/* * Copyright (c) 1995 Terrence R. Lambert * All rights reserved. * * Copyright (c) 1982, 1986, 1989, 1991, 1992, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)init_main.c 8.9 (Berkeley) 1/21/94 * $FreeBSD$ */ #include "opt_init_path.h" #include "opt_mac.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include void mi_startup(void); /* Should be elsewhere */ /* Components of the first process -- never freed. */ static struct session session0; static struct pgrp pgrp0; struct proc proc0; struct thread thread0; struct kse kse0; struct ksegrp ksegrp0; static struct filedesc0 filedesc0; static struct plimit limit0; struct vmspace vmspace0; struct proc *initproc; int cmask = CMASK; struct vnode *rootvp; int boothowto = 0; /* initialized so that it can be patched */ SYSCTL_INT(_debug, OID_AUTO, boothowto, CTLFLAG_RD, &boothowto, 0, ""); int bootverbose; SYSCTL_INT(_debug, OID_AUTO, bootverbose, CTLFLAG_RW, &bootverbose, 0, ""); /* * This ensures that there is at least one entry so that the sysinit_set * symbol is not undefined. A sybsystem ID of SI_SUB_DUMMY is never * executed. */ SYSINIT(placeholder, SI_SUB_DUMMY, SI_ORDER_ANY, NULL, NULL) /* * The sysinit table itself. Items are checked off as the are run. * If we want to register new sysinit types, add them to newsysinit. */ SET_DECLARE(sysinit_set, struct sysinit); struct sysinit **sysinit, **sysinit_end; struct sysinit **newsysinit, **newsysinit_end; /* * Merge a new sysinit set into the current set, reallocating it if * necessary. This can only be called after malloc is running. */ void sysinit_add(struct sysinit **set, struct sysinit **set_end) { struct sysinit **newset; struct sysinit **sipp; struct sysinit **xipp; int count; count = set_end - set; if (newsysinit) count += newsysinit_end - newsysinit; else count += sysinit_end - sysinit; newset = malloc(count * sizeof(*sipp), M_TEMP, M_NOWAIT); if (newset == NULL) panic("cannot malloc for sysinit"); xipp = newset; if (newsysinit) for (sipp = newsysinit; sipp < newsysinit_end; sipp++) *xipp++ = *sipp; else for (sipp = sysinit; sipp < sysinit_end; sipp++) *xipp++ = *sipp; for (sipp = set; sipp < set_end; sipp++) *xipp++ = *sipp; if (newsysinit) free(newsysinit, M_TEMP); newsysinit = newset; newsysinit_end = newset + count; } /* * System startup; initialize the world, create process 0, mount root * filesystem, and fork to create init and pagedaemon. Most of the * hard work is done in the lower-level initialization routines including * startup(), which does memory initialization and autoconfiguration. * * This allows simple addition of new kernel subsystems that require * boot time initialization. It also allows substitution of subsystem * (for instance, a scheduler, kernel profiler, or VM system) by object * module. Finally, it allows for optional "kernel threads". */ void mi_startup(void) { register struct sysinit **sipp; /* system initialization*/ register struct sysinit **xipp; /* interior loop of sort*/ register struct sysinit *save; /* bubble*/ if (sysinit == NULL) { sysinit = SET_BEGIN(sysinit_set); sysinit_end = SET_LIMIT(sysinit_set); } restart: /* * Perform a bubble sort of the system initialization objects by * their subsystem (primary key) and order (secondary key). */ for (sipp = sysinit; sipp < sysinit_end; sipp++) { for (xipp = sipp + 1; xipp < sysinit_end; xipp++) { if ((*sipp)->subsystem < (*xipp)->subsystem || ((*sipp)->subsystem == (*xipp)->subsystem && (*sipp)->order <= (*xipp)->order)) continue; /* skip*/ save = *sipp; *sipp = *xipp; *xipp = save; } } /* * Traverse the (now) ordered list of system initialization tasks. * Perform each task, and continue on to the next task. * * The last item on the list is expected to be the scheduler, * which will not return. */ for (sipp = sysinit; sipp < sysinit_end; sipp++) { if ((*sipp)->subsystem == SI_SUB_DUMMY) continue; /* skip dummy task(s)*/ if ((*sipp)->subsystem == SI_SUB_DONE) continue; /* Call