/*- * Copyright (c) 2016 Rubicon Communications, LLC (Netgate) * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "spibus_if.h" static void ti_spi_intr(void *); static int ti_spi_detach(device_t); #undef TI_SPI_DEBUG #ifdef TI_SPI_DEBUG #define IRQSTATUSBITS \ "\020\1TX0_EMPTY\2TX0_UNDERFLOW\3RX0_FULL\4RX0_OVERFLOW" \ "\5TX1_EMPTY\6TX1_UNDERFLOW\7RX1_FULL\11TX2_EMPTY" \ "\12TX1_UNDERFLOW\13RX2_FULL\15TX3_EMPTY\16TX3_UNDERFLOW" \ "\17RX3_FULL\22EOW" #define CONFBITS \ "\020\1PHA\2POL\7EPOL\17DMAW\20DMAR\21DPE0\22DPE1\23IS" \ "\24TURBO\25FORCE\30SBE\31SBPOL\34FFEW\35FFER\36CLKG" #define STATBITS \ "\020\1RXS\2TXS\3EOT\4TXFFE\5TXFFF\6RXFFE\7RXFFFF" #define MODULCTRLBITS \ "\020\1SINGLE\2NOSPIEN\3SLAVE\4SYST\10MOA\11FDAA" #define CTRLBITS \ "\020\1ENABLED" static void ti_spi_printr(device_t dev) { int clk, conf, ctrl, div, i, j, wl; struct ti_spi_softc *sc; uint32_t reg; sc = device_get_softc(dev); reg = TI_SPI_READ(sc, MCSPI_SYSCONFIG); device_printf(dev, "SYSCONFIG: %#x\n", reg); reg = TI_SPI_READ(sc, MCSPI_SYSSTATUS); device_printf(dev, "SYSSTATUS: %#x\n", reg); reg = TI_SPI_READ(sc, MCSPI_IRQSTATUS); device_printf(dev, "IRQSTATUS: 0x%b\n", reg, IRQSTATUSBITS); reg = TI_SPI_READ(sc, MCSPI_IRQENABLE); device_printf(dev, "IRQENABLE: 0x%b\n", reg, IRQSTATUSBITS); reg = TI_SPI_READ(sc, MCSPI_MODULCTRL); device_printf(dev, "MODULCTRL: 0x%b\n", reg, MODULCTRLBITS); for (i = 0; i < sc->sc_numcs; i++) { ctrl = TI_SPI_READ(sc, MCSPI_CTRL_CH(i)); conf = TI_SPI_READ(sc, MCSPI_CONF_CH(i)); device_printf(dev, "CH%dCONF: 0x%b\n", i, conf, CONFBITS); if (conf & MCSPI_CONF_CLKG) { div = (conf >> MCSPI_CONF_CLK_SHIFT) & MCSPI_CONF_CLK_MSK; div |= ((ctrl >> MCSPI_CTRL_EXTCLK_SHIFT) & MCSPI_CTRL_EXTCLK_MSK) << 4; } else { div = 1; j = (conf >> MCSPI_CONF_CLK_SHIFT) & MCSPI_CONF_CLK_MSK; while (j-- > 0) div <<= 1; } clk = TI_SPI_GCLK / div; wl = ((conf >> MCSPI_CONF_WL_SHIFT) & MCSPI_CONF_WL_MSK) + 1; device_printf(dev, "wordlen: %-2d clock: %d\n", wl, clk); reg = TI_SPI_READ(sc, MCSPI_STAT_CH(i)); device_printf(dev, "CH%dSTAT: 0x%b\n", i, reg, STATBITS); device_printf(dev, "CH%dCTRL: 0x%b\n", i, ctrl, CTRLBITS); } reg = TI_SPI_READ(sc, MCSPI_XFERLEVEL); device_printf(dev, "XFERLEVEL: %#x\n", reg); } #endif static void ti_spi_set_clock(struct ti_spi_softc *sc, int ch, int freq) { uint32_t clkdiv, conf, div, extclk, reg; clkdiv = TI_SPI_GCLK / freq; if (clkdiv > MCSPI_EXTCLK_MSK) { extclk = 0; clkdiv = 0; div = 1; while (TI_SPI_GCLK / div > freq && clkdiv <= 0xf) { clkdiv++; div <<= 1; } conf = clkdiv << MCSPI_CONF_CLK_SHIFT; } else { extclk = clkdiv >> 4; clkdiv &= MCSPI_CONF_CLK_MSK; conf = MCSPI_CONF_CLKG | clkdiv << MCSPI_CONF_CLK_SHIFT; } reg = TI_SPI_READ(sc, MCSPI_CTRL_CH(ch)); reg &= ~(MCSPI_CTRL_EXTCLK_MSK << MCSPI_CTRL_EXTCLK_SHIFT); reg |= extclk << MCSPI_CTRL_EXTCLK_SHIFT; TI_SPI_WRITE(sc, MCSPI_CTRL_CH(ch), reg); reg = TI_SPI_READ(sc, MCSPI_CONF_CH(ch)); reg &= ~(MCSPI_CONF_CLKG | MCSPI_CONF_CLK_MSK << MCSPI_CONF_CLK_SHIFT); TI_SPI_WRITE(sc, MCSPI_CONF_CH(ch), reg | conf); } static int ti_spi_probe(device_t dev) { if (!ofw_bus_status_okay(dev)) return (ENXIO); if (!ofw_bus_is_compatible(dev, "ti,omap4-mcspi")) return (ENXIO); device_set_desc(dev, "TI McSPI controller"); return (BUS_PROBE_DEFAULT); } static int ti_spi_attach(device_t dev) { int clk_id, err, i, rid, timeout; struct ti_spi_softc *sc; uint32_t rev; sc = device_get_softc(dev); sc->sc_dev = dev; /* * Get the MMCHS device id from FDT. If it's not there use the newbus * unit number (which will work as long as the devices are in order and * none are skipped in the fdt). Note that this is a property we made * up and added in freebsd, it doesn't exist in the published bindings. */ clk_id = ti_hwmods_get_clock(dev); if (clk_id == INVALID_CLK_IDENT) { device_printf(dev, "failed to get clock based on hwmods property\n"); return (EINVAL); } /* Activate the McSPI module. */ err = ti_prcm_clk_enable(clk_id); if (err) { device_printf(dev, "Error: failed to activate source clock\n"); return (err); } /* Get the number of available channels. */ if ((OF_getencprop(ofw_bus_get_node(dev), "ti,spi-num-cs", &sc->sc_numcs, sizeof(sc->sc_numcs))) <= 0) { sc->sc_numcs = 2; } rid = 0; sc->sc_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (!sc->sc_mem_res) { device_printf(dev, "cannot allocate memory window\n"); return (ENXIO); } sc->sc_bst = rman_get_bustag(sc->sc_mem_res); sc->sc_bsh = rman_get_bushandle(sc->sc_mem_res); rid = 0; sc->sc_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE); if (!sc->sc_irq_res) { bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res); device_printf(dev, "cannot allocate interrupt\n"); return (ENXIO); } /* Hook up our interrupt handler. */ if (bus_setup_intr(dev, sc->sc_irq_res, INTR_TYPE_MISC | INTR_MPSAFE, NULL, ti_spi_intr, sc, &sc->sc_intrhand)) { bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq_res); bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res); device_printf(dev, "cannot setup the interrupt handler\n"); return (ENXIO); } mtx_init(&sc->sc_mtx, "ti_spi", NULL, MTX_DEF); /* Issue a softreset to the controller */ TI_SPI_WRITE(sc, MCSPI_SYSCONFIG, MCSPI_SYSCONFIG_SOFTRESET); timeout = 1000; while (!