWOHCI_NODEID) & OHCI_NODE_ROOT ){ printf("CYCLEMASTER mode\n"); OWRITE(sc, OHCI_LNKCTL, OHCI_CNTL_CYCMTR | OHCI_CNTL_CYCTIMER); }else{ printf("non CYCLEMASTER mode\n"); OWRITE(sc, OHCI_LNKCTLCLR, OHCI_CNTL_CYCMTR); OWRITE(sc, OHCI_LNKCTL, OHCI_CNTL_CYCTIMER); } fc->nodeid = OREAD(sc, FWOHCI_NODEID) & 0x3f; plen = OREAD(sc, OHCI_SID_CNT) & OHCI_SID_CNT_MASK; if (plen < 4 || plen > OHCI_SIDSIZE) { device_printf(fc->dev, "invalid SID len = %d\n", plen); goto sidout; } plen -= 4; /* chop control info */ buf = malloc(OHCI_SIDSIZE, M_FW, M_NOWAIT); if(buf == NULL) goto sidout; bcopy((void *)(uintptr_t)(volatile void *)(fc->sid_buf + 1), buf, plen); #if 1 /* pending all pre-bus_reset packets */ fwohci_txd(sc, &sc->atrq); fwohci_txd(sc, &sc->atrs); fwohci_arcv(sc, &sc->arrs, -1); fwohci_arcv(sc, &sc->arrq, -1); #endif fw_sidrcv(fc, buf, plen, 0); } sidout: if((stat & OHCI_INT_DMA_ATRQ )){ #ifndef ACK_ALL OWRITE(sc, FWOHCI_INTSTATCLR, OHCI_INT_DMA_ATRQ); #endif fwohci_txd(sc, &(sc->atrq)); } if((stat & OHCI_INT_DMA_ATRS )){ #ifndef ACK_ALL OWRITE(sc, FWOHCI_INTSTATCLR, OHCI_INT_DMA_ATRS); #endif fwohci_txd(sc, &(sc->atrs)); } if((stat & OHCI_INT_PW_ERR )){ #ifndef ACK_ALL OWRITE(sc, FWOHCI_INTSTATCLR, OHCI_INT_PW_ERR); #endif device_printf(fc->dev, "posted write error\n"); } if((stat & OHCI_INT_ERR )){ #ifndef ACK_ALL OWRITE(sc, FWOHCI_INTSTATCLR, OHCI_INT_ERR); #endif device_printf(fc->dev, "unrecoverable error\n"); } if((stat & OHCI_INT_PHY_INT)) { #ifndef ACK_ALL OWRITE(sc, FWOHCI_INTSTATCLR, OHCI_INT_PHY_INT); #endif device_printf(fc->dev, "phy int\n"); } return; } void fwohci_intr(void *arg) { struct fwohci_softc *sc = (struct fwohci_softc *)arg; u_int32_t stat; if (!(sc->intmask & OHCI_INT_EN)) { /* polling mode */ return; } while ((stat = OREAD(sc, FWOHCI_INTSTAT)) != 0) { if (stat == 0xffffffff) { device_printf(sc->fc.dev, "device physically ejected?\n"); return; } #ifdef ACK_ALL OWRITE(sc, FWOHCI_INTSTATCLR, stat); #endif fwohci_intr_body(sc, stat, -1); } } static void fwohci_poll(struct firewire_comm *fc, int quick, int count) { int s; u_int32_t stat; struct fwohci_softc *sc; sc = (struct fwohci_softc *)fc; stat = OHCI_INT_DMA_IR | OHCI_INT_DMA_IT | OHCI_INT_DMA_PRRS | OHCI_INT_DMA_PRRQ | OHCI_INT_DMA_ATRQ | OHCI_INT_DMA_ATRS; #if 0 if (!quick) { #else if (1) { #endif stat = OREAD(sc, FWOHCI_INTSTAT); if (stat == 0) return; if (stat == 0xffffffff) { device_printf(sc->fc.dev, "device physically ejected?