/*- * Copyright (c) 2001 Wind River Systems * Copyright (c) 1997, 1998, 1999, 2001 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * Broadcom BCM570x family gigabit ethernet driver for FreeBSD. * * The Broadcom BCM5700 is based on technology originally developed by * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has * two on-board MIPS R4000 CPUs and can have as much as 16MB of external * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo * frames, highly configurable RX filtering, and 16 RX and TX queues * (which, along with RX filter rules, can be used for QOS applications). * Other features, such as TCP segmentation, may be available as part * of value-added firmware updates. Unlike the Tigon I and Tigon II, * firmware images can be stored in hardware and need not be compiled * into the driver. * * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus. * * The BCM5701 is a single-chip solution incorporating both the BCM5700 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701 * does not support external SSRAM. * * Broadcom also produces a variation of the BCM5700 under the "Altima" * brand name, which is functionally similar but lacks PCI-X support. * * Without external SSRAM, you can only have at most 4 TX rings, * and the use of the mini RX ring is disabled. This seems to imply * that these features are simply not available on the BCM5701. As a * result, this driver does not implement any support for the mini RX * ring. */ #ifdef HAVE_KERNEL_OPTION_HEADERS #include "opt_device_polling.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "miidevs.h" #include #ifdef __sparc64__ #include #include #include #include #endif #include #include #include #define BGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */ MODULE_DEPEND(bge, pci, 1, 1, 1); MODULE_DEPEND(bge, ether, 1, 1, 1); MODULE_DEPEND(bge, miibus, 1, 1, 1); /* "device miibus" required. See GENERIC if you get errors here. */ #include "miibus_if.h" /* * Various supported device vendors/types and their names. Note: the * spec seems to indicate that the hardware still has Alteon's vendor * ID burned into it, though it will always be overriden by the vendor * ID in the EEPROM. Just to be safe, we cover all possibilities. */ static const struct bge_type { uint16_t bge_vid; uint16_t bge_did; } bge_devs[] = { { ALTEON_VENDORID, ALTEON_DEVICEID_BCM5700 }, { ALTEON_VENDORID, ALTEON_DEVICEID_BCM5701 }, { ALTIMA_VENDORID, ALTIMA_DEVICE_AC1000 }, { ALTIMA_VENDORID, ALTIMA_DEVICE_AC1002 }, { ALTIMA_VENDORID, ALTIMA_DEVICE_AC9100 }, { APPLE_VENDORID, APPLE_DEVICE_BCM5701 }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5700 }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5701 }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5702 }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5702_ALT }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5702X }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5703 }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5703_ALT }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5703X }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5704C }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5704S }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5704S_ALT }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5705 }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5705F }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5705K }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5705M }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5705M_ALT }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5714C }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5714S }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5715 }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5715S }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5720 }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5721 }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5722 }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5723 }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5750 }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5750M }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5751 }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5751F }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5751M }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5752 }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5752M }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5753 }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5753F }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5753M }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5754 }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5754M }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5755 }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5755M }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5761 }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5761E }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5761S }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5761SE }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5764 }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5780 }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5780S }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5781 }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5782 }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5784 }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5785F }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5785G }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5786 }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5787 }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5787F }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5787M }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5788 }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5789 }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5901 }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5901A2 }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5903M }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5906 }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5906M }, { BCOM_VENDORID, BCOM_DEVICEID_BCM57760 }, { BCOM_VENDORID, BCOM_DEVICEID_BCM57780 }, { BCOM_VENDORID, BCOM_DEVICEID_BCM57788 }, { BCOM_VENDORID, BCOM_DEVICEID_BCM57790 }, { SK_VENDORID, SK_DEVICEID_ALTIMA }, { TC_VENDORID, TC_DEVICEID_3C996 }, { FJTSU_VENDORID, FJTSU_DEVICEID_PW008GE4 }, { FJTSU_VENDORID, FJTSU_DEVICEID_PW008GE5 }, { FJTSU_VENDORID, FJTSU_DEVICEID_PP250450 }, { 0, 0 } }; static const struct bge_vendor { uint16_t v_id; const char *v_name; } bge_vendors[] = { { ALTEON_VENDORID, "Alteon" }, { ALTIMA_VENDORID, "Altima" }, { APPLE_VENDORID, "Apple" }, { BCOM_VENDORID, "Broadcom" }, { SK_VENDORID, "SysKonnect" }, { TC_VENDORID, "3Com" }, { FJTSU_VENDORID, "Fujitsu" }, { 0, NULL } }; static const struct bge_revision { uint32_t br_chipid; const char *br_name; } bge_revisions[] = { { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" }, { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" }, { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" }, { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" }, { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" }, { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" }, { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" }, { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" }, { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" }, { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" }, { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" }, { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" }, { BGE_CHIPID_BCM5703_A0, "BCM5703 A0" }, { BGE_CHIPID_BCM5703_A1, "BCM5703 A1" }, { BGE_CHIPID_BCM5703_A2, "BCM5703 A2" }, { BGE_CHIPID_BCM5703_A3, "BCM5703 A3" }, { BGE_CHIPID_BCM5703_B0, "BCM5703 B0" }, { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" }, { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" }, { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" }, { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" }, { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" }, { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" }, { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" }, { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" }, { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" }, { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" }, { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" }, { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" }, { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" }, { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" }, { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" }, { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" }, { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" }, { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" }, { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" }, { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" }, { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" }, { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" }, { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" }, { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" }, { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" }, { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" }, { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" }, { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" }, { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" }, { BGE_CHIPID_BCM5722_A0, "BCM5722 A0" }, { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" }, { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" }, { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" }, { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" }, /* 5754 and 5787 share the same ASIC ID */ { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" }, { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" }, { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" }, { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" }, { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" }, { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" }, { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" }, { 0, NULL } }; /* * Some defaults for major revisions, so that newer steppings * that we don't know about have a shot at working. */ static const struct bge_revision bge_majorrevs[] = { { BGE_ASICREV_BCM5700, "unknown BCM5700" }, { BGE_ASICREV_BCM5701, "unknown BCM5701" }, { BGE_ASICREV_BCM5703, "unknown BCM5703" }, { BGE_ASICREV_BCM5704, "unknown BCM5704" }, { BGE_ASICREV_BCM5705, "unknown BCM5705" }, { BGE_ASICREV_BCM5750, "unknown BCM5750" }, { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" }, { BGE_ASICREV_BCM5752, "unknown BCM5752" }, { BGE_ASICREV_BCM5780, "unknown BCM5780" }, { BGE_ASICREV_BCM5714, "unknown BCM5714" }, { BGE_ASICREV_BCM5755, "unknown BCM5755" }, { BGE_ASICREV_BCM5761, "unknown BCM5761" }, { BGE_ASICREV_BCM5784, "unknown BCM5784" }, { BGE_ASICREV_BCM5785, "unknown BCM5785" }, /* 5754 and 5787 share the same ASIC ID */ { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" }, { BGE_ASICREV_BCM5906, "unknown BCM5906" }, { BGE_ASICREV_BCM57780, "unknown BCM57780" }, { 0, NULL } }; #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGE_FLAG_JUMBO) #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGE_FLAG_5700_FAMILY) #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5705_PLUS) #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGE_FLAG_5714_FAMILY) #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_575X_PLUS) #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5755_PLUS) const struct bge_revision * bge_lookup_rev(uint32_t); const struct bge_vendor * bge_lookup_vendor(uint16_t); typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]); static int bge_probe(device_t); static int bge_attach(device_t); static int bge_detach(device_t); static int bge_suspend(device_t); static int bge_resume(device_t); static void bge_release_resources(struct bge_softc *); static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int); static int bge_dma_alloc(device_t); static void bge_dma_free(struct bge_softc *); static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]); static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]); static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]); static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]); static int bge_get_eaddr(struct bge_softc *, uint8_t[]); static void bge_txeof(struct bge_softc *, uint16_t); static int bge_rxeof(struct bge_softc *, uint16_t, int); static void bge_asf_driver_up (struct bge_softc *); static void bge_tick(void *); static void bge_stats_update(struct bge_softc *); static void bge_stats_update_regs(struct bge_softc *); static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *, uint16_t *); static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *); static void bge_intr(void *); static int bge_msi_intr(void *); static void bge_intr_task(void *, int); static void bge_start_locked(struct ifnet *); static void bge_start(struct ifnet *); static int bge_ioctl(struct ifnet *, u_long, caddr_t); static void bge_init_locked(struct bge_softc *); static void bge_init(void *); static void bge_stop(struct bge_softc *); static void bge_watchdog(struct bge_softc *); static int bge_shutdown(device_t); static int bge_ifmedia_upd_locked(struct ifnet *); static int bge_ifmedia_upd(struct ifnet *); static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *); static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *); static int bge_read_nvram(struct bge_softc *, caddr_t, int, int); static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *); static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int); static void bge_setpromisc(struct bge_softc *); static void bge_setmulti(struct bge_softc *); static void bge_setvlan(struct bge_softc *); static int bge_newbuf_std(struct bge_softc *, int); static int bge_newbuf_jumbo(struct bge_softc *, int); static int bge_init_rx_ring_std(struct bge_softc *); static void bge_free_rx_ring_std(struct bge_softc *); static int bge_init_rx_ring_jumbo(struct bge_softc *); static void bge_free_rx_ring_jumbo(struct bge_softc *); static void bge_free_tx_ring(struct bge_softc *); static int bge_init_tx_ring(struct bge_softc *); static int bge_chipinit(struct bge_softc *); static int bge_blockinit(struct bge_softc *); static int bge_has_eaddr(struct bge_softc *); static uint32_t bge_readmem_ind(struct bge_softc *, int); static void bge_writemem_ind(struct bge_softc *, int, int); static void bge_writembx(struct bge_softc *, int, int); #ifdef notdef static uint32_t bge_readreg_ind(struct bge_softc *, int); #endif static void bge_writemem_direct(struct bge_softc *, int, int); static void bge_writereg_ind(struct bge_softc *, int, int); static void bge_set_max_readrq(struct bge_softc *); static int bge_miibus_readreg(device_t, int, int); static int bge_miibus_writereg(device_t, int, int, int); static void bge_miibus_statchg(device_t); #ifdef DEVICE_POLLING static int bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count); #endif #define BGE_RESET_START 1 #define BGE_RESET_STOP 2 static void bge_sig_post_reset(struct bge_softc *, int); static void bge_sig_legacy(struct bge_softc *, int); static void bge_sig_pre_reset(struct bge_softc *, int); static int bge_reset(struct bge_softc *); static void bge_link_upd(struct bge_softc *); /* * The BGE_REGISTER_DEBUG option is only for low-level debugging. It may * leak information to untrusted users. It is also known to cause alignment * traps on certain architectures. */ #ifdef BGE_REGISTER_DEBUG static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS); static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS); static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS); #endif static void bge_add_sysctls(struct bge_softc *); static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS); static device_method_t bge_methods[] = { /* Device interface */ DEVMETHOD(device_probe, bge_probe), DEVMETHOD(device_attach, bge_attach), DEVMETHOD(device_detach, bge_detach), DEVMETHOD(device_shutdown, bge_shutdown), DEVMETHOD(device_suspend, bge_suspend), DEVMETHOD(device_resume, bge_resume), /* bus interface */ DEVMETHOD(bus_print_child, bus_generic_print_child), DEVMETHOD(bus_driver_added, bus_generic_driver_added), /* MII interface */ DEVMETHOD(miibus_readreg, bge_miibus_readreg), DEVMETHOD(miibus_writereg, bge_miibus_writereg), DEVMETHOD(miibus_statchg, bge_miibus_statchg), { 0, 0 } }; static driver_t bge_driver = { "bge", bge_methods, sizeof(struct bge_softc) }; static devclass_t bge_devclass; DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0); DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0); static int bge_allow_asf = 1; TUNABLE_INT("hw.bge.allow_asf", &bge_allow_asf); SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters"); SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RD, &bge_allow_asf, 0, "Allow ASF mode if available"); #define SPARC64_BLADE_1500_MODEL "SUNW,Sun-Blade-1500" #define SPARC64_BLADE_1500_PATH_BGE "/pci@1f,700000/network@2" #define SPARC64_BLADE_2500_MODEL "SUNW,Sun-Blade-2500" #define SPARC64_BLADE_2500_PATH_BGE "/pci@1c,600000/network@3" #define SPARC64_OFW_SUBVENDOR "subsystem-vendor-id" static int bge_has_eaddr(struct bge_softc *sc) { #ifdef __sparc64__ char buf[sizeof(SPARC64_BLADE_1500_PATH_BGE)]; device_t dev; uint32_t subvendor; dev = sc->bge_dev; /* * The on-board BGEs found in sun4u machines aren't fitted with * an EEPROM which means that we have to obtain the MAC address * via OFW and that some tests will always fail. We distinguish * such BGEs by the subvendor ID, which also has to be obtained * from OFW instead of the PCI configuration space as the latter * indicates Broadcom as the subvendor of the netboot interface. * For early Blade 1500 and 2500 we even have to check the OFW * device path as the subvendor ID always defaults to Broadcom * there. */ if (OF_getprop(ofw_bus_get_node(dev), SPARC64_OFW_SUBVENDOR, &subvendor, sizeof(subvendor)) == sizeof(subvendor) && subvendor == SUN_VENDORID) return (0); memset(buf, 0, sizeof(buf)); if (OF_package_to_path(ofw_bus_get_node(dev), buf, sizeof(buf)) > 0) { if (strcmp(sparc64_model, SPARC64_BLADE_1500_MODEL) == 0 && strcmp(buf, SPARC64_BLADE_1500_PATH_BGE) == 0) return (0); if (strcmp(sparc64_model, SPARC64_BLADE_2500_MODEL) == 0 && strcmp(buf, SPARC64_BLADE_2500_PATH_BGE) == 0) return (0); } #endif return (1); } static uint32_t bge_readmem_ind(struct bge_softc *sc, int off) { device_t dev; uint32_t val; dev = sc->bge_dev; pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4); val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4); pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4); return (val); } static void bge_writemem_ind(struct bge_softc *sc, int off, int val) { device_t dev; dev = sc->bge_dev; pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4); pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4); pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4); } /* * PCI Express only */ static void bge_set_max_readrq(struct bge_softc *sc) { device_t dev; uint16_t val; dev = sc->bge_dev; val = pci_read_config(dev, sc->bge_expcap + PCIR_EXPRESS_DEVICE_CTL, 2); if ((val & PCIM_EXP_CTL_MAX_READ_REQUEST) != BGE_PCIE_DEVCTL_MAX_READRQ_4096) { if (bootverbose) device_printf(dev, "adjust device control 0x%04x ", val); val &= ~PCIM_EXP_CTL_MAX_READ_REQUEST; val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096; pci_write_config(dev, sc->bge_expcap + PCIR_EXPRESS_DEVICE_CTL, val, 2); if (bootverbose) printf("-> 0x%04x\n", val); } } #ifdef notdef static uint32_t bge_readreg_ind(struct bge_softc *sc, int off) { device_t dev; dev = sc->bge_dev; pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4); return (pci_read_config(dev, BGE_PCI_REG_DATA, 4)); } #endif static void bge_writereg_ind(struct bge_softc *sc, int off, int val) { device_t dev; dev = sc->bge_dev; pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4); pci_write_config(dev, BGE_PCI_REG_DATA, val, 4); } static void bge_writemem_direct(struct bge_softc *sc, int off, int val) { CSR_WRITE_4(sc, off, val); } static void bge_writembx(struct bge_softc *sc, int off, int val) { if (sc->bge_asicrev == BGE_ASICREV_BCM5906) off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI; CSR_WRITE_4(sc, off, val); } /* * Map a single buffer address. */ static void bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) { struct bge_dmamap_arg *ctx; if (error) return; ctx = arg; if (nseg > ctx->bge_maxsegs) { ctx->bge_maxsegs = 0; return; } ctx->bge_busaddr = segs->ds_addr; } static uint8_t bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest) { uint32_t access, byte = 0; int i; /* Lock. */ CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1); for (i = 0; i < 8000; i++) { if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1) break; DELAY(20); } if (i == 8000) return (1); /* Enable access. */ access = CSR_READ_4(sc, BGE_NVRAM_ACCESS); CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE); CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc); CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD); for (i = 0; i < BGE_TIMEOUT * 10; i++) { DELAY(10); if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) { DELAY(10); break; } } if (i == BGE_TIMEOUT * 10) { if_printf(sc->bge_ifp, "nvram read timed out\n"); return (1); } /* Get result. */ byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA); *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF; /* Disable access. */ CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access); /* Unlock. */ CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1); CSR_READ_4(sc, BGE_NVRAM_SWARB); return (0); } /* * Read a sequence of bytes from NVRAM. */ static int bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt) { int err = 0, i; uint8_t byte = 0; if (sc->bge_asicrev != BGE_ASICREV_BCM5906) return (1); for (i = 0; i < cnt; i++) { err = bge_nvram_getbyte(sc, off + i, &byte); if (err) break; *(dest + i) = byte; } return (err ? 1 : 0); } /* * Read a byte of data stored in the EEPROM at address 'addr.' The * BCM570x supports both the traditional bitbang interface and an * auto access interface for reading the EEPROM. We use the auto * access method. */ static uint8_t bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest) { int i; uint32_t byte = 0; /* * Enable use of auto EEPROM access so we can avoid * having to use the bitbang method. */ BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM); /* Reset the EEPROM, load the clock period. */ CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL)); DELAY(20); /* Issue the read EEPROM command. */ CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr); /* Wait for completion */ for(i = 0; i < BGE_TIMEOUT * 10; i++) { DELAY(10); if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE) break; } if (i == BGE_TIMEOUT * 10) { device_printf(sc->bge_dev, "EEPROM read timed out\n"); return (1); } /* Get result. */ byte = CSR_READ_4(sc, BGE_EE_DATA); *dest = (byte >> ((addr % 4) * 8)) & 0xFF; return (0); } /* * Read a sequence of bytes from the EEPROM. */ static int bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt) { int i, error = 0; uint8_t byte = 0; for (i = 0; i < cnt; i++) { error = bge_eeprom_getbyte(sc, off + i, &byte); if (error) break; *(dest + i) = byte; } return (error ? 1 : 0); } static int bge_miibus_readreg(device_t dev, int phy, int reg) { struct bge_softc *sc; uint32_t val, autopoll; int i; sc = device_get_softc(dev); /* * Broadcom's own driver always assumes the internal * PHY is at GMII address 1. On some chips, the PHY responds * to accesses at all addresses, which could cause us to * bogusly attach the PHY 32 times at probe type. Always * restricting the lookup to address 1 is simpler than * trying to figure out which chips revisions should be * special-cased. */ if (phy != 1) return (0); /* Reading with autopolling on may trigger PCI errors */ autopoll = CSR_READ_4(sc, BGE_MI_MODE); if (autopoll & BGE_MIMODE_AUTOPOLL) { BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); DELAY(40); } CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY | BGE_MIPHY(phy) | BGE_MIREG(reg)); for (i = 0; i < BGE_TIMEOUT; i++) { DELAY(10); val = CSR_READ_4(sc, BGE_MI_COMM); if (!(val & BGE_MICOMM_BUSY)) break; } if (i == BGE_TIMEOUT) { device_printf(sc->bge_dev, "PHY read timed out (phy %d, reg %d, val 0x%08x)\n", phy, reg, val); val = 0; goto done; } DELAY(5); val = CSR_READ_4(sc, BGE_MI_COMM); done: if (autopoll & BGE_MIMODE_AUTOPOLL) { BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); DELAY(40); } if (val & BGE_MICOMM_READFAIL) return (0); return (val & 0xFFFF); } static int bge_miibus_writereg(device_t dev, int phy, int reg, int val) { struct bge_softc *sc; uint32_t autopoll; int i; sc = device_get_softc(dev); if (sc->bge_asicrev == BGE_ASICREV_BCM5906 && (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL)) return(0); /* Reading with autopolling on may trigger PCI errors */ autopoll = CSR_READ_4(sc, BGE_MI_MODE); if (autopoll & BGE_MIMODE_AUTOPOLL) { BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); DELAY(40); } CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY | BGE_MIPHY(phy) | BGE_MIREG(reg) | val); for (i = 0; i < BGE_TIMEOUT; i++) { DELAY(10); if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) { DELAY(5); CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */ break; } } if (i == BGE_TIMEOUT) { device_printf(sc->bge_dev, "PHY write timed out (phy %d, reg %d, val %d)\n", phy, reg, val); return (0); } if (autopoll & BGE_MIMODE_AUTOPOLL) { BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); DELAY(40); } return (0); } static void bge_miibus_statchg(device_t dev) { struct bge_softc *sc; struct mii_data *mii; sc = device_get_softc(dev); mii = device_get_softc(sc->bge_miibus); BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE); if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII); else BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII); if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX); else BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX); } /* * Intialize a standard receive ring descriptor. */ static int bge_newbuf_std(struct bge_softc *sc, int i) { struct mbuf *m; struct bge_rx_bd *r; bus_dma_segment_t segs[1]; bus_dmamap_t map; int error, nsegs; m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); if (m == NULL) return (ENOBUFS); m->m_len = m->m_pkthdr.len = MCLBYTES; if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) m_adj(m, ETHER_ALIGN); error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag, sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0); if (error != 0) { m_freem(m); return (error); } if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) { bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag, sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag, sc->bge_cdata.bge_rx_std_dmamap[i]); } map = sc->bge_cdata.bge_rx_std_dmamap[i]; sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap; sc->bge_cdata.bge_rx_std_sparemap = map; sc->bge_cdata.bge_rx_std_chain[i] = m; r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std]; r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr); r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr); r->bge_flags = BGE_RXBDFLAG_END; r->bge_len = segs[0].ds_len; r->bge_idx = i; bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag, sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD); return (0); } /* * Initialize a jumbo receive ring descriptor. This allocates * a jumbo buffer from the pool managed internally by the driver. */ static int bge_newbuf_jumbo(struct bge_softc *sc, int i) { bus_dma_segment_t segs[BGE_NSEG_JUMBO]; bus_dmamap_t map; struct bge_extrx_bd *r; struct mbuf *m; int error, nsegs; MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) return (ENOBUFS); m_cljget(m, M_DONTWAIT, MJUM9BYTES); if (!