(TI_SPI_READ(sc, MCSPI_SYSSTATUS) & MCSPI_SYSSTATUS_RESETDONE)) { if (--timeout == 0) { device_printf(dev, "Error: Controller reset operation timed out\n"); ti_spi_detach(dev); return (ENXIO); } DELAY(100); } /* Print the McSPI module revision. */ rev = TI_SPI_READ(sc, MCSPI_REVISION); device_printf(dev, "scheme: %#x func: %#x rtl: %d rev: %d.%d custom rev: %d\n", (rev >> MCSPI_REVISION_SCHEME_SHIFT) & MCSPI_REVISION_SCHEME_MSK, (rev >> MCSPI_REVISION_FUNC_SHIFT) & MCSPI_REVISION_FUNC_MSK, (rev >> MCSPI_REVISION_RTL_SHIFT) & MCSPI_REVISION_RTL_MSK, (rev >> MCSPI_REVISION_MAJOR_SHIFT) & MCSPI_REVISION_MAJOR_MSK, (rev >> MCSPI_REVISION_MINOR_SHIFT) & MCSPI_REVISION_MINOR_MSK, (rev >> MCSPI_REVISION_CUSTOM_SHIFT) & MCSPI_REVISION_CUSTOM_MSK); /* Set Master mode, single channel. */ TI_SPI_WRITE(sc, MCSPI_MODULCTRL, MCSPI_MODULCTRL_SINGLE); /* Clear pending interrupts and disable interrupts. */ TI_SPI_WRITE(sc, MCSPI_IRQENABLE, 0x0); TI_SPI_WRITE(sc, MCSPI_IRQSTATUS, 0xffff); for (i = 0; i < sc->sc_numcs; i++) { /* * Default to SPI mode 0, CS active low, 8 bits word length and * 500kHz clock. */ TI_SPI_WRITE(sc, MCSPI_CONF_CH(i), MCSPI_CONF_DPE0 | MCSPI_CONF_EPOL | (8 - 1) << MCSPI_CONF_WL_SHIFT); /* Set initial clock - 500kHz. */ ti_spi_set_clock(sc, i, 500000); } #ifdef TI_SPI_DEBUG ti_spi_printr(dev); #endif device_add_child(dev, "spibus", -1); return (bus_generic_attach(dev)); } static int ti_spi_detach(device_t dev) { struct ti_spi_softc *sc; sc = device_get_softc(dev); /* Clear pending interrupts and disable interrupts. */ TI_SPI_WRITE(sc, MCSPI_IRQENABLE, 0); TI_SPI_WRITE(sc, MCSPI_IRQSTATUS, 0xffff); /* Reset controller. */ TI_SPI_WRITE(sc, MCSPI_SYSCONFIG, MCSPI_SYSCONFIG_SOFTRESET); bus_generic_detach(dev); mtx_destroy(&sc->sc_mtx); if (sc->sc_intrhand) bus_teardown_intr(dev, sc->sc_irq_res, sc->sc_intrhand); if (sc->sc_irq_res) bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq_res); if (sc->sc_mem_res) bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res); return (0); } static int ti_spi_fill_fifo(struct ti_spi_softc *sc) { int bytes, timeout; struct spi_command *cmd; uint32_t written; uint8_t *data; cmd = sc->sc_cmd; bytes = min(sc->sc_len - sc->sc_written, sc->sc_fifolvl); while (bytes-- > 0) { data = (uint8_t *)cmd->tx_cmd; written = sc->sc_written++; if (written >= cmd->tx_cmd_sz) { data = (uint8_t *)cmd->tx_data; written -= cmd->tx_cmd_sz; } if (sc->sc_fifolvl == 1) { /* FIFO disabled. */ timeout = 1000; while (--timeout > 0 && (TI_SPI_READ(sc, MCSPI_STAT_CH(sc->sc_cs)) & MCSPI_STAT_TXS) == 0) { DELAY(100); } if (timeout == 0) return (-1); } TI_SPI_WRITE(sc, MCSPI_TX_CH(sc->sc_cs), data[written]); } return (0); } static int ti_spi_drain_fifo(struct ti_spi_softc *sc) { int bytes, timeout; struct