\n"); return; } #ifdef ACK_ALL OWRITE(sc, FWOHCI_INTSTATCLR, stat); #endif } s = splfw(); fwohci_intr_body(sc, stat, count); splx(s); } static void fwohci_set_intr(struct firewire_comm *fc, int enable) { struct fwohci_softc *sc; sc = (struct fwohci_softc *)fc; if (bootverbose) device_printf(sc->fc.dev, "fwohci_set_intr: %d\n", enable); if (enable) { sc->intmask |= OHCI_INT_EN; OWRITE(sc, FWOHCI_INTMASK, OHCI_INT_EN); } else { sc->intmask &= ~OHCI_INT_EN; OWRITE(sc, FWOHCI_INTMASKCLR, OHCI_INT_EN); } } static void fwohci_tbuf_update(struct fwohci_softc *sc, int dmach) { struct firewire_comm *fc = &sc->fc; volatile struct fwohcidb *db; struct fw_bulkxfer *chunk; struct fw_xferq *it; u_int32_t stat, count; int s, w=0; it = fc->it[dmach]; s = splfw(); /* unnecessary ? */ while ((chunk = STAILQ_FIRST(&it->stdma)) != NULL) { db = ((struct fwohcidb_tr *)(chunk->end))->db; stat = db[sc->it[dmach].ndesc - 1].db.desc.status; db = ((struct fwohcidb_tr *)(chunk->start))->db; count = db[sc->it[dmach].ndesc - 1].db.desc.count; if (stat == 0) break; STAILQ_REMOVE_HEAD(&it->stdma, link); switch (stat & FWOHCIEV_MASK){ case FWOHCIEV_ACKCOMPL: #if 0 device_printf(fc->dev, "0x%08x\n", count); #endif break; default: device_printf(fc->dev, "Isochronous transmit err %02x\n", stat); } STAILQ_INSERT_TAIL(&it->stfree, chunk, link); w++; } splx(s); if (w) wakeup(it); } static void fwohci_rbuf_update(struct fwohci_softc *sc, int dmach) { struct firewire_comm *fc = &sc->fc; volatile struct fwohcidb *db; struct fw_bulkxfer *chunk; struct fw_xferq *ir; u_int32_t stat; int s, w=0; ir = fc->ir[dmach]; s = splfw(); while ((chunk = STAILQ_FIRST(&ir->stdma)) != NULL) { db = ((struct fwohcidb_tr *)(chunk->end))->db; stat = db[sc->ir[dmach].ndesc - 1].db.desc.status; if (stat == 0) break; STAILQ_REMOVE_HEAD(&ir->stdma, link); STAILQ_INSERT_TAIL(&ir->stvalid, chunk, link); switch (stat & FWOHCIEV_MASK) { case FWOHCIEV_ACKCOMPL: break; default: device_printf(fc->dev, "Isochronous receive err %02x\n", stat); } w++; } splx(s); if (w) wakeup(ir); } void dump_dma(struct fwohci_softc *sc, u_int32_t ch) { u_int32_t off, cntl, stat, cmd, match; if(ch == 0){ off = OHCI_ATQOFF; }else if(ch == 1){ off = OHCI_ATSOFF; }else if(ch == 2){ off = OHCI_ARQOFF; }else if(ch == 3){ off = OHCI_ARSOFF; }else if(ch < IRX_CH){ off = OHCI_ITCTL(ch - ITX_CH); }else{ off = OHCI_IRCTL(ch - IRX_CH); } cntl = stat = OREAD(sc, off); cmd = OREAD(sc, off + 0xc); match = OREAD(sc, off + 0x10); device_printf(sc->fc.dev, "dma ch %1x:dma regs 0x%08x 0x%08x 0x%08x 0x%08x \n", ch, cntl, stat, cmd, match); stat &= 0xffff ; if(stat & 0xff00){ device_printf(sc->fc.dev, "dma %d ch:%s%s%s%s%s%s %s(%x)\n", ch, stat & OHCI_CNTL_DMA_RUN ? "RUN," : "", stat & OHCI_CNTL_DMA_WAKE ? "WAKE," : "", stat & OHCI_CNTL_DMA_DEAD ? "DEAD," : "", stat & OHCI_CNTL_DMA_ACTIVE ? "ACTIVE," : "", stat & OHCI_CNTL_DMA_BT ? "BRANCH," : "", stat & OHCI_CNTL_DMA_BAD ? "BADDMA," : "", fwohcicode[stat & 0x1f], stat & 0x1f ); }else{ device_printf(sc->fc.dev, "dma %d ch: Nostat\n", ch); } } void dump_db(struct fwohci_softc *sc, u_int32_t ch) { struct fwohci_dbch *dbch; struct fwohcidb_tr *cp = NULL, *pp, *np; volatile struct fwohcidb *curr = NULL, *prev, *next = NULL; int idb, jdb; u_int32_t cmd, off; if(ch == 0){ off = OHCI_ATQOFF; dbch = &sc->atrq; }else if(ch == 1){ off = OHCI_ATSOFF; dbch = &sc->atrs; }else if(ch == 2){ off = OHCI_ARQOFF; dbch = &sc->arrq; }else if(ch == 3){ off = OHCI_ARSOFF; dbch = &sc->arrs; }else if(ch < IRX_CH){ off = OHCI_ITCTL(ch - ITX_CH); dbch = &sc->it[ch - ITX_CH]; }else { off = OHCI_IRCTL(ch - IRX_CH); dbch = &sc->ir[ch - IRX_CH]; } cmd = OREAD(sc, off + 0xc); if( dbch->ndb == 0 ){ device_printf(sc->fc.dev, "No DB is attached ch=%d\n", ch); return; } pp = dbch->top; prev = pp->db; for(idb = 0 ; idb < dbch->ndb ; idb ++ ){ if(pp == NULL){ curr = NULL; goto outdb; } cp = STAILQ_NEXT(pp, link); if(cp == NULL){ curr = NULL; goto outdb; } np = STAILQ_NEXT(cp, link); if(cp == NULL) break; for(jdb = 0 ; jdb < dbch->ndesc ; jdb ++ ){ if((cmd & 0xfffffff0) == vtophys(&(cp->db[jdb]))){ curr = cp->db; if(np != NULL){ next = np->db; }else{ next = NULL; } goto outdb; } } pp = STAILQ_NEXT(pp, link); prev = pp->db; } outdb: if( curr != NULL){ printf("Prev DB %d\n", ch); print_db(prev, ch, dbch->ndesc); printf("Current DB %d\n", ch); print_db(curr, ch, dbch->ndesc); printf("Next DB %d\n", ch); print_db(next, ch, dbch->ndesc); }else{ printf("dbdump err ch = %d cmd = 0x%08x\n", ch, cmd); } return; } void print_db(volatile struct fwohcidb *db, u_int32_t ch, u_int32_t max) { fwohcireg_t stat; int i, key; if(db == NULL){ printf("No Descriptor is found\n"); return; } printf("ch = %d\n%8s %s %s %s %s %4s %8s %8s %4s:%4s\n", ch, "Current", "OP ", "KEY", "INT", "BR ", "len", "Addr", "Depend", "Stat", "Cnt"); for( i = 0 ; i <= max ; i ++){ key = db[i].db.desc.control & OHCI_KEY_MASK; #if __FreeBSD_version >= 500000 printf("%08tx %s %s %s %s %5d %08x %08x %04x:%04x", #else printf("%08x %s %s %s %s %5d %08x %08x %04x:%04x", #endif vtophys(&db[i]), dbcode[(db[i].db.desc.control >> 12) & 0xf], dbkey[(db[i].db.desc.control >> 8) & 0x7], dbcond[(db[i].db.desc.control >> 4) & 0x3], dbcond[(db[i].db.desc.control >> 2) & 0x3], db[i].db.desc.reqcount, db[i].db.desc.addr, db[i].db.desc.depend, db[i].db.desc.status, db[i].db.desc.count); stat = db[i].db.desc.status; if(stat & 0xff00){ printf(" %s%s%s%s%s%s %s(%x)\n", stat & OHCI_CNTL_DMA_RUN ? "RUN," : "", stat & OHCI_CNTL_DMA_WAKE ? "WAKE," : "", stat & OHCI_CNTL_DMA_DEAD ? "DEAD," : "", stat & OHCI_CNTL_DMA_ACTIVE ? "ACTIVE," : "", stat & OHCI_CNTL_DMA_BT ? "BRANCH," : "", stat & OHCI_CNTL_DMA_BAD ? "BADDMA," : "", fwohcicode[stat & 0x1f], stat & 0x1f ); }else{ printf(" Nostat\n"); } if(key == OHCI_KEY_ST2 ){ printf("0x%08x 0x%08x 0x%08x 0x%08x\n", db[i+1].db.immed[0], db[i+1].db.immed[1], db[i+1].db.immed[2], db[i+1].db.immed[3]); } if(key == OHCI_KEY_DEVICE){ return; } if((db[i].db.desc.control & OHCI_BRANCH_MASK) == OHCI_BRANCH_ALWAYS){ return; } if((db[i].db.desc.control & OHCI_CMD_MASK) == OHCI_OUTPUT_LAST){ return; } if((db[i].db.desc.control & OHCI_CMD_MASK) == OHCI_INPUT_LAST){ return; } if(key == OHCI_KEY_ST2 ){ i++; } } return; } void fwohci_ibr(struct firewire_comm *fc) { struct fwohci_softc *sc; u_int32_t fun; sc = (struct fwohci_softc *)fc; /* * Set root hold-off bit so that non cyclemaster capable node * shouldn't became the root node. */ #if 1 fun = fwphy_rddata(sc, FW_PHY_IBR_REG); fun |= FW_PHY_IBR | FW_PHY_RHB; fun = fwphy_wrdata(sc, FW_PHY_IBR_REG, fun); #else /* Short bus reset */ fun = fwphy_rddata(sc, FW_PHY_ISBR_REG); fun |= FW_PHY_ISBR | FW_PHY_RHB; fun = fwphy_wrdata(sc, FW_PHY_ISBR_REG, fun); #endif } void fwohci_txbufdb(struct fwohci_softc *sc, int dmach, struct fw_bulkxfer *bulkxfer) { struct fwohcidb_tr *db_tr, *fdb_tr; struct fwohci_dbch *dbch; volatile struct fwohcidb *db; struct fw_pkt *fp; volatile struct fwohci_txpkthdr *ohcifp; unsigned short chtag; int idb; dbch = &sc->it[dmach]; chtag = sc->it[dmach].xferq.flag & 0xff; db_tr = (struct fwohcidb_tr *)(bulkxfer->start); fdb_tr = (struct fwohcidb_tr *)(bulkxfer->end); /* device_printf(sc->fc.dev, "DB %08x %08x %08x\n", bulkxfer, vtophys(db_tr->db), vtophys(fdb_tr->db)); */ for( idb = 0 ; idb < bulkxfer->npacket ; idb ++){ db = db_tr->db; #if 0 db[0].db.desc.control = OHCI_OUTPUT_MORE | OHCI_KEY_ST2; db[0].db.desc.reqcount = 8; #endif fp = (struct fw_pkt *)db_tr->buf; ohcifp = (volatile struct fwohci_txpkthdr *) db[1].db.immed; ohcifp->mode.ld[0] = ntohl(fp->mode.ld[0]); ohcifp->mode.stream.len = ntohs(fp->mode.stream.len); ohcifp->mode.stream.chtag = chtag; ohcifp->mode.stream.tcode = 0xa; ohcifp->mode.stream.spd = 0; db[2].db.desc.reqcount = ntohs(fp->mode.stream.len); db[2].db.desc.status = 0; db[2].db.desc.count = 0; #if 0 /* if bulkxfer->npackets changes */ db[2].db.desc.control = OHCI_OUTPUT_LAST | OHCI_UPDATE | OHCI_BRANCH_ALWAYS; db[0].db.desc.depend = = db[dbch->ndesc - 1].db.desc.depend = vtophys(STAILQ_NEXT(db_tr, link)->db) | dbch->ndesc; #else db[0].db.desc.depend |= dbch->ndesc; db[dbch->ndesc - 1].db.desc.depend |= dbch->ndesc; #endif bulkxfer->end = (caddr_t)db_tr; db_tr = STAILQ_NEXT(db_tr, link); } db = ((struct fwohcidb_tr *)bulkxfer->end)->db; db[0].db.desc.depend &= ~0xf; db[dbch->ndesc - 1].db.desc.depend &= ~0xf; #if 0 /* if bulkxfer->npackets changes */ db[dbch->ndesc - 1].db.desc.control |= OHCI_INTERRUPT_ALWAYS; /* OHCI 1.1 and above */ db[0].db.desc.control |= OHCI_INTERRUPT_ALWAYS; #endif /* db_tr = (struct fwohcidb_tr *)bulkxfer->start; fdb_tr = (struct fwohcidb_tr *)bulkxfer->end; device_printf(sc->fc.dev, "DB %08x %3d %08x %08x\n", bulkxfer, bulkxfer->npacket, vtophys(db_tr->db), vtophys(fdb_tr->db)); */ return; } static int fwohci_add_tx_buf(struct fwohcidb_tr *db_tr, unsigned short size, int mode, void *buf) { volatile struct fwohcidb *db = db_tr->db; int err = 0; if(buf == 0){ err = EINVAL; return err; } db_tr->buf = buf; db_tr->dbcnt = 3; db_tr->dummy = NULL; db[0].db.desc.control = OHCI_OUTPUT_MORE | OHCI_KEY_ST2; db[0].db.desc.reqcount = 8; db[2].db.desc.addr = vtophys(buf) + sizeof(u_int32_t); db[2].db.desc.control = OHCI_OUTPUT_LAST | OHCI_UPDATE | OHCI_BRANCH_ALWAYS; #if 1 db[0].db.desc.status = 0; db[0].db.desc.count = 0; db[2].db.desc.status = 0; db[2].db.desc.count = 0; #endif if( mode & FWXFERQ_STREAM ){ if(mode & FWXFERQ_PACKET ){ db[2].db.desc.control |= OHCI_INTERRUPT_ALWAYS; } } else { printf("fwohci_add_tx_buf: who calls me?"); } return 1; } int fwohci_add_rx_buf(struct fwohcidb_tr *db_tr, unsigned short size, int mode, void *buf, void *dummy) { volatile struct fwohcidb *db = db_tr->db; int i; void *dbuf[2]; int dsiz[2]; if(buf == 0){ buf = malloc(size, M_FW, M_NOWAIT); if(buf == NULL) return 0; db_tr->buf = buf; db_tr->dbcnt = 1; db_tr->dummy = NULL; dsiz[0] = size; dbuf[0] = buf; }else if(dummy == NULL){ db_tr->buf = buf; db_tr->dbcnt = 1; db_tr->dummy = NULL; dsiz[0] = size; dbuf[0] = buf; }else{ db_tr->buf = buf; db_tr->dbcnt = 2; db_tr->dummy = dummy; dsiz[0] = sizeof(u_int32_t); dsiz[1] = size; dbuf[0] = dummy; dbuf[1] = buf; } for(i = 0 ; i < db_tr->dbcnt ; i++){ db[i].db.desc.addr = vtophys(dbuf[i]) ; db[i].db.desc.control = OHCI_INPUT_MORE; db[i].db.desc.reqcount = dsiz[i]; if( mode & FWXFERQ_STREAM ){ db[i].db.desc.control |= OHCI_UPDATE; } db[i].db.desc.status = 0; db[i].db.desc.count = dsiz[i]; } if( mode & FWXFERQ_STREAM ){ db[db_tr->dbcnt - 1].db.desc.control |= OHCI_INPUT_LAST; if(mode & FWXFERQ_PACKET ){ db[db_tr->dbcnt - 1].db.desc.control |= OHCI_INTERRUPT_ALWAYS; } } db[db_tr->dbcnt - 1].db.desc.control |= OHCI_BRANCH_ALWAYS; return 1; } static void fwohci_ircv(struct fwohci_softc *sc, struct fwohci_dbch *dbch, int count) { struct fwohcidb_tr *db_tr = dbch->top, *odb_tr; struct firewire_comm *fc = (struct firewire_comm *)sc; int z = 1; struct fw_pkt *fp; u_int8_t *ld; u_int32_t off = NULL; u_int32_t stat; u_int32_t *qld; u_int32_t reg; u_int spd; u_int dmach; int len, i, plen; caddr_t buf; for(dmach = 0 ; dmach < sc->fc.nisodma ; dmach++){ if( &sc->ir[dmach] == dbch){ off = OHCI_IROFF(dmach); break; } } if(off == NULL){ return; } if(!(dbch->xferq.flag & FWXFERQ_RUNNING)){ fwohci_irx_disable(&sc->fc, dmach); return; } odb_tr = NULL; db_tr = dbch->top; i = 0; while ((reg = db_tr->db[0].db.desc.status) & 0x1f) { if (count >= 0 && count-- == 0) break; ld = (u_int8_t *)db_tr->buf; if (dbch->xferq.flag & FWXFERQ_PACKET) { /* skip timeStamp */ ld += sizeof(struct fwohci_trailer); } qld = (u_int32_t *)ld; len = dbch->xferq.psize - (db_tr->db[0].db.desc.count); /* { device_printf(sc->fc.dev, "%04x %2x 0x%08x 0x%08x 0x%08x 0x%08x\n", len, db_tr->db[0].db.desc.status & 0x1f, qld[0],qld[1],qld[2],qld[3]); } */ fp=(struct fw_pkt *)ld; qld[0] = htonl(qld[0]); plen = sizeof(struct fw_isohdr) + ntohs(fp->mode.stream.len) + sizeof(u_int32_t); ld += plen; len -= plen; buf = db_tr->buf; db_tr->buf = NULL; stat = reg & 0x1f; spd = reg & 0x3; switch(stat){ case FWOHCIEV_ACKCOMPL: case FWOHCIEV_ACKPEND: fw_rcv(&sc->fc, buf, plen - sizeof(u_int32_t), dmach, sizeof(u_int32_t), spd); break; default: free(buf, M_FW); device_printf(sc->fc.dev, "Isochronous receive err %02x\n", stat); break; } i++; fwohci_add_rx_buf(db_tr, dbch->xferq.psize, dbch->xferq.flag, 0, NULL); db_tr->db[0].db.desc.depend &= ~0xf; if(dbch->pdb_tr != NULL){ dbch->pdb_tr->db[0].db.desc.depend |= z; } else { /* XXX should be rewritten in better way */ dbch->bottom->db[0].db.desc.depend |= z; } dbch->pdb_tr = db_tr; db_tr = STAILQ_NEXT(db_tr, link); } dbch->top = db_tr; reg = OREAD(sc, OHCI_DMACTL(off)); if (reg & OHCI_CNTL_DMA_ACTIVE) return; device_printf(sc->fc.dev, "IR DMA %d stopped at %x status=%x (%d)\n", dmach, OREAD(sc, OHCI_DMACMD(off)), reg, i); dbch->top = db_tr; fwohci_irx_enable(fc, dmach); } #define PLEN(x) (((ntohs(x))+0x3) & ~0x3) static