(m->m_flags & M_EXT)) { m_freem(m); return (ENOBUFS); } m->m_len = m->m_pkthdr.len = MJUM9BYTES; if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) m_adj(m, ETHER_ALIGN); error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo, sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0); if (error != 0) { m_freem(m); return (error); } if (sc->bge_cdata.bge_rx_jumbo_chain[i] == NULL) { bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo, sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo, sc->bge_cdata.bge_rx_jumbo_dmamap[i]); } map = sc->bge_cdata.bge_rx_jumbo_dmamap[i]; sc->bge_cdata.bge_rx_jumbo_dmamap[i] = sc->bge_cdata.bge_rx_jumbo_sparemap; sc->bge_cdata.bge_rx_jumbo_sparemap = map; sc->bge_cdata.bge_rx_jumbo_chain[i] = m; /* * Fill in the extended RX buffer descriptor. */ r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo]; r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END; r->bge_idx = i; r->bge_len3 = r->bge_len2 = r->bge_len1 = 0; switch (nsegs) { case 4: r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr); r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr); r->bge_len3 = segs[3].ds_len; case 3: r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr); r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr); r->bge_len2 = segs[2].ds_len; case 2: r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr); r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr); r->bge_len1 = segs[1].ds_len; case 1: r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr); r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr); r->bge_len0 = segs[0].ds_len; break; default: panic("%s: %d segments\n", __func__, nsegs); } bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo, sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD); return (0); } /* * The standard receive ring has 512 entries in it. At 2K per mbuf cluster, * that's 1MB or memory, which is a lot. For now, we fill only the first * 256 ring entries and hope that our CPU is fast enough to keep up with * the NIC. */ static int bge_init_rx_ring_std(struct bge_softc *sc) { int error, i; bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ); sc->bge_std = 0; for (i = 0; i < BGE_SSLOTS; i++) { if ((error = bge_newbuf_std(sc, i)) != 0) return (error); BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT); }; bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE); sc->bge_std = i - 1; bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std); return (0); } static void bge_free_rx_ring_std(struct bge_softc *sc) { int i; for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) { bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag, sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag, sc->bge_cdata.bge_rx_std_dmamap[i]); m_freem(sc->bge_cdata.bge_rx_std_chain[i]); sc->bge_cdata.bge_rx_std_chain[i] = NULL; } bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i], sizeof(struct bge_rx_bd)); } } static int bge_init_rx_ring_jumbo(struct bge_softc *sc) { struct bge_rcb *rcb; int error, i; bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ); sc->bge_jumbo = 0; for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { if ((error = bge_newbuf_jumbo(sc, i)) != 0) return (error); BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT); }; bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE); sc->bge_jumbo = i - 1; rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb; rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_USE_EXT_RX_BD); CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo); return (0); } static void bge_free_rx_ring_jumbo(struct bge_softc *sc) { int i; for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) { bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo, sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo, sc->bge_cdata.bge_rx_jumbo_dmamap[i]); m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]); sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL; } bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i], sizeof(struct bge_extrx_bd)); } } static void bge_free_tx_ring(struct bge_softc *sc) { int i; if (sc->bge_ldata.bge_tx_ring == NULL) return; for (i = 0; i < BGE_TX_RING_CNT; i++) { if (sc->bge_cdata.bge_tx_chain[i] != NULL) { bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, sc->bge_cdata.bge_tx_dmamap[i], BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, sc->bge_cdata.bge_tx_dmamap[i]); m_freem(sc->bge_cdata.bge_tx_chain[i]); sc->bge_cdata.bge_tx_chain[i] = NULL; } bzero((char *)&sc->bge_ldata.bge_tx_ring[i], sizeof(struct bge_tx_bd)); } } static int bge_init_tx_ring(struct bge_softc *sc) { sc->bge_txcnt = 0; sc->bge_tx_saved_considx = 0; bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ); bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag, sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE); /* Initialize transmit producer index for host-memory send ring. */ sc->bge_tx_prodidx = 0; bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx); /* 5700 b2 errata */ if (sc->bge_chiprev == BGE_CHIPREV_5700_BX) bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx); /* NIC-memory send ring not used; initialize to zero. */ bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0); /* 5700 b2 errata */ if (sc->bge_chiprev == BGE_CHIPREV_5700_BX) bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0); return (0); } static void bge_setpromisc(struct bge_softc *sc) { struct ifnet *ifp; BGE_LOCK_ASSERT(sc); ifp = sc->bge_ifp; /* Enable or disable promiscuous mode as needed. */ if (ifp->if_flags & IFF_PROMISC) BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); else BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); } static void bge_setmulti(struct bge_softc *sc) { struct ifnet *ifp; struct ifmultiaddr *ifma; uint32_t hashes[4] = { 0, 0, 0, 0 }; int h, i; BGE_LOCK_ASSERT(sc); ifp = sc->bge_ifp; if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { for (i = 0; i < 4; i++) CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF); return; } /* First, zot all the existing filters. */ for (i = 0; i < 4; i++) CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0); /* Now program new ones. */ if_maddr_rlock(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; h = ether_crc32_le(LLADDR((struct sockaddr_dl *) ifma->ifma_addr), ETHER_ADDR_LEN) & 0x7F; hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F); } if_maddr_runlock(ifp); for (i = 0; i < 4; i++) CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]); } static void bge_setvlan(struct bge_softc *sc) { struct ifnet *ifp; BGE_LOCK_ASSERT(sc); ifp = sc->bge_ifp; /* Enable or disable VLAN tag stripping as needed. */ if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG); else BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG); } static void bge_sig_pre_reset(sc, type) struct bge_softc *sc; int type; { /* * Some chips don't like this so only do this if ASF is enabled */ if (sc->bge_asf_mode) bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER); if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) { switch (type) { case BGE_RESET_START: bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */ break; case BGE_RESET_STOP: bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */ break; } } } static void bge_sig_post_reset(sc, type) struct bge_softc *sc; int type; { if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) { switch (type) { case BGE_RESET_START: bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000001); /* START DONE */ break; case BGE_RESET_STOP: bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000002); break; } } } static void bge_sig_legacy(sc, type) struct bge_softc *sc; int type; { if (sc->bge_asf_mode) { switch (type) { case BGE_RESET_START: bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */ break; case BGE_RESET_STOP: bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */ break; } } } void bge_stop_fw(struct bge_softc *); void bge_stop_fw(sc) struct bge_softc *sc; { int i; if (sc->bge_asf_mode) { bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW, BGE_FW_PAUSE); CSR_WRITE_4(sc, BGE_CPU_EVENT, CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14)); for (i = 0; i < 100; i++ ) { if (!(CSR_READ_4(sc, BGE_CPU_EVENT) & (1 << 14))) break; DELAY(10); } } } /* * Do endian, PCI and DMA initialization. */ static int bge_chipinit(struct bge_softc *sc) { uint32_t dma_rw_ctl; int i; /* Set endianness before we access any non-PCI registers. */ pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, BGE_INIT, 4); /* Clear the MAC control register */ CSR_WRITE_4(sc, BGE_MAC_MODE, 0); /* * Clear the MAC statistics block in the NIC's * internal memory. */ for (i = BGE_STATS_BLOCK; i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t)) BGE_MEMWIN_WRITE(sc, i, 0); for (i = BGE_STATUS_BLOCK; i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t)) BGE_MEMWIN_WRITE(sc, i, 0); /* * Set up the PCI DMA control register. */ dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) | BGE_PCIDMARWCTL_WR_CMD_SHIFT(7); if (sc->bge_flags & BGE_FLAG_PCIE) { /* Read watermark not used, 128 bytes for write. */ dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3); } else if (sc->bge_flags & BGE_FLAG_PCIX) { if (BGE_IS_5714_FAMILY(sc)) { /* 256 bytes for read and write. */ dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) | BGE_PCIDMARWCTL_WR_WAT_SHIFT(2); dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ? BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL : BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL; } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) { /* 1536 bytes for read, 384 bytes for write. */ dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) | BGE_PCIDMARWCTL_WR_WAT_SHIFT(3); } else { /* 384 bytes for read and write. */ dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) | BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) | 0x0F; } if (sc->bge_asicrev == BGE_ASICREV_BCM5703 || sc->bge_asicrev == BGE_ASICREV_BCM5704) { uint32_t tmp; /* Set ONE_DMA_AT_ONCE for hardware workaround. */ tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F; if (tmp == 6 || tmp == 7) dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL; /* Set PCI-X DMA write workaround. */ dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE; } } else { /* Conventional PCI bus: 256 bytes for read and write. */ dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) | BGE_PCIDMARWCTL_WR_WAT_SHIFT(7); if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && sc->bge_asicrev != BGE_ASICREV_BCM5750) dma_rw_ctl |= 0x0F; } if (sc->bge_asicrev == BGE_ASICREV_BCM5700 || sc->bge_asicrev == BGE_ASICREV_BCM5701) dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM | BGE_PCIDMARWCTL_ASRT_ALL_BE; if (sc->bge_asicrev == BGE_ASICREV_BCM5703 || sc->bge_asicrev == BGE_ASICREV_BCM5704) dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA; pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4); /* * Set up general mode register. */ CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS | BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS | BGE_MODECTL_TX_NO_PHDR_CSUM); /* * BCM5701 B5 have a bug causing data corruption when using * 64-bit DMA reads, which can be terminated early and then * completed later as 32-bit accesses, in combination with * certain bridges. */ if (sc->bge_asicrev == BGE_ASICREV_BCM5701 && sc->bge_chipid == BGE_CHIPID_BCM5701_B5) BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_FORCE_PCI32); /* * Tell the firmware the driver is running */ if (sc->bge_asf_mode & ASF_STACKUP) BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); /* * Disable memory write invalidate. Apparently it is not supported * properly by these devices. Also ensure that INTx isn't disabled, * as these chips need it even when using MSI. */ PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_INTxDIS | PCIM_CMD_MWIEN, 4); /* Set the timer prescaler (always 66Mhz) */ CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ); /* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */ if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { DELAY(40); /* XXX */ /* Put PHY into ready state */ BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ); CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */ DELAY(40); } return (0); } static int bge_blockinit(struct bge_softc *sc) { struct bge_rcb *rcb; bus_size_t vrcb; bge_hostaddr taddr; uint32_t val; int i; /* * Initialize the memory window pointer register so that * we can access the first 32K of internal NIC RAM. This will * allow us to set up the TX send ring RCBs and the RX return * ring RCBs, plus other things which live in NIC memory. */ CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0); /* Note: the BCM5704 has a smaller mbuf space than other chips. */ if (!