spi_command *cmd; uint32_t read; uint8_t *data; cmd = sc->sc_cmd; bytes = min(sc->sc_len - sc->sc_read, sc->sc_fifolvl); while (bytes-- > 0) { data = (uint8_t *)cmd->rx_cmd; read = sc->sc_read++; if (read >= cmd->rx_cmd_sz) { data = (uint8_t *)cmd->rx_data; read -= cmd->rx_cmd_sz; } if (sc->sc_fifolvl == 1) { /* FIFO disabled. */ timeout = 1000; while (--timeout > 0 && (TI_SPI_READ(sc, MCSPI_STAT_CH(sc->sc_cs)) & MCSPI_STAT_RXS) == 0) { DELAY(100); } if (timeout == 0) return (-1); } data[read] = TI_SPI_READ(sc, MCSPI_RX_CH(sc->sc_cs)); } return (0); } static void ti_spi_intr(void *arg) { int eow; struct ti_spi_softc *sc; uint32_t status; eow = 0; sc = (struct ti_spi_softc *)arg; TI_SPI_LOCK(sc); status = TI_SPI_READ(sc, MCSPI_IRQSTATUS); /* * No new TX_empty or RX_full event will be asserted while the CPU has * not performed the number of writes or reads defined by * MCSPI_XFERLEVEL[AEL] and MCSPI_XFERLEVEL[AFL]. It is responsibility * of CPU perform the right number of writes and reads. */ if (status & MCSPI_IRQ_TX0_EMPTY) ti_spi_fill_fifo(sc); if (status & MCSPI_IRQ_RX0_FULL) ti_spi_drain_fifo(sc); if (status & MCSPI_IRQ_EOW) eow = 1; /* Clear interrupt status. */ TI_SPI_WRITE(sc, MCSPI_IRQSTATUS, status); /* Check for end of transfer. */ if (sc->sc_written == sc->sc_len && sc->sc_read == sc->sc_len) { sc->sc_flags |= TI_SPI_DONE; wakeup(sc->sc_dev); } TI_SPI_UNLOCK(sc); } static int ti_spi_pio_transfer(struct ti_spi_softc *sc) { while (sc->sc_len - sc->sc_written > 0) { if (ti_spi_fill_fifo(sc) == -1) return (EIO); if (ti_spi_drain_fifo(sc) == -1) return (EIO); } return (0); } static int ti_spi_gcd(int a, int b) { int m; while ((m = a % b) != 0) { a = b; b = m; } return (b); } static int ti_spi_transfer(device_t dev, device_t child, struct spi_command *cmd) { int err; struct ti_spi_softc *sc; uint32_t reg, cs; sc = device_get_softc(dev); KASSERT(cmd->tx_cmd_sz == cmd->rx_cmd_sz, ("TX/RX command sizes should be equal")); KASSERT(cmd->tx_data_sz == cmd->rx_data_sz, ("TX/RX data sizes should be equal")); /* Get the proper chip select for this child. */ spibus_get_cs(child, &cs); if (cs > sc->sc_numcs) { device_printf(dev, "Invalid chip select %d requested by %s\n", cs, device_get_nameunit(child)); return (EINVAL); } TI_SPI_LOCK(sc); /* If the controller is in use wait until it is available. */ while (sc->sc_flags & TI_SPI_BUSY) mtx_sleep(dev, &sc->sc_mtx, 0, "ti_spi", 0); /* Now we have control over SPI controller. */ sc->sc_flags = TI_SPI_BUSY; /* Save the SPI command data. */ sc->sc_cs = cs; sc->sc_cmd = cmd; sc->sc_read = 0; sc->sc_written = 0; sc->sc_len = cmd->tx_cmd_sz + cmd->tx_data_sz; sc->sc_fifolvl = ti_spi_gcd(sc->sc_len, TI_SPI_FIFOSZ); if (sc->sc_fifolvl < 2 || sc->sc_len > 0xffff) sc->sc_fifolvl = 1; /* FIFO disabled. */ /* Disable FIFO for now. */ sc->sc_fifolvl = 1; /* Use a safe clock - 500kHz. */ ti_spi_set_clock(sc, sc->sc_cs, 500000); /* Disable the FIFO. */ TI_SPI_WRITE(sc, MCSPI_XFERLEVEL, 0); /* 8 bits word, d0 miso, d1 mosi, mode 0 and CS active low. */ reg = TI_SPI_READ(sc, MCSPI_CONF_CH(sc->sc_cs)); reg &= ~(MCSPI_CONF_FFER | MCSPI_CONF_FFEW | MCSPI_CONF_SBPOL | MCSPI_CONF_SBE | MCSPI_CONF_TURBO | MCSPI_CONF_IS | MCSPI_CONF_DPE1 | MCSPI_CONF_DPE0 | MCSPI_CONF_DMAR | MCSPI_CONF_DMAW | MCSPI_CONF_EPOL); reg |= MCSPI_CONF_DPE0 | MCSPI_CONF_EPOL | MCSPI_CONF_WL8BITS; TI_SPI_WRITE(sc, MCSPI_CONF_CH(sc->sc_cs), reg); #if 0 /* Enable channel interrupts. */ reg = TI_SPI_READ(sc, MCSPI_IRQENABLE); reg |= 0xf; TI_SPI_WRITE(sc, MCSPI_IRQENABLE, reg); #endif /* Start the transfer. */ reg = TI_SPI_READ(sc, MCSPI_CTRL_CH(sc->sc_cs)); TI_SPI_WRITE(sc, MCSPI_CTRL_CH(sc->sc_cs), reg | MCSPI_CTRL_ENABLE); /* Force CS on. */ reg = TI_SPI_READ(sc, MCSPI_CONF_CH(sc->sc_cs)); TI_SPI_WRITE(sc, MCSPI_CONF_CH(sc->sc_cs), reg |= MCSPI_CONF_FORCE); err = 0; if (sc->sc_fifolvl == 1) err = ti_spi_pio_transfer(sc); /* Force CS off. */ reg = TI_SPI_READ(sc, MCSPI_CONF_CH(sc->sc_cs)); reg &= ~MCSPI_CONF_FORCE; TI_SPI_WRITE(sc, MCSPI_CONF_CH(sc->sc_cs), reg); /* Disable IRQs. */ reg = TI_SPI_READ(sc, MCSPI_IRQENABLE); reg &= ~0xf; TI_SPI_WRITE(sc, MCSPI_IRQENABLE, reg); TI_SPI_WRITE(sc, MCSPI_IRQSTATUS, 0xf); /* Disable the SPI channel. */ reg = TI_SPI_READ(sc, MCSPI_CTRL_CH(sc->sc_cs)); reg &= ~MCSPI_CTRL_ENABLE; TI_SPI_WRITE(sc, MCSPI_CTRL_CH(sc->sc_cs), reg); /* Disable FIFO. */ reg = TI_SPI_READ(sc, MCSPI_CONF_CH(sc->sc_cs)); reg &= ~(MCSPI_CONF_FFER | MCSPI_CONF_FFEW); TI_SPI_WRITE(sc, MCSPI_CONF_CH(sc->sc_cs), reg); /* Release the controller and wakeup the next thread waiting for it. */ sc->sc_flags = 0; wakeup_one(dev); TI_SPI_UNLOCK(sc); return (err); } static phandle_t ti_spi_get_node(device_t bus, device_t dev) { /* Share controller node with spibus. */ return (ofw_bus_get_node(bus)); } static device_method_t ti_spi_methods[] = { /* Device interface */ DEVMETHOD(device_probe, ti_spi_probe), DEVMETHOD(device_attach, ti_spi_attach), DEVMETHOD(device_detach, ti_spi_detach), /* SPI interface */ DEVMETHOD(spibus_transfer, ti_spi_transfer), /* ofw_bus interface */ DEVMETHOD(ofw_bus_get_node, ti_spi_get_node), DEVMETHOD_END }; static devclass_t ti_spi_devclass; static driver_t ti_spi_driver = { "spi", ti_spi_methods, sizeof(struct ti_spi_softc), }; DRIVER_MODULE(ti_spi, simplebus, ti_spi_driver, ti_spi_devclass, 0, 0);