int fwohci_get_plen(struct fwohci_softc *sc, struct fw_pkt *fp, int hlen) { int i; for( i = 4; i < hlen ; i+=4){ fp->mode.ld[i/4] = htonl(fp->mode.ld[i/4]); } switch(fp->mode.common.tcode){ case FWTCODE_RREQQ: return sizeof(fp->mode.rreqq) + sizeof(u_int32_t); case FWTCODE_WRES: return sizeof(fp->mode.wres) + sizeof(u_int32_t); case FWTCODE_WREQQ: return sizeof(fp->mode.wreqq) + sizeof(u_int32_t); case FWTCODE_RREQB: return sizeof(fp->mode.rreqb) + sizeof(u_int32_t); case FWTCODE_RRESQ: return sizeof(fp->mode.rresq) + sizeof(u_int32_t); case FWTCODE_WREQB: return sizeof(struct fw_asyhdr) + PLEN(fp->mode.wreqb.len) + sizeof(u_int32_t); case FWTCODE_LREQ: return sizeof(struct fw_asyhdr) + PLEN(fp->mode.lreq.len) + sizeof(u_int32_t); case FWTCODE_RRESB: return sizeof(struct fw_asyhdr) + PLEN(fp->mode.rresb.len) + sizeof(u_int32_t); case FWTCODE_LRES: return sizeof(struct fw_asyhdr) + PLEN(fp->mode.lres.len) + sizeof(u_int32_t); case FWOHCITCODE_PHY: return 16; } device_printf(sc->fc.dev, "Unknown tcode %d\n", fp->mode.common.tcode); return 0; } static void fwohci_arcv(struct fwohci_softc *sc, struct fwohci_dbch *dbch, int count) { struct fwohcidb_tr *db_tr; int z = 1; struct fw_pkt *fp; u_int8_t *ld; u_int32_t stat, off; u_int spd; int len, plen, hlen, pcnt, poff = 0, rlen; int s; caddr_t buf; int resCount; if(&sc->arrq == dbch){ off = OHCI_ARQOFF; }else if(&sc->arrs == dbch){ off = OHCI_ARSOFF; }else{ return; } s = splfw(); db_tr = dbch->top; pcnt = 0; /* XXX we cannot handle a packet which lies in more than two buf */ while (db_tr->db[0].db.desc.status & OHCI_CNTL_DMA_ACTIVE) { ld = (u_int8_t *)db_tr->buf + dbch->buf_offset; resCount = db_tr->db[0].db.desc.count; len = dbch->xferq.psize - resCount - dbch->buf_offset; while (len > 0 ) { if (count >= 0 && count-- == 0) goto out; if(dbch->frag.buf != NULL){ buf = dbch->frag.buf; if (dbch->frag.plen < 0) { /* incomplete header */ int hlen; hlen = - dbch->frag.plen; rlen = hlen - dbch->frag.len; bcopy(ld, dbch->frag.buf + dbch->frag.len, rlen); ld += rlen; len -= rlen; dbch->frag.len += rlen; #if 0 printf("(1)frag.plen=%d frag.len=%d rlen=%d len=%d\n", dbch->frag.plen, dbch->frag.len, rlen, len); #endif fp=(struct fw_pkt *)dbch->frag.buf; dbch->frag.plen = fwohci_get_plen(sc, fp, hlen); if (dbch->frag.plen == 0) goto out; } rlen = dbch->frag.plen - dbch->frag.len; #if 0 printf("(2)frag.plen=%d frag.len=%d rlen=%d len=%d\n", dbch->frag.plen, dbch->frag.len, rlen, len); #endif bcopy(ld, dbch->frag.buf + dbch->frag.len, rlen); ld += rlen; len -= rlen; plen = dbch->frag.plen; dbch->frag.buf = NULL; dbch->frag.plen = 0; dbch->frag.len = 0; poff = 0; }else{ fp=(struct fw_pkt *)ld; fp->mode.ld[0] = htonl(fp->mode.ld[0]); switch(fp->mode.common.tcode){ case FWTCODE_RREQQ: case FWTCODE_WRES: case FWTCODE_WREQQ: case FWTCODE_RRESQ: case FWOHCITCODE_PHY: hlen = 12; break; case FWTCODE_RREQB: case FWTCODE_WREQB: case FWTCODE_LREQ: case FWTCODE_RRESB: case FWTCODE_LRES: hlen = 16; break; default: device_printf(sc->fc.dev, "Unknown tcode %d\n", fp->mode.common.tcode); goto out; } if (len >= hlen) { plen = fwohci_get_plen(sc, fp, hlen); if (plen == 0) goto out; plen = (plen + 3) & ~3; len -= plen; } else { plen = -hlen; len -= hlen; } if(resCount > 0 || len > 0){ buf = malloc( dbch->xferq.psize, M_FW, M_NOWAIT); if(buf == NULL){ printf("cannot malloc!\n"); free(db_tr->buf, M_FW); goto out; } bcopy(ld, buf, plen); poff = 0; dbch->frag.buf = NULL; dbch->frag.plen = 0; dbch->frag.len = 0; }else if(len < 0){ dbch->frag.buf = db_tr->buf; if (plen < 0) { #if 0 printf("plen < 0:" "hlen: %d len: %d\n", hlen, len); #endif dbch->frag.len = hlen + len; dbch->frag.plen = -hlen; } else { dbch->frag.len = plen + len; dbch->frag.plen = plen; } bcopy(ld, db_tr->buf, dbch->frag.len); buf = NULL; }else{ buf = db_tr->buf; poff = ld - (u_int8_t *)buf; dbch->frag.buf = NULL; dbch->frag.plen = 0; dbch->frag.len = 0; } ld += plen; } if( buf != NULL){ /* DMA result-code will be written at the tail of packet */ stat = ((struct fwohci_trailer *)(ld - sizeof(struct fwohci_trailer)))->stat; spd = (stat >> 5) & 0x3; stat &= 0x1f; switch(stat){ case FWOHCIEV_ACKPEND: #if 1 printf("fwohci_arcv: ack pending..\n"); #endif /* fall through */ case FWOHCIEV_ACKCOMPL: if( poff != 0 ) bcopy(buf+poff, buf, plen - 4); fw_rcv(&sc->fc, buf, plen - sizeof(struct fwohci_trailer), 0, 0, spd); break; case FWOHCIEV_BUSRST: free(buf, M_FW); if (sc->fc.status != FWBUSRESET) printf("got BUSRST packet!?\n"); break; default: device_printf(sc->fc.dev, "Async DMA Receive error err = %02x %s\n", stat, fwohcicode[stat]); #if 0 /* XXX */ goto out; #endif break; } } pcnt ++; }; out: if (resCount == 0) { /* done on this buffer */ fwohci_add_rx_buf(db_tr, dbch->xferq.psize, dbch->xferq.flag, 0, NULL); dbch->bottom->db[0].db.desc.depend |= z; dbch->bottom = db_tr; db_tr = STAILQ_NEXT(db_tr, link); dbch->top = db_tr; dbch->buf_offset = 0; } else { dbch->buf_offset = dbch->xferq.psize - resCount; break; } /* XXX make sure DMA is not dead */ } #if 0 if (pcnt < 1) printf("fwohci_arcv: no packets\n"); #endif splx(s); }