(BGE_IS_5705_PLUS(sc))) { /* Configure mbuf memory pool */ CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1); if (sc->bge_asicrev == BGE_ASICREV_BCM5704) CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000); else CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000); /* Configure DMA resource pool */ CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, BGE_DMA_DESCRIPTORS); CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000); } /* Configure mbuf pool watermarks */ if (!BGE_IS_5705_PLUS(sc)) { CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50); CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20); CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60); } else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0); CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04); CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10); } else { CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0); CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10); CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60); } /* Configure DMA resource watermarks */ CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5); CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10); /* Enable buffer manager */ if (!(BGE_IS_5705_PLUS(sc))) { CSR_WRITE_4(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN); /* Poll for buffer manager start indication */ for (i = 0; i < BGE_TIMEOUT; i++) { DELAY(10); if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE) break; } if (i == BGE_TIMEOUT) { device_printf(sc->bge_dev, "buffer manager failed to start\n"); return (ENXIO); } } /* Enable flow-through queues */ CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF); CSR_WRITE_4(sc, BGE_FTQ_RESET, 0); /* Wait until queue initialization is complete */ for (i = 0; i < BGE_TIMEOUT; i++) { DELAY(10); if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0) break; } if (i == BGE_TIMEOUT) { device_printf(sc->bge_dev, "flow-through queue init failed\n"); return (ENXIO); } /* Initialize the standard RX ring control block */ rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb; rcb->bge_hostaddr.bge_addr_lo = BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr); rcb->bge_hostaddr.bge_addr_hi = BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr); bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD); if (BGE_IS_5705_PLUS(sc)) rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0); else rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0); rcb->bge_nicaddr = BGE_STD_RX_RINGS; CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi); CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo); CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr); /* * Initialize the jumbo RX ring control block * We set the 'ring disabled' bit in the flags * field until we're actually ready to start * using this ring (i.e. once we set the MTU * high enough to require it). */ if (BGE_IS_JUMBO_CAPABLE(sc)) { rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb; rcb->bge_hostaddr.bge_addr_lo = BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr); rcb->bge_hostaddr.bge_addr_hi = BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr); bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREREAD); rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED); rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS; CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi); CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo); CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr); /* Set up dummy disabled mini ring RCB */ rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb; rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED); CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); } /* * Set the BD ring replentish thresholds. The recommended * values are 1/8th the number of descriptors allocated to * each ring. * XXX The 5754 requires a lower threshold, so it might be a * requirement of all 575x family chips. The Linux driver sets * the lower threshold for all 5705 family chips as well, but there * are reports that it might not need to be so strict. * * XXX Linux does some extra fiddling here for the 5906 parts as * well. */ if (BGE_IS_5705_PLUS(sc)) val = 8; else val = BGE_STD_RX_RING_CNT / 8; CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val); if (BGE_IS_JUMBO_CAPABLE(sc)) CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8); /* * Disable all unused send rings by setting the 'ring disabled' * bit in the flags field of all the TX send ring control blocks. * These are located in NIC memory. */ vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB; for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) { RCB_WRITE_4(sc, vrcb, bge_maxlen_flags, BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED)); RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0); vrcb += sizeof(struct bge_rcb); } /* Configure TX RCB 0 (we use only the first ring) */ vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB; BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr); RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi); RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo); RCB_WRITE_4(sc, vrcb, bge_nicaddr, BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT)); if (!(BGE_IS_5705_PLUS(sc))) RCB_WRITE_4(sc, vrcb, bge_maxlen_flags, BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0)); /* Disable all unused RX return rings */ vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB; for (i = 0; i < BGE_RX_RINGS_MAX; i++) { RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0); RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0); RCB_WRITE_4(sc, vrcb, bge_maxlen_flags, BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, BGE_RCB_FLAG_RING_DISABLED)); RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0); bge_writembx(sc, BGE_MBX_RX_CONS0_LO + (i * (sizeof(uint64_t))), 0); vrcb += sizeof(struct bge_rcb); } /* Initialize RX ring indexes */ bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0); if (BGE_IS_JUMBO_CAPABLE(sc)) bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0); if (sc->bge_asicrev == BGE_ASICREV_BCM5700) bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0); /* * Set up RX return ring 0 * Note that the NIC address for RX return rings is 0x00000000. * The return rings live entirely within the host, so the * nicaddr field in the RCB isn't used. */ vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB; BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr); RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi); RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo); RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0x00000000); RCB_WRITE_4(sc, vrcb, bge_maxlen_flags, BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0)); /* Set random backoff seed for TX */ CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF, IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] + IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] + IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5] + BGE_TX_BACKOFF_SEED_MASK); /* Set inter-packet gap */ CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620); /* * Specify which ring to use for packets that don't match * any RX rules. */ CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08); /* * Configure number of RX lists. One interrupt distribution * list, sixteen active lists, one bad frames class. */ CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181); /* Inialize RX list placement stats mask. */ CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF); CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1); /* Disable host coalescing until we get it set up */ CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000); /* Poll to make sure it's shut down. */ for (i = 0; i < BGE_TIMEOUT; i++) { DELAY(10); if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE)) break; } if (i == BGE_TIMEOUT) { device_printf(sc->bge_dev, "host coalescing engine failed to idle\n"); return (ENXIO); } /* Set up host coalescing defaults */ CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks); CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks); CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds); CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds); if (!(BGE_IS_5705_PLUS(sc))) { CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0); CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0); } CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1); CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1); /* Set up address of statistics block */ if (!(BGE_IS_5705_PLUS(sc))) { CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr)); CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr)); CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK); CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK); CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks); } /* Set up address of status block */ CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr)); CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr)); sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx = 0; sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx = 0; /* Set up status block size. */ if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && sc->bge_chipid != BGE_CHIPID_BCM5700_C0) val = BGE_STATBLKSZ_FULL; else val = BGE_STATBLKSZ_32BYTE; /* Turn on host coalescing state machine */ CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE); /* Turn on RX BD completion state machine and enable attentions */ CSR_WRITE_4(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN); /* Turn on RX list placement state machine */ CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE); /* Turn on RX list selector state machine. */ if (!(BGE_IS_5705_PLUS(sc))) CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE); /* Turn on DMA, clear stats */ CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB | BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR | BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB | BGE_MACMODE_FRMHDR_DMA_ENB | ((sc->bge_flags & BGE_FLAG_TBI) ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII)); /* Set misc. local control, enable interrupts on attentions */ CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN); #ifdef notdef /* Assert GPIO pins for PHY reset */ BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 | BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2); BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 | BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2); #endif /* Turn on DMA completion state machine */ if (!(BGE_IS_5705_PLUS(sc))) CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE); val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS; /* Enable host coalescing bug fix. */ if (BGE_IS_5755_PLUS(sc)) val |= BGE_WDMAMODE_STATUS_TAG_FIX; /* Turn on write DMA state machine */ CSR_WRITE_4(sc, BGE_WDMA_MODE, val); DELAY(40); /* Turn on read DMA state machine */ val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS; if (sc->bge_asicrev == BGE_ASICREV_BCM5784 || sc->bge_asicrev == BGE_ASICREV_BCM5785 || sc->bge_asicrev == BGE_ASICREV_BCM57780) val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN | BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN | BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN; if (sc->bge_flags & BGE_FLAG_PCIE) val |= BGE_RDMAMODE_FIFO_LONG_BURST; if (sc->bge_flags & BGE_FLAG_TSO) val |= BGE_RDMAMODE_TSO4_ENABLE; CSR_WRITE_4(sc, BGE_RDMA_MODE, val); DELAY(40); /* Turn on RX data completion state machine */ CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE); /* Turn on RX BD initiator state machine */ CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE); /* Turn on RX data and RX BD initiator state machine */ CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE); /* Turn on Mbuf cluster free state machine */ if (!(BGE_IS_5705_PLUS(sc))) CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE); /* Turn on send BD completion state machine */ CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE); /* Turn on send data completion state machine */ val = BGE_SDCMODE_ENABLE; if (sc->bge_asicrev == BGE_ASICREV_BCM5761) val |= BGE_SDCMODE_CDELAY; CSR_WRITE_4(sc, BGE_SDC_MODE, val); /* Turn on send data initiator state machine */ if (sc->bge_flags & BGE_FLAG_TSO) CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08); else CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE); /* Turn on send BD initiator state machine */ CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE); /* Turn on send BD selector state machine */ CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE); CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF); CSR_WRITE_4(sc, BGE_SDI_STATS_CTL, BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER); /* ack/clear link change events */ CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED | BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE | BGE_MACSTAT_LINK_CHANGED); CSR_WRITE_4(sc, BGE_MI_STS, 0); /* Enable PHY auto polling (for MII/GMII only) */ if (sc->bge_flags & BGE_FLAG_TBI) { CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK); } else { BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16)); if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && sc->bge_chipid != BGE_CHIPID_BCM5700_B2) CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_MI_INTERRUPT); } /* * Clear any pending link state attention. * Otherwise some link state change events may be lost until attention * is cleared by bge_intr() -> bge_link_upd() sequence. * It's not necessary on newer BCM chips - perhaps enabling link * state change attentions implies clearing pending attention. */ CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED | BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE | BGE_MACSTAT_LINK_CHANGED); /* Enable link state change attentions. */ BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED); return (0); } const struct bge_revision * bge_lookup_rev(uint32_t chipid) { const struct bge_revision *br; for (br = bge_revisions; br->br_name != NULL; br++) { if (br->br_chipid == chipid) return (br); } for (br = bge_majorrevs; br->br_name != NULL; br++) { if (br->br_chipid == BGE_ASICREV(chipid)) return (br); } return (NULL); } const struct bge_vendor * bge_lookup_vendor(uint16_t vid) { const struct bge_vendor *v; for (v = bge_vendors; v->v_name != NULL; v++) if (v->v_id == vid) return (v); panic("%s: unknown vendor %d", __func__, vid); return (NULL); } /* * Probe for a Broadcom chip. Check the PCI vendor and device IDs * against our list and return its name if we find a match. * * Note that since the Broadcom controller contains VPD support, we * try to get the device name string from the controller itself instead * of the compiled-in string. It guarantees we'll always announce the * right product name. We fall back to the compiled-in string when * VPD is unavailable or corrupt. */ static int bge_probe(device_t dev) { const struct bge_type *t = bge_devs; struct bge_softc *sc = device_get_softc(dev); uint16_t vid, did; sc->bge_dev = dev; vid = pci_get_vendor(dev); did = pci_get_device(dev); while(t->bge_vid != 0) { if ((vid == t->bge_vid) && (did == t->bge_did)) { char model[64], buf[96]; const struct bge_revision *br; const struct bge_vendor *v; uint32_t id; id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >> BGE_PCIMISCCTL_ASICREV_SHIFT; if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) id = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4); br = bge_lookup_rev(id); v = bge_lookup_vendor(vid); { #if __FreeBSD_version > 700024 const char *pname; if (bge_has_eaddr(sc) && pci_get_vpd_ident(dev, &pname) == 0) snprintf(model, 64, "%s", pname); else #endif snprintf(model, 64, "%s %s", v->v_name, br != NULL ? br->br_name : "NetXtreme Ethernet Controller"); } snprintf(buf, 96, "%s, %sASIC rev. %#08x", model, br != NULL ? "" : "unknown ", id); device_set_desc_copy(dev, buf); if (pci_get_subvendor(dev) == DELL_VENDORID) sc->bge_flags |= BGE_FLAG_NO_3LED; if (did == BCOM_DEVICEID_BCM5755M) sc->bge_flags |= BGE_FLAG_ADJUST_TRIM; return (0); } t++; } return (ENXIO); } static void bge_dma_free(struct bge_softc *sc) { int i; /* Destroy DMA maps for RX buffers. */ for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { if (sc->bge_cdata.bge_rx_std_dmamap[i]) bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag, sc->bge_cdata.bge_rx_std_dmamap[i]); } if (sc->bge_cdata.bge_rx_std_sparemap) bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag, sc->bge_cdata.bge_rx_std_sparemap); /* Destroy DMA maps for jumbo RX buffers. */ for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { if (sc->bge_cdata.bge_rx_jumbo_dmamap[i]) bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo, sc->bge_cdata.bge_rx_jumbo_dmamap[i]); } if (sc->bge_cdata.bge_rx_jumbo_sparemap) bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo, sc->bge_cdata.bge_rx_jumbo_sparemap); /* Destroy DMA maps for TX buffers. */ for (i = 0; i < BGE_TX_RING_CNT; i++) { if (sc->bge_cdata.bge_tx_dmamap[i]) bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag, sc->bge_cdata.bge_tx_dmamap[i]); } if (sc->bge_cdata.bge_rx_mtag) bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag); if (sc->bge_cdata.bge_tx_mtag) bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag); /* Destroy standard RX ring. */ if (sc->bge_cdata.bge_rx_std_ring_map) bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag, sc->bge_cdata.bge_rx_std_ring_map); if (sc->bge_cdata.bge_rx_std_ring_map && sc->bge_ldata.bge_rx_std_ring) bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag, sc->bge_ldata.bge_rx_std_ring, sc->bge_cdata.bge_rx_std_ring_map); if (sc->bge_cdata.bge_rx_std_ring_tag) bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag); /* Destroy jumbo RX ring. */ if (sc->bge_cdata.bge_rx_jumbo_ring_map) bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag, sc->bge_cdata.bge_rx_jumbo_ring_map); if (sc->bge_cdata.bge_rx_jumbo_ring_map && sc->bge_ldata.bge_rx_jumbo_ring) bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag, sc->bge_ldata.bge_rx_jumbo_ring, sc->bge_cdata.bge_rx_jumbo_ring_map); if (sc->bge_cdata.bge_rx_jumbo_ring_tag) bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag); /* Destroy RX return ring. */ if (sc->bge_cdata.bge_rx_return_ring_map) bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag, sc->bge_cdata.bge_rx_return_ring_map); if (sc->bge_cdata.bge_rx_return_ring_map && sc->bge_ldata.bge_rx_return_ring) bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag, sc->bge_ldata.bge_rx_return_ring, sc->bge_cdata.bge_rx_return_ring_map); if (sc->bge_cdata.bge_rx_return_ring_tag) bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag); /* Destroy TX ring. */ if (sc->bge_cdata.bge_tx_ring_map) bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag, sc->bge_cdata.bge_tx_ring_map); if (sc->bge_cdata.bge_tx_ring_map && sc->bge_ldata.bge_tx_ring) bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag, sc->bge_ldata.bge_tx_ring, sc->bge_cdata.bge_tx_ring_map); if (sc->bge_cdata.bge_tx_ring_tag) bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag); /* Destroy status block. */ if (sc->bge_cdata.bge_status_map) bus_dmamap_unload(sc->bge_cdata.bge_status_tag, sc->bge_cdata.bge_status_map); if (sc->bge_cdata.bge_status_map && sc->bge_ldata.bge_status_block) bus_dmamem_free(sc->bge_cdata.bge_status_tag, sc->bge_ldata.bge_status_block, sc->bge_cdata.bge_status_map); if (sc->bge_cdata.bge_status_tag) bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag); /* Destroy statistics block. */ if (sc->bge_cdata.bge_stats_map) bus_dmamap_unload(sc->bge_cdata.bge_stats_tag, sc->bge_cdata.bge_stats_map); if (sc->bge_cdata.bge_stats_map && sc->bge_ldata.bge_stats) bus_dmamem_free(sc->bge_cdata.bge_stats_tag, sc->bge_ldata.bge_stats, sc->bge_cdata.bge_stats_map); if (sc->bge_cdata.bge_stats_tag) bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag); /* Destroy the parent tag. */ if (sc->bge_cdata.bge_parent_tag) bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag); } static int bge_dma_alloc(device_t dev) { struct bge_dmamap_arg ctx; struct bge_softc *sc; bus_addr_t lowaddr; bus_size_t sbsz, txsegsz, txmaxsegsz; int i, error; sc = device_get_softc(dev); lowaddr = BUS_SPACE_MAXADDR; if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0) lowaddr = BGE_DMA_MAXADDR; if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0) lowaddr = BUS_SPACE_MAXADDR_32BIT; /* * Allocate the parent bus DMA tag appropriate for PCI. */ error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev), 1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL, &sc->bge_cdata.bge_parent_tag); if (error != 0) { device_printf(sc->bge_dev, "could not allocate parent dma tag\n"); return (ENOMEM); } /* * Create tag for Tx mbufs. */ if (sc->bge_flags & BGE_FLAG_TSO) { txsegsz = BGE_TSOSEG_SZ; txmaxsegsz = 65535 + sizeof(struct ether_vlan_header); } else { txsegsz = MCLBYTES; txmaxsegsz = MCLBYTES * BGE_NSEG_NEW; } error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL, &sc->bge_cdata.bge_tx_mtag); if (error) { device_printf(sc->bge_dev, "could not allocate TX dma tag\n"); return (ENOMEM); } /* * Create tag for Rx mbufs. */ error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag); if (error) { device_printf(sc->bge_dev, "could not allocate RX dma tag\n"); return (ENOMEM); } /* Create DMA maps for RX buffers. */ error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0, &sc->bge_cdata.bge_rx_std_sparemap); if (error) { device_printf(sc->bge_dev, "can't create spare DMA map for RX\n"); return (ENOMEM); } for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0, &sc->bge_cdata.bge_rx_std_dmamap[i]); if (error) { device_printf(sc->bge_dev, "can't create DMA map for RX\n"); return (ENOMEM); } } /* Create DMA maps for TX buffers. */ for (i = 0; i < BGE_TX_RING_CNT; i++) { error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0, &sc->bge_cdata.bge_tx_dmamap[i]); if (error) { device_printf(sc->bge_dev, "can't create DMA map for TX\n"); return (ENOMEM); } } /* Create tag for standard RX ring. */ error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BGE_STD_RX_RING_SZ, 1, BGE_STD_RX_RING_SZ, 0, NULL, NULL, &sc->bge_cdata.bge_rx_std_ring_tag); if (error) { device_printf(sc->bge_dev, "could not allocate dma tag\n"); return (ENOMEM); } /* Allocate DMA'able memory for standard RX ring. */ error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_std_ring_tag, (void **)&sc->bge_ldata.bge_rx_std_ring, BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_std_ring_map); if (error) return (ENOMEM); bzero((char *)sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ); /* Load the address of the standard RX ring. */ ctx.bge_maxsegs = 1; ctx.sc = sc; error = bus_dmamap_load(sc->bge_cdata.bge_rx_std_ring_tag, sc->bge_cdata.bge_rx_std_ring_map, sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT); if (error) return (ENOMEM); sc->bge_ldata.bge_rx_std_ring_paddr = ctx.bge_busaddr; /* Create tags for jumbo mbufs. */ if (BGE_IS_JUMBO_CAPABLE(sc)) { error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE, 0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo); if (error) { device_printf(sc->bge_dev, "could not allocate jumbo dma tag\n"); return (ENOMEM); } /* Create tag for jumbo RX ring. */ error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BGE_JUMBO_RX_RING_SZ, 1, BGE_JUMBO_RX_RING_SZ, 0, NULL, NULL, &sc->bge_cdata.bge_rx_jumbo_ring_tag); if (error) { device_printf(sc->bge_dev, "could not allocate jumbo ring dma tag\n"); return (ENOMEM); } /* Allocate DMA'able memory for jumbo RX ring. */ error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_jumbo_ring_tag, (void **)&sc->bge_ldata.bge_rx_jumbo_ring, BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->bge_cdata.bge_rx_jumbo_ring_map); if (error) return (ENOMEM); /* Load the address of the jumbo RX ring. */ ctx.bge_maxsegs = 1; ctx.sc = sc; error = bus_dmamap_load(sc->bge_cdata.bge_rx_jumbo_ring_tag, sc->bge_cdata.bge_rx_jumbo_ring_map, sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT); if (error) return (ENOMEM); sc->bge_ldata.bge_rx_jumbo_ring_paddr = ctx.bge_busaddr; /* Create DMA maps for jumbo RX buffers. */ error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo, 0, &sc->bge_cdata.bge_rx_jumbo_sparemap); if (error) { device_printf(sc->bge_dev, "can't create spare DMA map for jumbo RX\n"); return (ENOMEM); } for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo, 0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]); if (error) { device_printf(sc->bge_dev, "can't create DMA map for jumbo RX\n"); return (ENOMEM); } } } /* Create tag for RX return ring. */ error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BGE_RX_RTN_RING_SZ(sc), 1, BGE_RX_RTN_RING_SZ(sc), 0, NULL, NULL, &sc->bge_cdata.bge_rx_return_ring_tag); if (error) { device_printf(sc->bge_dev, "could not allocate dma tag\n"); return (ENOMEM); } /* Allocate DMA'able memory for RX return ring. */ error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_return_ring_tag, (void **)&sc->bge_ldata.bge_rx_return_ring, BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_return_ring_map); if (error) return (ENOMEM); bzero((char *)sc->bge_ldata.bge_rx_return_ring, BGE_RX_RTN_RING_SZ(sc)); /* Load the address of the RX return ring. */ ctx.bge_maxsegs = 1; ctx.sc = sc; error = bus_dmamap_load(sc->bge_cdata.bge_rx_return_ring_tag, sc->bge_cdata.bge_rx_return_ring_map, sc->bge_ldata.bge_rx_return_ring, BGE_RX_RTN_RING_SZ(sc), bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT); if (error) return (ENOMEM); sc->bge_ldata.bge_rx_return_ring_paddr = ctx.bge_busaddr; /* Create tag for TX ring. */ error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BGE_TX_RING_SZ, 1, BGE_TX_RING_SZ, 0, NULL, NULL, &sc->bge_cdata.bge_tx_ring_tag); if (error) { device_printf(sc->bge_dev, "could not allocate dma tag\n"); return (ENOMEM); } /* Allocate DMA'able memory for TX ring. */ error = bus_dmamem_alloc(sc->bge_cdata.bge_tx_ring_tag, (void **)&sc->bge_ldata.bge_tx_ring, BUS_DMA_NOWAIT, &sc->bge_cdata.bge_tx_ring_map); if (error) return (ENOMEM); bzero((char *)sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ); /* Load the address of the TX ring. */ ctx.bge_maxsegs = 1; ctx.sc = sc; error = bus_dmamap_load(sc->bge_cdata.bge_tx_ring_tag, sc->bge_cdata.bge_tx_ring_map, sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT); if (error) return (ENOMEM); sc->bge_ldata.bge_tx_ring_paddr = ctx.bge_busaddr; /* * Create tag for status block. * Because we only use single Tx/Rx/Rx return ring, use * minimum status block size except BCM5700 AX/BX which * seems to want to see full status block size regardless * of configured number of ring. */ if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && sc->bge_chipid != BGE_CHIPID_BCM5700_C0) sbsz = BGE_STATUS_BLK_SZ; else sbsz = 32; error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, sbsz, 1, sbsz, 0, NULL, NULL, &sc->bge_cdata.bge_status_tag); if (error) { device_printf(sc->bge_dev, "could not allocate status dma tag\n"); return (ENOMEM); } /* Allocate DMA'able memory for status block. */ error = bus_dmamem_alloc(sc->bge_cdata.bge_status_tag, (void **)&sc->bge_ldata.bge_status_block, BUS_DMA_NOWAIT, &sc->bge_cdata.bge_status_map); if (error) return (ENOMEM); bzero((char *)sc->bge_ldata.bge_status_block, sbsz); /* Load the address of the status block. */ ctx.sc = sc; ctx.bge_maxsegs = 1; error = bus_dmamap_load(sc->bge_cdata.bge_status_tag, sc->bge_cdata.bge_status_map, sc->bge_ldata.bge_status_block, sbsz, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT); if (error) return (ENOMEM); sc->bge_ldata.bge_status_block_paddr = ctx.bge_busaddr; /* Create tag for statistics block. */ error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BGE_STATS_SZ, 1, BGE_STATS_SZ, 0, NULL, NULL, &sc->bge_cdata.bge_stats_tag); if (error) { device_printf(sc->bge_dev, "could not allocate dma tag\n"); return (ENOMEM); } /* Allocate DMA'able memory for statistics block. */ error = bus_dmamem_alloc(sc->bge_cdata.bge_stats_tag, (void **)&sc->bge_ldata.bge_stats, BUS_DMA_NOWAIT, &sc->bge_cdata.bge_stats_map); if (error) return (ENOMEM); bzero((char *)sc->bge_ldata.bge_stats, BGE_STATS_SZ); /* Load the address of the statstics block. */ ctx.sc = sc; ctx.bge_maxsegs = 1; error = bus_dmamap_load(sc->bge_cdata.bge_stats_tag, sc->bge_cdata.bge_stats_map, sc->bge_ldata.bge_stats, BGE_STATS_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT); if (error) return (ENOMEM); sc->bge_ldata.bge_stats_paddr = ctx.bge_busaddr; return (0); } /* * Return true if this device has more than one port. */ static int bge_has_multiple_ports(struct bge_softc *sc) { device_t dev = sc->bge_dev; u_int b, d, f, fscan, s; d = pci_get_domain(dev); b = pci_get_bus(dev); s = pci_get_slot(dev); f = pci_get_function(dev); for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++) if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL) return (1); return (0); } /* * Return true if MSI can be used with this device. */ static int bge_can_use_msi(struct bge_softc *sc) { int can_use_msi = 0; switch (sc->bge_asicrev) { case BGE_ASICREV_BCM5714_A0: case BGE_ASICREV_BCM5714: /* * Apparently, MSI doesn't work when these chips are * configured in single-port mode. */ if (bge_has_multiple_ports(sc)) can_use_msi = 1; break; case BGE_ASICREV_BCM5750: if (sc->bge_chiprev != BGE_CHIPREV_5750_AX && sc->bge_chiprev != BGE_CHIPREV_5750_BX) can_use_msi = 1; break; default: if (BGE_IS_575X_PLUS(sc)) can_use_msi = 1; } return (can_use_msi); } static int bge_attach(device_t dev) { struct ifnet *ifp; struct bge_softc *sc; uint32_t hwcfg = 0, misccfg; u_char eaddr[ETHER_ADDR_LEN]; int error, msicount, reg, rid, trys; sc = device_get_softc(dev); sc->bge_dev = dev; TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc); /* * Map control/status registers. */ pci_enable_busmaster(dev); rid = BGE_PCI_BAR0; sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (sc->bge_res == NULL) { device_printf (sc->bge_dev, "couldn't map memory\n"); error = ENXIO; goto fail; } /* Save various chip information. */ sc->bge_chipid = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >> BGE_PCIMISCCTL_ASICREV_SHIFT; if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) sc->bge_chipid = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4); sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid); sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid); /* * Don't enable Ethernet@WireSpeed for the 5700, 5906, or the * 5705 A0 and A1 chips. */ if (sc->bge_asicrev != BGE_ASICREV_BCM5700 && sc->bge_asicrev != BGE_ASICREV_BCM5906 && sc->bge_chipid != BGE_CHIPID_BCM5705_A0 && sc->bge_chipid != BGE_CHIPID_BCM5705_A1) sc->bge_flags |= BGE_FLAG_WIRESPEED; if (bge_has_eaddr(sc)) sc->bge_flags |= BGE_FLAG_EADDR; /* Save chipset family. */ switch (sc->bge_asicrev) { case BGE_ASICREV_BCM5755: case BGE_ASICREV_BCM5761: case BGE_ASICREV_BCM5784: case BGE_ASICREV_BCM5785: case BGE_ASICREV_BCM5787: case BGE_ASICREV_BCM57780: sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS | BGE_FLAG_5705_PLUS; break; case BGE_ASICREV_BCM5700: case BGE_ASICREV_BCM5701: case BGE_ASICREV_BCM5703: case BGE_ASICREV_BCM5704: sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO; break; case BGE_ASICREV_BCM5714_A0: case BGE_ASICREV_BCM5780: case BGE_ASICREV_BCM5714: sc->bge_flags |= BGE_FLAG_5714_FAMILY /* | BGE_FLAG_JUMBO */; /* FALLTHROUGH */ case BGE_ASICREV_BCM5750: case BGE_ASICREV_BCM5752: case BGE_ASICREV_BCM5906: sc->bge_flags |= BGE_FLAG_575X_PLUS; /* FALLTHROUGH */ case BGE_ASICREV_BCM5705: sc->bge_flags |= BGE_FLAG_5705_PLUS; break; } /* Set various bug flags. */ if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 || sc->bge_chipid == BGE_CHIPID_BCM5701_B0) sc->bge_flags |= BGE_FLAG_CRC_BUG; if (sc->bge_chiprev == BGE_CHIPREV_5703_AX || sc->bge_chiprev == BGE_CHIPREV_5704_AX) sc->bge_flags |= BGE_FLAG_ADC_BUG; if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0) sc->bge_flags |= BGE_FLAG_5704_A0_BUG; if (BGE_IS_5705_PLUS(sc) && !(sc->bge_flags & BGE_FLAG_ADJUST_TRIM)) { if (sc->bge_asicrev == BGE_ASICREV_BCM5755 || sc->bge_asicrev == BGE_ASICREV_BCM5761 || sc->bge_asicrev == BGE_ASICREV_BCM5784 || sc->bge_asicrev == BGE_ASICREV_BCM5787) { if (sc->bge_chipid != BGE_CHIPID_BCM5722_A0) sc->bge_flags |= BGE_FLAG_JITTER_BUG; } else if (sc->bge_asicrev != BGE_ASICREV_BCM5906) sc->bge_flags |= BGE_FLAG_BER_BUG; } /* * All controllers that are not 5755 or higher have 4GB * boundary DMA bug. * Whenever an address crosses a multiple of the 4GB boundary * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA * state machine will lockup and cause the device to hang. */ if (BGE_IS_5755_PLUS(sc) == 0) sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG; /* * We could possibly check for BCOM_DEVICEID_BCM5788 in bge_probe() * but I do not know the DEVICEID for the 5788M. */ misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID; if (misccfg == BGE_MISCCFG_BOARD_ID_5788 || misccfg == BGE_MISCCFG_BOARD_ID_5788M) sc->bge_flags |= BGE_FLAG_5788; /* * Some controllers seem to require a special firmware to use * TSO. But the firmware is not available to FreeBSD and Linux * claims that the TSO performed by the firmware is slower than * hardware based TSO. Moreover the firmware based TSO has one * known bug which can't handle TSO if ethernet header + IP/TCP * header is greater than 80 bytes. The workaround for the TSO * bug exist but it seems it's too expensive than not using * TSO at all. Some hardwares also have the TSO bug so limit * the TSO to the controllers that are not affected TSO issues * (e.g. 5755 or higher). */ if (BGE_IS_5755_PLUS(sc)) sc->bge_flags |= BGE_FLAG_TSO; /* * Check if this is a PCI-X or PCI Express device. */ if (pci_find_extcap(dev, PCIY_EXPRESS, ®) == 0) { /* * Found a PCI Express capabilities register, this * must be a PCI Express device. */ sc->bge_flags |= BGE_FLAG_PCIE; sc->bge_expcap = reg; bge_set_max_readrq(sc); } else { /* * Check if the device is in PCI-X Mode. * (This bit is not valid on PCI Express controllers.) */ if (pci_find_extcap(dev, PCIY_PCIX, ®) == 0) sc->bge_pcixcap = reg; if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) & BGE_PCISTATE_PCI_BUSMODE) == 0) sc->bge_flags |= BGE_FLAG_PCIX; } /* * The 40bit DMA bug applies to the 5714/5715 controllers and is * not actually a MAC controller bug but an issue with the embedded * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround. */ if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX)) sc->bge_flags |= BGE_FLAG_40BIT_BUG; /* * Allocate the interrupt, using MSI if possible. These devices * support 8 MSI messages, but only the first one is used in * normal operation. */ rid = 0; if (pci_find_extcap(sc->bge_dev, PCIY_MSI, ®) == 0) { sc->bge_msicap = reg; if (bge_can_use_msi(sc)) { msicount = pci_msi_count(dev); if (msicount > 1) msicount = 1; } else msicount = 0; if (msicount == 1 && pci_alloc_msi(dev, &msicount) == 0) { rid = 1; sc->bge_flags |= BGE_FLAG_MSI; } } sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE); if (sc->bge_irq == NULL) { device_printf(sc->bge_dev, "couldn't map interrupt\n"); error = ENXIO; goto fail; } if (bootverbose) device_printf(dev, "CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; %s\n", sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev, (sc->bge_flags & BGE_FLAG_PCIX) ? "PCI-X" : ((sc->bge_flags & BGE_FLAG_PCIE) ? "PCI-E" : "PCI")); BGE_LOCK_INIT(sc, device_get_nameunit(dev)); /* Try to reset the chip. */ if (bge_reset(sc)) { device_printf(sc->bge_dev, "chip reset failed\n"); error = ENXIO; goto fail; } sc->bge_asf_mode = 0; if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER)) { if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG) & BGE_HWCFG_ASF) { sc->bge_asf_mode |= ASF_ENABLE; sc->bge_asf_mode |= ASF_STACKUP; if (sc->bge_asicrev == BGE_ASICREV_BCM5750) { sc->bge_asf_mode |= ASF_NEW_HANDSHAKE; } } } /* Try to reset the chip again the nice way. */ bge_stop_fw(sc); bge_sig_pre_reset(sc, BGE_RESET_STOP); if (bge_reset(sc)) { device_printf(sc->bge_dev, "chip reset failed\n"); error = ENXIO; goto fail; } bge_sig_legacy(sc, BGE_RESET_STOP); bge_sig_post_reset(sc, BGE_RESET_STOP); if (bge_chipinit(sc)) { device_printf(sc->bge_dev, "chip initialization failed\n"); error = ENXIO; goto fail; } error = bge_get_eaddr(sc, eaddr); if (error) { device_printf(sc->bge_dev, "failed to read station address\n"); error = ENXIO; goto fail; } /* 5705 limits RX return ring to 512 entries. */ if (BGE_IS_5705_PLUS(sc)) sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705; else sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT; if (bge_dma_alloc(dev)) { device_printf(sc->bge_dev, "failed to allocate DMA resources\n"); error = ENXIO; goto fail; } /* Set default tuneable values. */ sc->bge_stat_ticks = BGE_TICKS_PER_SEC; sc->bge_rx_coal_ticks = 150; sc->bge_tx_coal_ticks = 150; sc->bge_rx_max_coal_bds = 10; sc->bge_tx_max_coal_bds = 10; /* Set up ifnet structure */ ifp = sc->bge_ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { device_printf(sc->bge_dev, "failed to if_alloc()\n"); error = ENXIO; goto fail; } ifp->if_softc = sc; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = bge_ioctl; ifp->if_start = bge_start; ifp->if_init = bge_init; ifp->if_snd.ifq_drv_maxlen = BGE_TX_RING_CNT - 1; IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen); IFQ_SET_READY(&ifp->if_snd); ifp->if_hwassist = BGE_CSUM_FEATURES; ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU; if ((sc->bge_flags & BGE_FLAG_TSO) != 0) { ifp->if_hwassist |= CSUM_TSO; ifp->if_capabilities |= IFCAP_TSO4; } #ifdef IFCAP_VLAN_HWCSUM ifp->if_capabilities |= IFCAP_VLAN_HWCSUM; #endif ifp->if_capenable = ifp->if_capabilities; #ifdef DEVICE_POLLING ifp->if_capabilities |= IFCAP_POLLING; #endif /* * 5700 B0 chips do not support checksumming correctly due * to hardware bugs. */ if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) { ifp->if_capabilities &= ~IFCAP_HWCSUM; ifp->if_capenable &= ~IFCAP_HWCSUM; ifp->if_hwassist = 0; } /* * Figure out what sort of media we have by checking the * hardware config word in the first 32k of NIC internal memory, * or fall back to examining the EEPROM if necessary. * Note: on some BCM5700 cards, this value appears to be unset. * If that's the case, we have to rely on identifying the NIC * by its PCI subsystem ID, as we do below for the SysKonnect * SK-9D41. */ if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG); else if ((sc->bge_flags & BGE_FLAG_EADDR) && (sc->bge_asicrev != BGE_ASICREV_BCM5906)) { if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET, sizeof(hwcfg))) { device_printf(sc->bge_dev, "failed to read EEPROM\n"); error = ENXIO; goto fail; } hwcfg = ntohl(hwcfg); } if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) sc->bge_flags |= BGE_FLAG_TBI; /* The SysKonnect SK-9D41 is a 1000baseSX card. */ if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) == SK_SUBSYSID_9D41) sc->bge_flags |= BGE_FLAG_TBI; if (sc->bge_flags & BGE_FLAG_TBI) { ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd, bge_ifmedia_sts); ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL); ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX, 0, NULL); ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL); ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO); sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media; } else { /* * Do transceiver setup and tell the firmware the * driver is down so we can try to get access the * probe if ASF is running. Retry a couple of times * if we get a conflict with the ASF firmware accessing * the PHY. */ trys = 0; BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); again: bge_asf_driver_up(sc); if (mii_phy_probe(dev, &sc->bge_miibus, bge_ifmedia_upd, bge_ifmedia_sts)) { if (trys++ < 4) { device_printf(sc->bge_dev, "Try again\n"); bge_miibus_writereg(sc->bge_dev, 1, MII_BMCR, BMCR_RESET); goto again; } device_printf(sc->bge_dev, "MII without any PHY!\n"); error = ENXIO; goto fail; } /* * Now tell the firmware we are going up after probing the PHY */ if (sc->bge_asf_mode & ASF_STACKUP) BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); } /* * When using the BCM5701 in PCI-X mode, data corruption has * been observed in the first few bytes of some received packets. * Aligning the packet buffer in memory eliminates the corruption. * Unfortunately, this misaligns the packet payloads. On platforms * which do not support unaligned accesses, we will realign the * payloads by copying the received packets. */ if (sc->bge_asicrev == BGE_ASICREV_BCM5701 && sc->bge_flags & BGE_FLAG_PCIX) sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG; /* * Call MI attach routine. */ ether_ifattach(ifp, eaddr); callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0); /* Tell upper layer we support long frames. */ ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); /* * Hookup IRQ last. */ #if __FreeBSD_version > 700030 if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) { /* Take advantage of single-shot MSI. */ CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) & ~BGE_MSIMODE_ONE_SHOT_DISABLE); sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK, taskqueue_thread_enqueue, &sc->bge_tq); if (sc->bge_tq == NULL) { device_printf(dev, "could not create taskqueue.