function */ (*((*sipp)->func))((*sipp)->udata); /* Check off the one we're just done */ (*sipp)->subsystem = SI_SUB_DONE; /* Check if we've installed more sysinit items via KLD */ if (newsysinit != NULL) { if (sysinit != SET_BEGIN(sysinit_set)) free(sysinit, M_TEMP); sysinit = newsysinit; sysinit_end = newsysinit_end; newsysinit = NULL; newsysinit_end = NULL; goto restart; } } panic("Shouldn't get here!"); /* NOTREACHED*/ } /* *************************************************************************** **** **** The following SYSINIT's belong elsewhere, but have not yet **** been moved. **** *************************************************************************** */ static void print_caddr_t(void *data __unused) { printf("%s", (char *)data); } SYSINIT(announce, SI_SUB_COPYRIGHT, SI_ORDER_FIRST, print_caddr_t, copyright) SYSINIT(version, SI_SUB_COPYRIGHT, SI_ORDER_SECOND, print_caddr_t, version) static void set_boot_verbose(void *data __unused) { if (boothowto & RB_VERBOSE) bootverbose++; } SYSINIT(boot_verbose, SI_SUB_TUNABLES, SI_ORDER_ANY, set_boot_verbose, NULL) struct sysentvec null_sysvec = { 0, NULL, 0, 0, NULL, 0, NULL, NULL, NULL, NULL, NULL, NULL, NULL, "null", NULL, NULL, 0, PAGE_SIZE, VM_MIN_ADDRESS, VM_MAXUSER_ADDRESS, USRSTACK, PS_STRINGS, VM_PROT_ALL, NULL, NULL }; /* *************************************************************************** **** **** The two following SYSINIT's are proc0 specific glue code. I am not **** convinced that they can not be safely combined, but their order of **** operation has been maintained as the same as the original init_main.c **** for right now. **** **** These probably belong in init_proc.c or kern_proc.c, since they **** deal with proc0 (the fork template process). **** *************************************************************************** */ /* ARGSUSED*/ static void proc0_init(void *dummy __unused) { register struct proc *p; register struct filedesc0 *fdp; register unsigned i; struct thread *td; struct ksegrp *kg; struct kse *ke; GIANT_REQUIRED; p = &proc0; td = &thread0; ke = &kse0; kg = &ksegrp0; ke->ke_sched = kse0_sched; kg->kg_sched = ksegrp0_sched; p->p_sched = proc0_sched; td->td_sched = thread0_sched; /* * Initialize magic number. */ p->p_magic = P_MAGIC; /* * Initialize thread, process and pgrp structures. */ procinit(); threadinit(); /* * Initialize sleep queue hash table */ sleepinit(); /* * additional VM structures */ vm_init2(); /* * Create process 0 (the swapper). */ LIST_INSERT_HEAD(&allproc, p, p_list); LIST_INSERT_HEAD(PIDHASH(0), p, p_hash); mtx_init(&pgrp0.pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); p->p_pgrp = &pgrp0; LIST_INSERT_HEAD(PGRPHASH(0), &pgrp0, pg_hash); LIST_INIT(&pgrp0.pg_members); LIST_INSERT_HEAD(&pgrp0.pg_members, p, p_pglist); pgrp0.pg_session = &session0; mtx_init(&session0.s_mtx, "session", NULL, MTX_DEF); session0.s_count = 1; session0.s_leader = p; p->p_sysent = &null_sysvec; /* * proc_linkup was already done in init_i386() or alphainit() etc. * because the earlier code needed to follow td->td_proc. Otherwise * I would have done it here.. maybe this means this should be * done earlier too. */ p->p_flag = P_SYSTEM; p->p_sflag = PS_INMEM; p->p_state = PRS_NORMAL; td->td_state = TDS_RUNNING; kg->kg_nice = NZERO; kg->kg_pri_class = PRI_TIMESHARE; kg->kg_user_pri = PUSER; td->td_priority = PVM; td->td_base_pri = PUSER; td->td_kse = ke; /* XXXKSE */ td->td_oncpu = 0; ke->ke_state = KES_THREAD; ke->ke_thread = td; p->p_peers = 0; p->p_leader = p; bcopy("swapper", p->p_comm, sizeof ("swapper")); callout_init(&p->p_itcallout, 1); callout_init(&td->td_slpcallout, 1); /* Create credentials. */ p->p_ucred = crget(); p->p_ucred->cr_ngroups = 1; /* group 0 */ p->p_ucred->cr_uidinfo = uifind(0); p->p_ucred->cr_ruidinfo = uifind(0); p->p_ucred->cr_prison = NULL; /* Don't jail it. */ #ifdef MAC mac_create_proc0(p->p_ucred); #endif td->td_ucred = crhold(p->p_ucred); /* Create sigacts. */ p->p_sigacts = sigacts_alloc(); /* Initialize signal state for process 0. */ siginit(&proc0); /* Create the file descriptor table. */ fdp = &filedesc0; p->p_fd = &fdp->fd_fd; mtx_init(&fdp->fd_fd.fd_mtx, FILEDESC_LOCK_DESC, NULL, MTX_DEF); fdp->fd_fd.fd_refcnt = 1; fdp->fd_fd.fd_cmask = cmask; fdp->fd_fd.fd_ofiles = fdp->fd_dfiles; fdp->fd_fd.fd_ofileflags = fdp->fd_dfileflags; fdp->fd_fd.fd_nfiles = NDFILE; /* Create the limits structures. */ p->p_limit = &limit0; for (i = 0; i < sizeof(p->p_rlimit)/sizeof(p->p_rlimit[0]); i++) limit0.pl_rlimit[i].rlim_cur = limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY; limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur = limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles; limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur = limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc; i = ptoa(cnt.v_free_count); limit0.pl_rlimit[RLIMIT_RSS].rlim_max = i; limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = i; limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = i / 3; limit0.p_refcnt = 1; p->p_cpulimit = RLIM_INFINITY; /* Allocate a prototype map so we have something to fork. */ pmap_pinit0(vmspace_pmap(&vmspace0)); p->p_vmspace = &vmspace0; vmspace0.vm_refcnt = 1; vm_map_init(&vmspace0.vm_map, p->p_sysent->sv_minuser, p->p_sysent->sv_maxuser); vmspace0.vm_map.pmap = vmspace_pmap(&vmspace0); /* * We continue to place resource usage info * in the user struct so that it's pageable. */ p->p_stats = &p->p_uarea->u_stats; /* * Charge root for one process. */ (void)chgproccnt(p->p_ucred->cr_ruidinfo, 1, 0); } SYSINIT(p0init, SI_SUB_INTRINSIC, SI_ORDER_FIRST, proc0_init, NULL) /* ARGSUSED*/ static void proc0_post(void *dummy __unused) { struct timespec ts; struct proc *p; /* * Now we can look at the time, having had a chance to verify the * time from the filesystem. Pretend that proc0 started now. */ sx_slock(&allproc_lock); LIST_FOREACH(p, &allproc, p_list) { microuptime(&p->p_stats->p_start); p->p_runtime.sec = 0; p->p_runtime.frac = 0; } sx_sunlock(&allproc_lock); binuptime(PCPU_PTR(switchtime)); PCPU_SET(switchticks, ticks); /* * Give the ``random'' number generator a thump. */ nanotime(&ts); srandom(ts.tv_sec ^ ts.tv_nsec); } SYSINIT(p0post, SI_SUB_INTRINSIC_POST, SI_ORDER_FIRST, proc0_post, NULL) /* *************************************************************************** **** **** The following SYSINIT's and glue code should be moved to the **** respective files on a per subsystem basis. **** *************************************************************************** */ /* *************************************************************************** **** **** The following code probably belongs in another file, like **** kern/init_init.c. **** *************************************************************************** */ /* * List of paths to try when searching for "init". */ static char init_path[MAXPATHLEN] = #ifdef INIT_PATH __XSTRING(INIT_PATH); #else "/sbin/init:/sbin/oinit:/sbin/init.bak:/stand/sysinstall"; #endif SYSCTL_STRING(_kern, OID_AUTO, init_path, CTLFLAG_RD, init_path, 0, "Path used to search the init process"); /* * Start the initial user process; try exec'ing each pathname in init_path. * The program is invoked with one argument containing the boot flags. */ static void start_init(void *dummy) { vm_offset_t addr; struct execve_args args; int options, error; char *var, *path, *next, *s; char *ucp, **uap, *arg0, *arg1; struct thread *td; struct proc *p; int init_does_devfs = 0; mtx_lock(&Giant); GIANT_REQUIRED; td = curthread; p = td->td_proc; vfs_mountroot(); /* Get the vnode for '/'. Set p->p_fd->fd_cdir to reference it. */ if (VFS_ROOT(TAILQ_FIRST(&mountlist), &rootvnode)) panic("cannot find root vnode"); FILEDESC_LOCK(p->p_fd); p->p_fd->fd_cdir = rootvnode; VREF(p->p_fd->fd_cdir); p->p_fd->fd_rdir = rootvnode; VREF(p->p_fd->fd_rdir); FILEDESC_UNLOCK(p->p_fd); VOP_UNLOCK(rootvnode, 0, td); #ifdef MAC mac_create_root_mount(td->td_ucred, TAILQ_FIRST(&mountlist)); #endif /* * For disk based systems, we probably cannot do this yet * since the fs will be read-only. But a NFS root * might be ok. It is worth a shot. */ error = kern_mkdir(td, "/dev", UIO_SYSSPACE, 0700); if (error == EEXIST) error = 0; if (error == 0) error = kernel_vmount(0, "fstype", "devfs", "fspath", "/dev", NULL); if (error != 0) init_does_devfs = 1; /* * Need just enough stack to hold the faked-up "execve()" arguments. */ addr = p->p_sysent->sv_usrstack - PAGE_SIZE; if (vm_map_find(&p->p_vmspace->vm_map, NULL, 0, &addr, PAGE_SIZE, FALSE, VM_PROT_ALL, VM_PROT_ALL, 0) != 0) panic("init: couldn't allocate argument space"); p->p_vmspace->vm_maxsaddr = (caddr_t)addr; p->p_vmspace->vm_ssize = 1; if ((var = getenv("init_path")) != NULL) { strlcpy(init_path, var, sizeof(init_path)); freeenv(var); } for (path = init_path; *path != '\0'; path = next) { while (*path == ':') path++; if (*path == '\0') break; for (next = path; *next != '\0' && *next != ':'; next++) /* nothing */ ; if (bootverbose) printf("start_init: trying %.*s\n", (int)(next - path), path); /* * Move out the boot flag argument. */ options = 0; ucp = (char *)p->p_sysent->sv_usrstack; (void)subyte(--ucp, 0); /* trailing zero */ if (boothowto & RB_SINGLE) { (void)subyte(--ucp, 's'); options = 1; } #ifdef notyet if (boothowto & RB_FASTBOOT) { (void)subyte(--ucp, 'f'); options = 1; } #endif #ifdef BOOTCDROM (void)subyte(--ucp, 'C'); options = 1; #endif if (init_does_devfs) { (void)subyte(--ucp, 'd'); options = 1; } if (options == 0) (void)subyte(--ucp, '-'); (void)subyte(--ucp, '-'); /* leading hyphen */ arg1 = ucp; /* * Move out the file name (also arg 0). */ (void)subyte(--ucp, 0); for (s = next - 1; s >= path; s--) (void)subyte(--ucp, *s); arg0 = ucp; /* * Move out the arg pointers. */ uap = (char **)((intptr_t)ucp & ~(sizeof(intptr_t)-1)); (void)suword((caddr_t)--uap, (long)0); /* terminator */ (void)suword((caddr_t)--uap, (long)(intptr_t)arg1); (void)suword((caddr_t)--uap, (long)(intptr_t)arg0); /* * Point at the arguments. */ args.fname = arg0; args.argv = uap; args.envv = NULL; /* * Now try to exec the program. If can't for any reason * other than it doesn't exist, complain. * * Otherwise, return via fork_trampoline() all the way * to user mode as init! */ if ((error = execve(td, &args)) == 0) { mtx_unlock(&Giant); return; } if (error != ENOENT) printf("exec %.*s: error %d\n", (int)(next - path), path, error); } printf("init: not found in path %s\n", init_path); panic("no init"); } /* * Like kthread_create(), but runs in it's own address space. * We do this early to reserve pid 1. * * Note special case - do not make it runnable yet. Other work * in progress will change this more. */ static void create_init(const void *udata __unused) { struct ucred *newcred, *oldcred; int error; error = fork1(&thread0, RFFDG | RFPROC | RFSTOPPED, 0, &initproc); if (error) panic("cannot fork init: %d\n", error); /* divorce init's credentials from the kernel's */ newcred = crget(); PROC_LOCK(initproc); initproc->p_flag |= P_SYSTEM; oldcred = initproc->p_ucred; crcopy(newcred, oldcred); #ifdef MAC mac_create_proc1(newcred); #endif initproc->p_ucred = newcred; PROC_UNLOCK(initproc); crfree(oldcred); cred_update_thread(FIRST_THREAD_IN_PROC(initproc)); mtx_lock_spin(&sched_lock); initproc->p_sflag |= PS_INMEM; mtx_unlock_spin(&sched_lock); cpu_set_fork_handler(FIRST_THREAD_IN_PROC(initproc), start_init, NULL); } SYSINIT(init, SI_SUB_CREATE_INIT, SI_ORDER_FIRST, create_init, NULL) /* * Make it runnable now. */ static void kick_init(const void *udata __unused) { struct thread *td; td = FIRST_THREAD_IN_PROC(initproc); mtx_lock_spin(&sched_lock); TD_SET_CAN_RUN(td); setrunqueue(td); /* XXXKSE */ mtx_unlock_spin(&sched_lock); } SYSINIT(kickinit, SI_SUB_KTHREAD_INIT, SI_ORDER_FIRST, kick_init, NULL)