/*- * Copyright (c) 2004 Stefan Farfeleder. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _TGMATH_H_ #define _TGMATH_H_ #include <complex.h> #include <math.h> /* * This implementation of <tgmath.h> requires two implementation-dependent * macros to be defined: * __tg_impl_simple(x, y, z, fn, fnf, fnl, ...) * Invokes fnl() if the corresponding real type of x, y or z is long * double, fn() if it is double or any has an integer type, and fnf() * otherwise. * __tg_impl_full(x, y, z, fn, fnf, fnl, cfn, cfnf, cfnl, ...) * Invokes [c]fnl() if the corresponding real type of x, y or z is long * double, [c]fn() if it is double or any has an integer type, and * [c]fnf() otherwise. The function with the 'c' prefix is called if * any of x, y or z is a complex number. * Both macros call the chosen function with all additional arguments passed * to them, as given by __VA_ARGS__. * * Note that these macros cannot be implemented with C's ?: operator, * because the return type of the whole expression would incorrectly be long * double complex regardless of the argument types. */ #if __GNUC_PREREQ__(3, 1) #define __tg_type(e, t) __builtin_types_compatible_p(__typeof__(e), t) #define __tg_type3(e1, e2, e3, t) \ (__tg_type(e1, t) || __tg_type(e2, t) || __tg_type(e3, t)) #define __tg_type_corr(e1, e2, e3, t) \ (__tg_type3(e1, e2, e3, t) || __tg_type3(e1, e2, e3, t _Complex)) #define __tg_integer(e1, e2, e3) \ (((__typeof__(e1))1.5 == 1) || ((__typeof__(e2))1.5 == 1) || \ ((__typeof__(e3))1.5 == 1)) #define __tg_is_complex(e1, e2, e3) \ (__tg_type3(e1, e2, e3, float _Complex) || \ __tg_type3(e1, e2, e3, double _Complex) || \ __tg_type3(e1, e2, e3, long double _Complex)) || \ __tg_type3(e1, e2, e3, __typeof__(_Complex_I)) #define __tg_impl_simple(x, y, z, fn, fnf, fnl, ...) \ __builtin_choose_expr(__tg_type_corr(x, y, z, long double), \ fnl(__VA_ARGS__), __builtin_choose_expr( \ __tg_type_corr(x, y, z, double) || __tg_integer(x, y, z),\ fn(__VA_ARGS__), fnf(__VA_ARGS__))) #define __tg_impl_full(x, y, z, fn, fnf, fnl, cfn, cfnf, cfnl, ...) \ __builtin_choose_expr(__tg_is_complex(x, y, z), \ __tg_impl_simple(x, y, z, cfn, cfnf, cfnl, __VA_ARGS__), \ __tg_impl_simple(x, y, z, fn, fnf, fnl, __VA_ARGS__)) #else /* __GNUC__ */ #error "<tgmath.h> not implemented for this compiler" #endif /* !__GNUC__ */ /* Macros to save lots of repetition below */ #define __tg_simple(x, fn) \ __tg_impl_simple(x, x, x, fn, fn##f, fn##l, x) #define __tg_simple2(x, y, fn) \ __tg_impl_simple(x, x, y, fn, fn##f, fn##l, x, y) #define __tg_simplev(x, fn, ...) \ __tg_impl_simple(x, x, x, fn, fn##f, fn##l, __VA_ARGS__) #define __tg_full(x, fn) \ __tg_impl_full(x, x, x, fn, fn##f, fn##l, c##fn, c##fn##f, c##fn##l, x) /* 7.22#4 -- These macros expand to real or complex functions, depending on * the type of their arguments. */ #define acos(x) __tg_full(x, acos) #define asin(x) __tg_full(x, asin) #define atan(x) __tg_full(x, atan) #define acosh(x) __tg_full(x, acosh) #define asinh(x) __tg_full(x, asinh) #define atanh(x) __tg_full(x, atanh) #define cos(x) __tg_full(x, cos) #define sin(x) __tg_full(x, sin) #define tan(x) __tg_full(x, tan) #define cosh(x) __tg_full(x, cosh) #define sinh(x) __tg_full(x, sinh) #define tanh(x) __tg_full(x, tanh) #define exp(x) __tg_full(x, exp) #define log(x) __tg_full(x, log) #define pow(x, y) __tg_impl_full(x, x, y, pow, powf, powl, \ cpow, cpowf, cpowl, x, y) #define sqrt(x) __tg_full(x, sqrt) /* "The corresponding type-generic macro for fabs and cabs is fabs." */ #define fabs(x) __tg_impl_full(x, x, x, fabs, fabsf, fabsl, \ cabs, cabsf, cabsl, x) /* 7.22#5 -- These macros are only defined for arguments with real type. */ #define atan2(x, y) __tg_simple2(x, y, atan2) #define cbrt(x) __tg_simple(x, cbrt) #define ceil(x) __tg_simple(x, ceil) #define copysign(x, y) __tg_simple2(x, y, copysign) #define erf(x) __tg_simple(x, erf) #define erfc(x) __tg_simple(x, erfc) #define exp2(x) __tg_simple(x, exp2) #define expm1(x) __tg_simple(x, expm1) #define fdim(x, y) __tg_simple2(x, y, fdim) #define floor(x) __tg_simple(x, floor) #define fma(x, y, z) __tg_impl_simple(x, y, z, fma, fmaf, fmal, x, y, z) #define fmax(x, y) __tg_simple2(x, y, fmax) #define fmin(x, y) __tg_simple2(x, y, fmin) #define fmod(x, y) __tg_simple2(x, y, fmod) #define frexp(x, y) __tg_simplev(x, frexp, x, y) #define hypot(x, y) __tg_simple2(x, y, hypot) #define ilogb(x) __tg_simple(x, ilogb) #define ldexp(x, y) __tg_simplev(x, ldexp, x, y) #define lgamma(x) __tg_simple(x, lgamma) #define llrint(x) __tg_simple(x, llrint) #define llround(x) __tg_simple(x, llround) #define log10(x) __tg_simple(x, log10) #define log1p(x) __tg_simple(x, log1p) #define log2(x) __tg_simple(x, log2) #define logb(x) __tg_simple(x, logb) #define lrint(x) __tg_simple(x, lrint) #define lround(x) __tg_simple(x, lround) #define nearbyint(x) __tg_simple(x, nearbyint) #define nextafter(x, y) __tg_simple2(x, y, nextafter) #define nexttoward(x, y) __tg_simplev(x, nexttoward, x, y) #define remainder(x, y) __tg_simple2(x, y, remainder) #define remquo(x, y, z) __tg_impl_simple(x, x, y, remquo, remquof, \ remquol, x, y, z) #define rint(x) __tg_simple(x, rint) #define round(x) __tg_simple(x, round) #define scalbn(x, y) __tg_simplev(x, scalbn, x, y) #define scalbln(x, y) __tg_simplev(x, scalbln, x, y) #define tgamma(x) __tg_simple(x, tgamma) #define trunc(x) __tg_simple(x, trunc) /* 7.22#6 -- These macros always expand to complex functions. */ #define carg(x) __tg_simple(x, carg) #define cimag(x) __tg_simple(x, cimag) #define conj(x) __tg_simple(x, conj) #define cproj(x) __tg_simple(x, cproj) #define creal(x) __tg_simple(x, creal) #endif /* !_TGMATH_H_ */