/*- * Copyright (c) 2004 Tim J. Robbins * Copyright (c) 2002 Doug Rabson * Copyright (c) 2000 Marcel Moolenaar * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer * in this position and unchanged. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct l_old_select_argv { l_int nfds; l_uintptr_t readfds; l_uintptr_t writefds; l_uintptr_t exceptfds; l_uintptr_t timeout; } __packed; int linux_to_bsd_sigaltstack(int lsa) { int bsa = 0; if (lsa & LINUX_SS_DISABLE) bsa |= SS_DISABLE; if (lsa & LINUX_SS_ONSTACK) bsa |= SS_ONSTACK; return (bsa); } int bsd_to_linux_sigaltstack(int bsa) { int lsa = 0; if (bsa & SS_DISABLE) lsa |= LINUX_SS_DISABLE; if (bsa & SS_ONSTACK) lsa |= LINUX_SS_ONSTACK; return (lsa); } /* * Custom version of exec_copyin_args() so that we can translate * the pointers. */ static int linux_exec_copyin_args(struct image_args *args, char *fname, enum uio_seg segflg, char **argv, char **envv) { char *argp, *envp; u_int32_t *p32, arg; size_t length; int error; bzero(args, sizeof(*args)); if (argv == NULL) return (EFAULT); /* * Allocate temporary demand zeroed space for argument and * environment strings */ args->buf = (char *) kmem_alloc_wait(exec_map, PATH_MAX + ARG_MAX + MAXSHELLCMDLEN); if (args->buf == NULL) return (ENOMEM); args->begin_argv = args->buf; args->endp = args->begin_argv; args->stringspace = ARG_MAX; args->fname = args->buf + ARG_MAX; /* * Copy the file name. */ error = (segflg == UIO_SYSSPACE) ? copystr(fname, args->fname, PATH_MAX, &length) : copyinstr(fname, args->fname, PATH_MAX, &length); if (error != 0) return (error); /* * extract arguments first */ p32 = (u_int32_t *)argv; for (;;) { error = copyin(p32++, &arg, sizeof(arg)); if (error) return (error); if (arg == 0) break; argp = PTRIN(arg); error = copyinstr(argp, args->endp, args->stringspace, &length); if (error) { if (error == ENAMETOOLONG) return (E2BIG); else return (error); } args->stringspace -= length; args->endp += length; args->argc++; } args->begin_envv = args->endp; /* * extract environment strings */ if (envv) { p32 = (u_int32_t *)envv; for (;;) { error = copyin(p32++, &arg, sizeof(arg)); if (error) return (error); if (arg == 0) break; envp = PTRIN(arg); error = copyinstr(envp, args->endp, args->stringspace, &length); if (error) { if (error == ENAMETOOLONG) return (E2BIG); else return (error); } args->stringspace -= length; args->endp += length; args->envc++; } } return (0); } int linux_execve(struct thread *td, struct linux_execve_args *args) { struct image_args eargs; char *path; int error; LCONVPATHEXIST(td, args->path, &path); #ifdef DEBUG if (ldebug(execve)) printf(ARGS(execve, "%s"), path); #endif error = linux_exec_copyin_args(&eargs, path, UIO_SYSSPACE, args->argp, args->envp); free(path, M_TEMP); if (error == 0) error = kern_execve(td, &eargs, NULL); return (error); } struct iovec32 { u_int32_t iov_base; int iov_len; }; CTASSERT(sizeof(struct iovec32) == 8); static int linux32_copyinuio(struct iovec32 *iovp, u_int iovcnt, struct uio **uiop) { struct iovec32 iov32; struct iovec *iov; struct uio *uio; u_int iovlen; int error, i; *uiop = NULL; if (iovcnt > UIO_MAXIOV) return (EINVAL); iovlen = iovcnt * sizeof(struct iovec); uio = malloc(iovlen + sizeof *uio, M_IOV, M_WAITOK); iov = (struct iovec *)(uio + 1); for (i = 0; i < iovcnt; i++) { error = copyin(&iovp[i], &iov32, sizeof(struct iovec32)); if (error) { free(uio, M_IOV); return (error); } iov[i].iov_base = PTRIN(iov32.iov_base); iov[i].iov_len = iov32.iov_len; } uio->uio_iov = iov; uio->uio_iovcnt = iovcnt; uio->uio_segflg = UIO_USERSPACE; uio->uio_offset = -1; uio->uio_resid = 0; for (i = 0; i < iovcnt; i++) { if (iov->iov_len > INT_MAX - uio->uio_resid) { free(uio, M_IOV); return (EINVAL); } uio->uio_resid += iov->iov_len; iov++; } *uiop = uio; return (0); } int linux_readv(struct thread *td, struct linux_readv_args *uap) { struct uio *auio; int error; error = linux32_copyinuio(uap->iovp, uap->iovcnt, &auio); if (error) return (error); error = kern_readv(td, uap->fd, auio); free(auio, M_IOV); return (error); } int linux_writev(struct thread *td, struct linux_writev_args *uap) { struct uio *auio; int error; error = linux32_copyinuio(uap->iovp, uap->iovcnt, &auio); if (error) return (error); error = kern_writev(td, uap->fd, auio); free(auio, M_IOV); return (error); } struct l_ipc_kludge { l_uintptr_t msgp; l_long msgtyp; } __packed; int linux_ipc(struct thread *td, struct linux_ipc_args *args) { switch (args->what & 0xFFFF) { case LINUX_SEMOP: { struct linux_semop_args a; a.semid = args->arg1; a.tsops = args->ptr; a.nsops = args->arg2; return (linux_semop(td, &a)); } case LINUX_SEMGET: { struct linux_semget_args a; a.key = args->arg1; a.nsems = args->arg2; a.semflg = args->arg3; return (linux_semget(td, &a)); } case LINUX_SEMCTL: { struct linux_semctl_args a; int error; a.semid = args->arg1; a.semnum = args->arg2; a.cmd = args->arg3; error = copyin(args->ptr, &a.arg, sizeof(a.arg)); if (error) return (error); return (linux_semctl(td, &a)); } case LINUX_MSGSND: { struct linux_msgsnd_args a; a.msqid = args->arg1; a.msgp = args->ptr; a.msgsz = args->arg2; a.msgflg = args->arg3; return (linux_msgsnd(td, &a)); } case LINUX_MSGRCV: { struct linux_msgrcv_args a; a.msqid = args->arg1; a.msgsz = args->arg2; a.msgflg = args->arg3; if ((args->what >> 16) == 0) { struct l_ipc_kludge tmp; int error; if (args->ptr == 0) return (EINVAL); error = copyin(args->ptr, &tmp, sizeof(tmp)); if (error) return (error); a.msgp = PTRIN(tmp.msgp); a.msgtyp = tmp.msgtyp; } else { a.msgp = args->ptr; a.msgtyp = args->arg5; } return (linux_msgrcv(td, &a)); } case LINUX_MSGGET: { struct linux_msgget_args a; a.key = args->arg1; a.msgflg = args->arg2; return (linux_msgget(td, &a)); } case LINUX_MSGCTL: { struct linux_msgctl_args a; a.msqid = args->arg1; a.cmd = args->arg2; a.buf = args->ptr; return (linux_msgctl(td, &a)); } case LINUX_SHMAT: { struct linux_shmat_args a; a.shmid = args->arg1; a.shmaddr = args->ptr; a.shmflg = args->arg2; a.raddr = PTRIN((l_uint)args->arg3); return (linux_shmat(td, &a)); } case LINUX_SHMDT: { struct linux_shmdt_args a; a.shmaddr = args->ptr; return (linux_shmdt(td, &a)); } case LINUX_SHMGET: { struct linux_shmget_args a; a.key = args->arg1; a.size = args->arg2; a.shmflg = args->arg3; return (linux_shmget(td, &a)); } case LINUX_SHMCTL: { struct linux_shmctl_args a; a.shmid = args->arg1; a.cmd = args->arg2; a.buf = args->ptr; return (linux_shmctl(td, &a)); } default: break; } return (EINVAL); } int linux_old_select(struct thread *td, struct linux_old_select_args *args) { struct l_old_select_argv linux_args; struct linux_select_args newsel; int error; #ifdef DEBUG if (ldebug(old_select)) printf(ARGS(old_select, "%p"), args->ptr); #endif error = copyin(args->ptr, &linux_args, sizeof(linux_args)); if (error) return (error); newsel.nfds = linux_args.nfds; newsel.readfds = PTRIN(linux_args.readfds); newsel.writefds = PTRIN(linux_args.writefds); newsel.exceptfds = PTRIN(linux_args.exceptfds); newsel.timeout = PTRIN(linux_args.timeout); return (linux_select(td, &newsel)); } int linux_fork(struct thread *td, struct linux_fork_args *args) { int error; #ifdef DEBUG if (ldebug(fork)) printf(ARGS(fork, "")); #endif if ((error = fork(td, (struct fork_args *)args)) != 0) return (error); if (td->td_retval[1] == 1) td->td_retval[0] = 0; return (0); } int linux_vfork(struct thread *td, struct linux_vfork_args *args) { int error; #ifdef DEBUG if (ldebug(vfork)) printf(ARGS(vfork, "")); #endif if ((error = vfork(td, (struct vfork_args *)args)) != 0) return (error); /* Are we the child? */ if (td->td_retval[1] == 1) td->td_retval[0] = 0; return (0); } #define CLONE_VM 0x100 #define CLONE_FS 0x200 #define CLONE_FILES 0x400 #define CLONE_SIGHAND 0x800 #define CLONE_PID 0x1000 int linux_clone(struct thread *td, struct linux_clone_args *args) { int error, ff = RFPROC | RFSTOPPED; struct proc *p2; struct thread *td2; int exit_signal; #ifdef DEBUG if (ldebug(clone)) { printf(ARGS(clone, "flags %x, stack %x"), (unsigned int)(uintptr_t)args->flags, (unsigned int)(uintptr_t)args->stack); if (args->flags & CLONE_PID) printf(LMSG("CLONE_PID not yet supported")); } #endif if (!args->stack) return (EINVAL); exit_signal = args->flags & 0x000000ff; if (exit_signal >= LINUX_NSIG) return (EINVAL); if (exit_signal <= LINUX_SIGTBLSZ) exit_signal = linux_to_bsd_signal[_SIG_IDX(exit_signal)]; if (args->flags & CLONE_VM) ff |= RFMEM; if (args->flags & CLONE_SIGHAND) ff |= RFSIGSHARE; if (!(args->flags & CLONE_FILES)) ff |= RFFDG; error = fork1(td, ff, 0, &p2); if (error) return (error); PROC_LOCK(p2); p2->p_sigparent = exit_signal; PROC_UNLOCK(p2); td2 = FIRST_THREAD_IN_PROC(p2); td2->td_frame->tf_rsp = PTROUT(args->stack); #ifdef DEBUG if (ldebug(clone)) printf(LMSG("clone: successful rfork to %ld, stack %p sig = %d"), (long)p2->p_pid, args->stack, exit_signal); #endif /* * Make this runnable after we are finished with it. */ mtx_lock_spin(&sched_lock); TD_SET_CAN_RUN(td2); setrunqueue(td2, SRQ_BORING); mtx_unlock_spin(&sched_lock); td->td_retval[0] = p2->p_pid; td->td_retval[1] = 0; return (0); } /* XXX move */ struct l_mmap_argv { l_ulong addr; l_ulong len; l_ulong prot; l_ulong flags; l_ulong fd; l_ulong pgoff; }; #define STACK_SIZE (2 * 1024 * 1024) #define GUARD_SIZE (4 * PAGE_SIZE) static int linux_mmap_common(struct thread *, struct l_mmap_argv *); int linux_mmap2(struct thread *td, struct linux_mmap2_args *args) { struct l_mmap_argv linux_args; #ifdef DEBUG if (ldebug(mmap2)) printf(ARGS(mmap2, "%p, %d, %d, 0x%08x, %d, %d"), (void *)(intptr_t)args->addr, args->len, args->prot, args->flags, args->fd, args->pgoff); #endif linux_args.addr = PTROUT(args->addr); linux_args.len = args->len; linux_args.prot = args->prot; linux_args.flags = args->flags; linux_args.fd = args->fd; linux_args.pgoff = args->pgoff; return (linux_mmap_common(td, &linux_args)); } int linux_mmap(struct thread *td, struct linux_mmap_args *args) { int error; struct l_mmap_argv linux_args; error = copyin(args->ptr, &linux_args, sizeof(linux_args)); if (error) return (error); #ifdef DEBUG if (ldebug(mmap)) printf(ARGS(mmap, "%p, %d, %d, 0x%08x, %d, %d"), (void *)(intptr_t)linux_args.addr, linux_args.len, linux_args.prot, linux_args.flags, linux_args.fd, linux_args.pgoff); #endif if ((linux_args.pgoff % PAGE_SIZE) != 0) return (EINVAL); linux_args.pgoff /= PAGE_SIZE; return (linux_mmap_common(td, &linux_args)); } static int linux_mmap_common(struct thread *td, struct l_mmap_argv *linux_args) { struct proc *p = td->td_proc; struct mmap_args /* { caddr_t addr; size_t len; int prot; int flags; int fd; long pad; off_t pos; } */ bsd_args; int error; error = 0; bsd_args.flags = 0; if (linux_args->flags & LINUX_MAP_SHARED) bsd_args.flags |= MAP_SHARED; if (linux_args->flags & LINUX_MAP_PRIVATE) bsd_args.flags |= MAP_PRIVATE; if (linux_args->flags & LINUX_MAP_FIXED) bsd_args.flags |= MAP_FIXED; if (linux_args->flags & LINUX_MAP_ANON) bsd_args.flags |= MAP_ANON; else bsd_args.flags |= MAP_NOSYNC; if (linux_args->flags & LINUX_MAP_GROWSDOWN) { bsd_args.flags |= MAP_STACK; /* The linux MAP_GROWSDOWN option does not limit auto * growth of the region. Linux mmap with this option * takes as addr the inital BOS, and as len, the initial * region size. It can then grow down from addr without * limit. However, linux threads has an implicit internal * limit to stack size of STACK_SIZE. Its just not * enforced explicitly in linux. But, here we impose * a limit of (STACK_SIZE - GUARD_SIZE) on the stack * region, since we can do this with our mmap. * * Our mmap with MAP_STACK takes addr as the maximum * downsize limit on BOS, and as len the max size of * the region. It them maps the top SGROWSIZ bytes, * and autgrows the region down, up to the limit * in addr. * * If we don't use the MAP_STACK option, the effect * of this code is to allocate a stack region of a * fixed size of (STACK_SIZE - GUARD_SIZE). */ /* This gives us TOS */ bsd_args.addr = (caddr_t)PTRIN(linux_args->addr) + linux_args->len; if ((caddr_t)PTRIN(bsd_args.addr) > p->p_vmspace->vm_maxsaddr) { /* Some linux apps will attempt to mmap * thread stacks near the top of their * address space. If their TOS is greater * than vm_maxsaddr, vm_map_growstack() * will confuse the thread stack with the * process stack and deliver a SEGV if they * attempt to grow the thread stack past their * current stacksize rlimit. To avoid this, * adjust vm_maxsaddr upwards to reflect * the current stacksize rlimit rather * than the maximum possible stacksize. * It would be better to adjust the * mmap'ed region, but some apps do not check * mmap's return value. */ PROC_LOCK(p); p->p_vmspace->vm_maxsaddr = (char *)LINUX32_USRSTACK - lim_cur(p, RLIMIT_STACK); PROC_UNLOCK(p); } /* This gives us our maximum stack size */ if (linux_args->len > STACK_SIZE - GUARD_SIZE) bsd_args.len = linux_args->len; else bsd_args.len = STACK_SIZE - GUARD_SIZE; /* This gives us a new BOS. If we're using VM_STACK, then * mmap will just map the top SGROWSIZ bytes, and let * the stack grow down to the limit at BOS. If we're * not using VM_STACK we map the full stack, since we * don't have a way to autogrow it. */ bsd_args.addr -= bsd_args.len; } else { bsd_args.addr = (caddr_t)PTRIN(linux_args->addr); bsd_args.len = linux_args->len; } /* * XXX i386 Linux always emulator forces PROT_READ on (why?) * so we do the same. We add PROT_EXEC to work around buggy * applications (e.g. Java) that take advantage of the fact * that execute permissions are not enforced by x86 CPUs. */ bsd_args.prot = linux_args->prot | PROT_EXEC | PROT_READ; if (linux_args->flags & LINUX_MAP_ANON) bsd_args.fd = -1; else bsd_args.fd = linux_args->fd; bsd_args.pos = (off_t)linux_args->pgoff * PAGE_SIZE; bsd_args.pad = 0; #ifdef DEBUG if (ldebug(mmap)) printf("-> %s(%p, %d, %d, 0x%08x, %d, 0x%x)\n", __func__, (void *)bsd_args.addr, (int)bsd_args.len, bsd_args.prot, bsd_args.flags, bsd_args.fd, (int)bsd_args.pos); #endif error = mmap(td, &bsd_args); #ifdef DEBUG if (ldebug(mmap)) printf("-> %s() return: 0x%x (0x%08x)\n", __func__, error, (u_int)td->td_retval[0]); #endif return (error); } int linux_pipe(struct thread *td, struct linux_pipe_args *args) { int pip[2]; int error; register_t reg_rdx; #ifdef DEBUG if (ldebug(pipe)) printf(ARGS(pipe, "*")); #endif reg_rdx = td->td_retval[1]; error = pipe(td, 0); if (error) { td->td_retval[1] = reg_rdx; return (error); } pip[0] = td->td_retval[0]; pip[1] = td->td_retval[1]; error = copyout(pip, args->pipefds, 2 * sizeof(int)); if (error) { td->td_retval[1] = reg_rdx; return (error); } td->td_retval[1] = reg_rdx; td->td_retval[0] = 0; return (0); } int linux_sigaction(struct thread *td, struct linux_sigaction_args *args) { l_osigaction_t osa; l_sigaction_t act, oact; int error; #ifdef DEBUG if (ldebug(sigaction)) printf(ARGS(sigaction, "%d, %p, %p"), args->sig, (void *)args->nsa, (void *)args->osa); #endif if (args->nsa != NULL) { error = copyin(args->nsa, &osa, sizeof(l_osigaction_t)); if (error) return (error); act.lsa_handler = osa.lsa_handler; act.lsa_flags = osa.lsa_flags; act.lsa_restorer = osa.lsa_restorer; LINUX_SIGEMPTYSET(act.lsa_mask); act.lsa_mask.__bits[0] = osa.lsa_mask; } error = linux_do_sigaction(td, args->sig, args->nsa ? &act : NULL, args->osa ? &oact : NULL); if (args->osa != NULL && !error) { osa.lsa_handler = oact.lsa_handler; osa.lsa_flags = oact.lsa_flags; osa.lsa_restorer = oact.lsa_restorer; osa.lsa_mask = oact.lsa_mask.__bits[0]; error = copyout(&osa, args->osa, sizeof(l_osigaction_t)); } return (error); } /* * Linux has two extra args, restart and oldmask. We dont use these, * but it seems that "restart" is actually a context pointer that * enables the signal to happen with a different register set. */ int linux_sigsuspend(struct thread *td, struct linux_sigsuspend_args *args) { sigset_t sigmask; l_sigset_t mask; #ifdef DEBUG if (ldebug(sigsuspend)) printf(ARGS(sigsuspend, "%08lx"), (unsigned long)args->mask); #endif LINUX_SIGEMPTYSET(mask); mask.__bits[0] = args->mask; linux_to_bsd_sigset(&mask, &sigmask); return (kern_sigsuspend(td, sigmask)); } int linux_rt_sigsuspend(struct thread *td, struct linux_rt_sigsuspend_args *uap) { l_sigset_t lmask; sigset_t sigmask; int error; #ifdef DEBUG if (ldebug(rt_sigsuspend)) printf(ARGS(rt_sigsuspend, "%p, %d"), (void *)uap->newset, uap->sigsetsize); #endif if (uap->sigsetsize != sizeof(l_sigset_t)) return (EINVAL); error = copyin(uap->newset, &lmask, sizeof(l_sigset_t)); if (error) return (error); linux_to_bsd_sigset(&lmask, &sigmask); return (kern_sigsuspend(td, sigmask)); } int linux_pause(struct thread *td, struct linux_pause_args *args) { struct proc *p = td->td_proc; sigset_t sigmask; #ifdef DEBUG if (ldebug(pause)) printf(ARGS(pause, "")); #endif PROC_LOCK(p); sigmask = td->td_sigmask; PROC_UNLOCK(p); return (kern_sigsuspend(td, sigmask)); } int linux_sigaltstack(struct thread *td, struct linux_sigaltstack_args *uap) { stack_t ss, oss; l_stack_t lss; int error; #ifdef DEBUG if (ldebug(sigaltstack)) printf(ARGS(sigaltstack, "%p, %p"), uap->uss, uap->uoss); #endif if (uap->uss != NULL) { error = copyin(uap->uss, &lss, sizeof(l_stack_t)); if (error) return (error); ss.ss_sp = PTRIN(lss.ss_sp); ss.ss_size = lss.ss_size; ss.ss_flags = linux_to_bsd_sigaltstack(lss.ss_flags); } error = kern_sigaltstack(td, (uap->uss != NULL) ? &ss : NULL, (uap->uoss != NULL) ? &oss : NULL); if (!error && uap->uoss != NULL) { lss.ss_sp = PTROUT(oss.ss_sp); lss.ss_size = oss.ss_size; lss.ss_flags = bsd_to_linux_sigaltstack(oss.ss_flags); error = copyout(&lss, uap->uoss, sizeof(l_stack_t)); } return (error); } int linux_ftruncate64(struct thread *td, struct linux_ftruncate64_args *args) { struct ftruncate_args sa; #ifdef DEBUG if (ldebug(ftruncate64)) printf(ARGS(ftruncate64, "%u, %jd"), args->fd, (intmax_t)args->length); #endif sa.fd = args->fd; sa.pad = 0; sa.length = args->length; return ftruncate(td, &sa); } int linux_gettimeofday(struct thread *td, struct linux_gettimeofday_args *uap) { struct timeval atv; l_timeval atv32; struct timezone rtz; int error = 0; if (uap->tp) { microtime(&atv); atv32.tv_sec = atv.tv_sec; atv32.tv_usec = atv.tv_usec; error = copyout(&atv32, uap->tp, sizeof (atv32)); } if (error == 0 && uap->tzp != NULL) { rtz.tz_minuteswest = tz_minuteswest; rtz.tz_dsttime = tz_dsttime; error = copyout(&rtz, uap->tzp, sizeof (rtz)); } return (error); } int linux_nanosleep(struct thread *td, struct linux_nanosleep_args *uap) { struct timespec rqt, rmt; struct l_timespec ats32; int error; error = copyin(uap->rqtp, &ats32, sizeof(ats32)); if (error != 0) return (error); rqt.tv_sec = ats32.tv_sec; rqt.tv_nsec = ats32.tv_nsec; error = kern_nanosleep(td, &rqt, &rmt); if (uap->rmtp != NULL) { ats32.tv_sec = rmt.tv_sec; ats32.tv_nsec = rmt.tv_nsec; error = copyout(&ats32, uap->rmtp, sizeof(ats32)); } return (error); } int linux_getrusage(struct thread *td, struct linux_getrusage_args *uap) { struct l_rusage s32; struct rusage s; int error; error = kern_getrusage(td, uap->who, &s); if (error != 0) return (error); if (uap->rusage != NULL) { s32.ru_utime.tv_sec = s.ru_utime.tv_sec; s32.ru_utime.tv_usec = s.ru_utime.tv_usec; s32.ru_stime.tv_sec = s.ru_stime.tv_sec; s32.ru_stime.tv_usec = s.ru_stime.tv_usec; s32.ru_maxrss = s.ru_maxrss; s32.ru_ixrss = s.ru_ixrss; s32.ru_idrss = s.ru_idrss; s32.ru_isrss = s.ru_isrss; s32.ru_minflt = s.ru_minflt; s32.ru_majflt = s.ru_majflt; s32.ru_nswap = s.ru_nswap; s32.ru_inblock = s.ru_inblock; s32.ru_oublock = s.ru_oublock; s32.ru_msgsnd = s.ru_msgsnd; s32.ru_msgrcv = s.ru_msgrcv; s32.ru_nsignals = s.ru_nsignals; s32.ru_nvcsw = s.ru_nvcsw; s32.ru_nivcsw = s.ru_nivcsw; error = copyout(&s32, uap->rusage, sizeof(s32)); } return (error); } int linux_sched_rr_get_interval(struct thread *td, struct linux_sched_rr_get_interval_args *uap) { struct timespec ts; struct l_timespec ts32; int error; error = kern_sched_rr_get_interval(td, uap->pid, &ts); if (error != 0) return (error); ts32.tv_sec = ts.tv_sec; ts32.tv_nsec = ts.tv_nsec; return (copyout(&ts32, uap->interval, sizeof(ts32))); } int linux_mprotect(struct thread *td, struct linux_mprotect_args *uap) { struct mprotect_args bsd_args; bsd_args.addr = uap->addr; bsd_args.len = uap->len; bsd_args.prot = uap->prot; /* XXX PROT_READ implies PROT_EXEC; see linux_mmap_common(). */ if ((bsd_args.prot & PROT_READ) != 0) bsd_args.prot |= PROT_EXEC; return (mprotect(td, &bsd_args)); }