\n"); ether_ifdetach(ifp); error = ENXIO; goto fail; } taskqueue_start_threads(&sc->bge_tq, 1, PI_NET, "%s taskq", device_get_nameunit(sc->bge_dev)); error = bus_setup_intr(dev, sc->bge_irq, INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc, &sc->bge_intrhand); if (error) ether_ifdetach(ifp); } else error = bus_setup_intr(dev, sc->bge_irq, INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc, &sc->bge_intrhand); #else error = bus_setup_intr(dev, sc->bge_irq, INTR_TYPE_NET | INTR_MPSAFE, bge_intr, sc, &sc->bge_intrhand); #endif if (error) { bge_detach(dev); device_printf(sc->bge_dev, "couldn't set up irq\n"); } bge_add_sysctls(sc); return (0); fail: bge_release_resources(sc); return (error); } static int bge_detach(device_t dev) { struct bge_softc *sc; struct ifnet *ifp; sc = device_get_softc(dev); ifp = sc->bge_ifp; #ifdef DEVICE_POLLING if (ifp->if_capenable & IFCAP_POLLING) ether_poll_deregister(ifp); #endif BGE_LOCK(sc); bge_stop(sc); bge_reset(sc); BGE_UNLOCK(sc); callout_drain(&sc->bge_stat_ch); if (sc->bge_tq) taskqueue_drain(sc->bge_tq, &sc->bge_intr_task); ether_ifdetach(ifp); if (sc->bge_flags & BGE_FLAG_TBI) { ifmedia_removeall(&sc->bge_ifmedia); } else { bus_generic_detach(dev); device_delete_child(dev, sc->bge_miibus); } bge_release_resources(sc); return (0); } static void bge_release_resources(struct bge_softc *sc) { device_t dev; dev = sc->bge_dev; if (sc->bge_tq != NULL) taskqueue_free(sc->bge_tq); if (sc->bge_intrhand != NULL) bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand); if (sc->bge_irq != NULL) bus_release_resource(dev, SYS_RES_IRQ, sc->bge_flags & BGE_FLAG_MSI ? 1 : 0, sc->bge_irq); if (sc->bge_flags & BGE_FLAG_MSI) pci_release_msi(dev); if (sc->bge_res != NULL) bus_release_resource(dev, SYS_RES_MEMORY, BGE_PCI_BAR0, sc->bge_res); if (sc->bge_ifp != NULL) if_free(sc->bge_ifp); bge_dma_free(sc); if (mtx_initialized(&sc->bge_mtx)) /* XXX */ BGE_LOCK_DESTROY(sc); } static int bge_reset(struct bge_softc *sc) { device_t dev; uint32_t cachesize, command, pcistate, reset, val; void (*write_op)(struct bge_softc *, int, int); uint16_t devctl; int i; dev = sc->bge_dev; if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) && (sc->bge_asicrev != BGE_ASICREV_BCM5906)) { if (sc->bge_flags & BGE_FLAG_PCIE) write_op = bge_writemem_direct; else write_op = bge_writemem_ind; } else write_op = bge_writereg_ind; /* Save some important PCI state. */ cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4); command = pci_read_config(dev, BGE_PCI_CMD, 4); pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4); pci_write_config(dev, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR | BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4); /* Disable fastboot on controllers that support it. */ if (sc->bge_asicrev == BGE_ASICREV_BCM5752 || BGE_IS_5755_PLUS(sc)) { if (bootverbose) device_printf(sc->bge_dev, "Disabling fastboot\n"); CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0); } /* * Write the magic number to SRAM at offset 0xB50. * When firmware finishes its initialization it will * write ~BGE_MAGIC_NUMBER to the same location. */ bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER); reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ; /* XXX: Broadcom Linux driver. */ if (sc->bge_flags & BGE_FLAG_PCIE) { if (CSR_READ_4(sc, 0x7E2C) == 0x60) /* PCIE 1.0 */ CSR_WRITE_4(sc, 0x7E2C, 0x20); if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) { /* Prevent PCIE link training during global reset */ CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29); reset |= 1 << 29; } } /* * Set GPHY Power Down Override to leave GPHY * powered up in D0 uninitialized. */ if (BGE_IS_5705_PLUS(sc)) reset |= 0x04000000; /* Issue global reset */ write_op(sc, BGE_MISC_CFG, reset); if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { val = CSR_READ_4(sc, BGE_VCPU_STATUS); CSR_WRITE_4(sc, BGE_VCPU_STATUS, val | BGE_VCPU_STATUS_DRV_RESET); val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL); CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL, val & ~BGE_VCPU_EXT_CTRL_HALT_CPU); } DELAY(1000); /* XXX: Broadcom Linux driver. */ if (sc->bge_flags & BGE_FLAG_PCIE) { if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) { DELAY(500000); /* wait for link training to complete */ val = pci_read_config(dev, 0xC4, 4); pci_write_config(dev, 0xC4, val | (1 << 15), 4); } devctl = pci_read_config(dev, sc->bge_expcap + PCIR_EXPRESS_DEVICE_CTL, 2); /* Clear enable no snoop and disable relaxed ordering. */ devctl &= ~(0x0010 | 0x0800); /* Set PCIE max payload size to 128. */ devctl &= ~PCIM_EXP_CTL_MAX_PAYLOAD; pci_write_config(dev, sc->bge_expcap + PCIR_EXPRESS_DEVICE_CTL, devctl, 2); /* Clear error status. */ pci_write_config(dev, sc->bge_expcap + PCIR_EXPRESS_DEVICE_STA, 0, 2); } /* Reset some of the PCI state that got zapped by reset. */ pci_write_config(dev, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR | BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4); pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4); pci_write_config(dev, BGE_PCI_CMD, command, 4); write_op(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ); /* Re-enable MSI, if neccesary, and enable the memory arbiter. */ if (BGE_IS_5714_FAMILY(sc)) { /* This chip disables MSI on reset. */ if (sc->bge_flags & BGE_FLAG_MSI) { val = pci_read_config(dev, sc->bge_msicap + PCIR_MSI_CTRL, 2); pci_write_config(dev, sc->bge_msicap + PCIR_MSI_CTRL, val | PCIM_MSICTRL_MSI_ENABLE, 2); val = CSR_READ_4(sc, BGE_MSI_MODE); CSR_WRITE_4(sc, BGE_MSI_MODE, val | BGE_MSIMODE_ENABLE); } val = CSR_READ_4(sc, BGE_MARB_MODE); CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val); } else CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE); if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { for (i = 0; i < BGE_TIMEOUT; i++) { val = CSR_READ_4(sc, BGE_VCPU_STATUS); if (val & BGE_VCPU_STATUS_INIT_DONE) break; DELAY(100); } if (i == BGE_TIMEOUT) { device_printf(sc->bge_dev, "reset timed out\n"); return (1); } } else { /* * Poll until we see the 1's complement of the magic number. * This indicates that the firmware initialization is complete. * We expect this to fail if no chip containing the Ethernet * address is fitted though. */ for (i = 0; i < BGE_TIMEOUT; i++) { DELAY(10); val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM); if (val == ~BGE_MAGIC_NUMBER) break; } if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT) device_printf(sc->bge_dev, "firmware handshake timed out, " "found 0x%08x\n", val); } /* * XXX Wait for the value of the PCISTATE register to * return to its original pre-reset state. This is a * fairly good indicator of reset completion. If we don't * wait for the reset to fully complete, trying to read * from the device's non-PCI registers may yield garbage * results. */ for (i = 0; i < BGE_TIMEOUT; i++) { if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate) break; DELAY(10); } if (sc->bge_flags & BGE_FLAG_PCIE) { reset = bge_readmem_ind(sc, 0x7C00); bge_writemem_ind(sc, 0x7C00, reset | (1 << 25)); } /* Fix up byte swapping. */ CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS | BGE_MODECTL_BYTESWAP_DATA); /* Tell the ASF firmware we are up */ if (sc->bge_asf_mode & ASF_STACKUP) BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); CSR_WRITE_4(sc, BGE_MAC_MODE, 0); /* * The 5704 in TBI mode apparently needs some special * adjustment to insure the SERDES drive level is set * to 1.2V. */ if (sc->bge_asicrev == BGE_ASICREV_BCM5704 && sc->bge_flags & BGE_FLAG_TBI) { val = CSR_READ_4(sc, BGE_SERDES_CFG); val = (val & ~0xFFF) | 0x880; CSR_WRITE_4(sc, BGE_SERDES_CFG, val); } /* XXX: Broadcom Linux driver. */ if (sc->bge_flags & BGE_FLAG_PCIE && sc->bge_chipid != BGE_CHIPID_BCM5750_A0) { val = CSR_READ_4(sc, 0x7C00); CSR_WRITE_4(sc, 0x7C00, val | (1 << 25)); } DELAY(10000); return(0); } /* * Frame reception handling. This is called if there's a frame * on the receive return list. * * Note: we have to be able to handle two possibilities here: * 1) the frame is from the jumbo receive ring * 2) the frame is from the standard receive ring */ static int bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck) { struct ifnet *ifp; int rx_npkts = 0, stdcnt = 0, jumbocnt = 0; uint16_t rx_cons; rx_cons = sc->bge_rx_saved_considx; /* Nothing to do. */ if (rx_cons == rx_prod) return (rx_npkts); ifp = sc->bge_ifp; bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag, sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD); bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE); if (ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN)) bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE); while (rx_cons != rx_prod) { struct bge_rx_bd *cur_rx; uint32_t rxidx; struct mbuf *m = NULL; uint16_t vlan_tag = 0; int have_tag = 0; #ifdef DEVICE_POLLING if (ifp->if_capenable & IFCAP_POLLING) { if (sc->rxcycles <= 0) break; sc->rxcycles--; } #endif cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons]; rxidx = cur_rx->bge_idx; BGE_INC(rx_cons, sc->bge_return_ring_cnt); if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING && cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) { have_tag = 1; vlan_tag = cur_rx->bge_vlan_tag; } if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) { jumbocnt++; m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx]; if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) { BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT); continue; } if (bge_newbuf_jumbo(sc, rxidx) != 0) { BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT); ifp->if_iqdrops++; continue; } BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT); } else { stdcnt++; if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) { BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT); continue; } m = sc->bge_cdata.bge_rx_std_chain[rxidx]; if (bge_newbuf_std(sc, rxidx) != 0) { BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT); ifp->if_iqdrops++; continue; } BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT); } ifp->if_ipackets++; #ifndef __NO_STRICT_ALIGNMENT /* * For architectures with strict alignment we must make sure * the payload is aligned. */ if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) { bcopy(m->m_data, m->m_data + ETHER_ALIGN, cur_rx->bge_len); m->m_data += ETHER_ALIGN; } #endif m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN; m->m_pkthdr.rcvif = ifp; if (ifp->if_capenable & IFCAP_RXCSUM) { if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) { m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0) m->m_pkthdr.csum_flags |= CSUM_IP_VALID; } if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM && m->m_pkthdr.len >= ETHER_MIN_NOPAD) { m->m_pkthdr.csum_data = cur_rx->bge_tcp_udp_csum; m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR; } } /* * If we received a packet with a vlan tag, * attach that information to the packet. */ if (have_tag) { #if __FreeBSD_version > 700022 m->m_pkthdr.ether_vtag = vlan_tag; m->m_flags |= M_VLANTAG; #else VLAN_INPUT_TAG_NEW(ifp, m, vlan_tag); if (m == NULL) continue; #endif } if (holdlck != 0) { BGE_UNLOCK(sc); (*ifp->if_input)(ifp, m); BGE_LOCK(sc); } else (*ifp->if_input)(ifp, m); rx_npkts++; if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) return (rx_npkts); } bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag, sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD); if (stdcnt > 0) bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE); if (jumbocnt > 0) bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE); sc->bge_rx_saved_considx = rx_cons; bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx); if (stdcnt) bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std); if (jumbocnt) bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo); #ifdef notyet /* * This register wraps very quickly under heavy packet drops. * If you need correct statistics, you can enable this check. */ if (BGE_IS_5705_PLUS(sc)) ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS); #endif return (rx_npkts); } static void bge_txeof(struct bge_softc *sc, uint16_t tx_cons) { struct bge_tx_bd *cur_tx = NULL; struct ifnet *ifp; BGE_LOCK_ASSERT(sc); /* Nothing to do. */ if (sc->bge_tx_saved_considx == tx_cons) return; ifp = sc->bge_ifp; bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag, sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE); /* * Go through our tx ring and free mbufs for those * frames that have been sent. */ while (sc->bge_tx_saved_considx != tx_cons) { uint32_t idx = 0; idx = sc->bge_tx_saved_considx; cur_tx = &sc->bge_ldata.bge_tx_ring[idx]; if (cur_tx->bge_flags & BGE_TXBDFLAG_END) ifp->if_opackets++; if (sc->bge_cdata.bge_tx_chain[idx] != NULL) { bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, sc->bge_cdata.bge_tx_dmamap[idx], BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, sc->bge_cdata.bge_tx_dmamap[idx]); m_freem(sc->bge_cdata.bge_tx_chain[idx]); sc->bge_cdata.bge_tx_chain[idx] = NULL; } sc->bge_txcnt--; BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT); } if (cur_tx != NULL) ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; if (sc->bge_txcnt == 0) sc->bge_timer = 0; } #ifdef DEVICE_POLLING static int bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) { struct bge_softc *sc = ifp->if_softc; uint16_t rx_prod, tx_cons; uint32_t statusword; int rx_npkts = 0; BGE_LOCK(sc); if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { BGE_UNLOCK(sc); return (rx_npkts); } bus_dmamap_sync(sc->bge_cdata.bge_status_tag, sc->bge_cdata.bge_status_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx; tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx; statusword = atomic_readandclear_32( &sc->bge_ldata.bge_status_block->bge_status); bus_dmamap_sync(sc->bge_cdata.bge_status_tag, sc->bge_cdata.bge_status_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */ if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED) sc->bge_link_evt++; if (cmd == POLL_AND_CHECK_STATUS) if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 && sc->bge_chipid != BGE_CHIPID_BCM5700_B2) || sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI)) bge_link_upd(sc); sc->rxcycles = count; rx_npkts = bge_rxeof(sc, rx_prod, 1); if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { BGE_UNLOCK(sc); return (rx_npkts); } bge_txeof(sc, tx_cons); if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) bge_start_locked(ifp); BGE_UNLOCK(sc); return (rx_npkts); } #endif /* DEVICE_POLLING */ static int bge_msi_intr(void *arg) { struct bge_softc *sc; sc = (struct bge_softc *)arg; /* * This interrupt is not shared and controller already * disabled further interrupt. */ taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task); return (FILTER_HANDLED); } static void bge_intr_task(void *arg, int pending) { struct bge_softc *sc; struct ifnet *ifp; uint32_t status; uint16_t rx_prod, tx_cons; sc = (struct bge_softc *)arg; ifp = sc->bge_ifp; if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) return; /* Get updated status block. */ bus_dmamap_sync(sc->bge_cdata.bge_status_tag, sc->bge_cdata.bge_status_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); /* Save producer/consumer indexess. */ rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx; tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx; status = sc->bge_ldata.bge_status_block->bge_status; sc->bge_ldata.bge_status_block->bge_status = 0; bus_dmamap_sync(sc->bge_cdata.bge_status_tag, sc->bge_cdata.bge_status_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* Let controller work. */ bge_writembx(sc, BGE_MBX_IRQ0_LO, 0); if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0) { BGE_LOCK(sc); bge_link_upd(sc); BGE_UNLOCK(sc); } if (ifp->if_drv_flags & IFF_DRV_RUNNING) { /* Check RX return ring producer/consumer. */ bge_rxeof(sc, rx_prod, 0); } if (ifp->if_drv_flags & IFF_DRV_RUNNING) { BGE_LOCK(sc); /* Check TX ring producer/consumer. */ bge_txeof(sc, tx_cons); if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) bge_start_locked(ifp); BGE_UNLOCK(sc); } } static void bge_intr(void *xsc) { struct bge_softc *sc; struct ifnet *ifp; uint32_t statusword; uint16_t rx_prod, tx_cons; sc = xsc; BGE_LOCK(sc); ifp = sc->bge_ifp; #ifdef DEVICE_POLLING if (ifp->if_capenable & IFCAP_POLLING) { BGE_UNLOCK(sc); return; } #endif /* * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO. Don't * disable interrupts by writing nonzero like we used to, since with * our current organization this just gives complications and * pessimizations for re-enabling interrupts. We used to have races * instead of the necessary complications. Disabling interrupts * would just reduce the chance of a status update while we are * running (by switching to the interrupt-mode coalescence * parameters), but this chance is already very low so it is more * efficient to get another interrupt than prevent it. * * We do the ack first to ensure another interrupt if there is a * status update after the ack. We don't check for the status * changing later because it is more efficient to get another * interrupt than prevent it, not quite as above (not checking is * a smaller optimization than not toggling the interrupt enable, * since checking doesn't involve PCI accesses and toggling require * the status check). So toggling would probably be a pessimization * even with MSI. It would only be needed for using a task queue. */ bge_writembx(sc, BGE_MBX_IRQ0_LO, 0); /* * Do the mandatory PCI flush as well as get the link status. */ statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED; /* Make sure the descriptor ring indexes are coherent. */ bus_dmamap_sync(sc->bge_cdata.bge_status_tag, sc->bge_cdata.bge_status_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx; tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx; sc->bge_ldata.bge_status_block->bge_status = 0; bus_dmamap_sync(sc->bge_cdata.bge_status_tag, sc->bge_cdata.bge_status_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 && sc->bge_chipid != BGE_CHIPID_BCM5700_B2) || statusword || sc->bge_link_evt) bge_link_upd(sc); if (ifp->if_drv_flags & IFF_DRV_RUNNING) { /* Check RX return ring producer/consumer. */ bge_rxeof(sc, rx_prod, 1); } if (ifp->if_drv_flags & IFF_DRV_RUNNING) { /* Check TX ring producer/consumer. */ bge_txeof(sc, tx_cons); } if (ifp->if_drv_flags & IFF_DRV_RUNNING && !IFQ_DRV_IS_EMPTY(&ifp->if_snd)) bge_start_locked(ifp); BGE_UNLOCK(sc); } static void bge_asf_driver_up(struct bge_softc *sc) { if (sc->bge_asf_mode & ASF_STACKUP) { /* Send ASF heartbeat aprox. every 2s */ if (sc->bge_asf_count) sc->bge_asf_count --; else { sc->bge_asf_count = 5; bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW, BGE_FW_DRV_ALIVE); bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_LEN, 4); bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_DATA, 3); CSR_WRITE_4(sc, BGE_CPU_EVENT, CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14)); } } } static void bge_tick(void *xsc) { struct bge_softc *sc = xsc; struct mii_data *mii = NULL; BGE_LOCK_ASSERT(sc); /* Synchronize with possible callout reset/stop. */ if (callout_pending(&sc->bge_stat_ch) || !callout_active(&sc->bge_stat_ch)) return; if (BGE_IS_5705_PLUS(sc)) bge_stats_update_regs(sc); else bge_stats_update(sc); if ((sc->bge_flags & BGE_FLAG_TBI) == 0) { mii = device_get_softc(sc->bge_miibus); /* * Do not touch PHY if we have link up. This could break * IPMI/ASF mode or produce extra input errors * (extra errors was reported for bcm5701 & bcm5704). */ if (!sc->bge_link) mii_tick(mii); } else { /* * Since in TBI mode auto-polling can't be used we should poll * link status manually. Here we register pending link event * and trigger interrupt. */ #ifdef DEVICE_POLLING /* In polling mode we poll link state in bge_poll(). */ if (!(sc->bge_ifp->if_capenable & IFCAP_POLLING)) #endif { sc->bge_link_evt++; if (sc->bge_asicrev == BGE_ASICREV_BCM5700 || sc->bge_flags & BGE_FLAG_5788) BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET); else BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW); } } bge_asf_driver_up(sc); bge_watchdog(sc); callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc); } static void bge_stats_update_regs(struct bge_softc *sc) { struct ifnet *ifp; ifp = sc->bge_ifp; ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS + offsetof(struct bge_mac_stats_regs, etherStatsCollisions)); ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS); ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS); ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS); } static void bge_stats_update(struct bge_softc *sc) { struct ifnet *ifp; bus_size_t stats; uint32_t cnt; /* current register value */ ifp = sc->bge_ifp; stats = BGE_MEMWIN_START + BGE_STATS_BLOCK; #define READ_STAT(sc, stats, stat) \ CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat)) cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo); ifp->if_collisions += (uint32_t)(cnt - sc->bge_tx_collisions); sc->bge_tx_collisions = cnt; cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo); ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_discards); sc->bge_rx_discards = cnt; cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo); ifp->if_oerrors += (uint32_t)(cnt - sc->bge_tx_discards); sc->bge_tx_discards = cnt; #undef READ_STAT } /* * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason. * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD, * but when such padded frames employ the bge IP/TCP checksum offload, * the hardware checksum assist gives incorrect results (possibly * from incorporating its own padding into the UDP/TCP checksum; who knows). * If we pad such runts with zeros, the onboard checksum comes out correct. */ static __inline int bge_cksum_pad(struct mbuf *m) { int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len; struct mbuf *last; /* If there's only the packet-header and we can pad there, use it. */ if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) && M_TRAILINGSPACE(m) >= padlen) { last = m; } else { /* * Walk packet chain to find last mbuf. We will either * pad there, or append a new mbuf and pad it. */ for (last = m; last->m_next != NULL; last = last->m_next); if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) { /* Allocate new empty mbuf, pad it. Compact later. */ struct mbuf *n; MGET(n, M_DONTWAIT, MT_DATA); if (n == NULL) return (ENOBUFS); n->m_len = 0; last->m_next = n; last = n; } } /* Now zero the pad area, to avoid the bge cksum-assist bug. */ memset(mtod(last, caddr_t) + last->m_len, 0, padlen); last->m_len += padlen; m->m_pkthdr.len += padlen; return (0); } static struct mbuf * bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss) { struct ether_header *eh; struct ip *ip; struct tcphdr *tcp; struct mbuf *n; uint16_t hlen; uint32_t ip_off, poff; if (M_WRITABLE(m) == 0) { /* Get a writable copy. */ n = m_dup(m, M_DONTWAIT); m_freem(m); if (n == NULL) return (NULL); m = n; } ip_off = sizeof(struct ether_header); m = m_pullup(m, ip_off); if (m == NULL) return (NULL); eh = mtod(m, struct ether_header *); /* Check the existence of VLAN tag. */ if (eh->ether_type == htons(ETHERTYPE_VLAN)) { ip_off = sizeof(struct ether_vlan_header); m = m_pullup(m, ip_off); if (m == NULL) return (NULL); } m = m_pullup(m, ip_off + sizeof(struct ip)); if (m == NULL) return (NULL); ip = (struct ip *)(mtod(m, char *) + ip_off); poff = ip_off + (ip->ip_hl << 2); m = m_pullup(m, poff + sizeof(struct tcphdr)); if (m == NULL) return (NULL); tcp = (struct tcphdr *)(mtod(m, char *) + poff); m = m_pullup(m, poff + sizeof(struct tcphdr) + tcp->th_off); if (m == NULL) return (NULL); /* * It seems controller doesn't modify IP length and TCP pseudo * checksum. These checksum computed by upper stack should be 0. */ *mss = m->m_pkthdr.tso_segsz; ip->ip_sum = 0; ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2)); /* Clear pseudo checksum computed by TCP stack. */ tcp->th_sum = 0; /* * Broadcom controllers uses different descriptor format for * TSO depending on ASIC revision. Due to TSO-capable firmware * license issue and lower performance of firmware based TSO * we only support hardware based TSO which is applicable for * BCM5755 or newer controllers. Hardware based TSO uses 11 * bits to store MSS and upper 5 bits are used to store IP/TCP * header length(including IP/TCP options). The header length * is expressed as 32 bits unit. */ hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2; *mss |= (hlen << 11); return (m); } /* * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data * pointers to descriptors. */ static int bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx) { bus_dma_segment_t segs[BGE_NSEG_NEW]; bus_dmamap_t map; struct bge_tx_bd *d; struct mbuf *m = *m_head; uint32_t idx = *txidx; uint16_t csum_flags, mss, vlan_tag; int nsegs, i, error; csum_flags = 0; mss = 0; vlan_tag = 0; if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { *m_head = m = bge_setup_tso(sc, m, &mss); if (*m_head == NULL) return (ENOBUFS); csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA | BGE_TXBDFLAG_CPU_POST_DMA; } else if ((m->m_pkthdr.csum_flags & BGE_CSUM_FEATURES) != 0) { if (m->m_pkthdr.csum_flags & CSUM_IP) csum_flags |= BGE_TXBDFLAG_IP_CSUM; if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) { csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM; if (m->m_pkthdr.len < ETHER_MIN_NOPAD && (error = bge_cksum_pad(m)) != 0) { m_freem(m); *m_head = NULL; return (error); } } if (m->m_flags & M_LASTFRAG) csum_flags |= BGE_TXBDFLAG_IP_FRAG_END; else if (m->m_flags & M_FRAG) csum_flags |= BGE_TXBDFLAG_IP_FRAG; } if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0 && sc->bge_forced_collapse > 0 && (sc->bge_flags & BGE_FLAG_PCIE) != 0 && m->m_next != NULL) { /* * Forcedly collapse mbuf chains to overcome hardware * limitation which only support a single outstanding * DMA read operation. */ if (sc->bge_forced_collapse == 1) m = m_defrag(m, M_DONTWAIT); else m = m_collapse(m, M_DONTWAIT, sc->bge_forced_collapse); if (m == NULL) { m_freem(*m_head); *m_head = NULL; return (ENOBUFS); } *m_head = m; } map = sc->bge_cdata.bge_tx_dmamap[idx]; error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs, &nsegs, BUS_DMA_NOWAIT); if (error == EFBIG) { m = m_collapse(m, M_DONTWAIT, BGE_NSEG_NEW); if (m == NULL) { m_freem(*m_head); *m_head = NULL; return (ENOBUFS); } *m_head = m; error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs, &nsegs, BUS_DMA_NOWAIT); if (error) { m_freem(m); *m_head = NULL; return (error); } } else if (error != 0) return (error); /* Check if we have enough free send BDs. */ if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) { bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map); return (ENOBUFS); } bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE); #if __FreeBSD_version > 700022 if (m->m_flags & M_VLANTAG) { csum_flags |= BGE_TXBDFLAG_VLAN_TAG; vlan_tag = m->m_pkthdr.ether_vtag; } #else { struct m_tag *mtag; if ((mtag = VLAN_OUTPUT_TAG(sc->bge_ifp, m)) != NULL) { csum_flags |= BGE_TXBDFLAG_VLAN_TAG; vlan_tag = VLAN_TAG_VALUE(mtag); } } #endif for (i = 0; ; i++) { d = &sc->bge_ldata.bge_tx_ring[idx]; d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr); d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr); d->bge_len = segs[i].ds_len; d->bge_flags = csum_flags; d->bge_vlan_tag = vlan_tag; d->bge_mss = mss; if (i == nsegs - 1) break; BGE_INC(idx, BGE_TX_RING_CNT); } /* Mark the last segment as end of packet... */ d->bge_flags |= BGE_TXBDFLAG_END; /* * Insure that the map for this transmission * is placed at the array index of the last descriptor * in this chain. */ sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx]; sc->bge_cdata.bge_tx_dmamap[idx] = map; sc->bge_cdata.bge_tx_chain[idx] = m; sc->bge_txcnt += nsegs; BGE_INC(idx, BGE_TX_RING_CNT); *txidx = idx; return (0); } /* * Main transmit routine. To avoid having to do mbuf copies, we put pointers * to the mbuf data regions directly in the transmit descriptors. */ static void bge_start_locked(struct ifnet *ifp) { struct bge_softc *sc; struct mbuf *m_head; uint32_t prodidx; int count; sc = ifp->if_softc; BGE_LOCK_ASSERT(sc); if (!sc->bge_link || (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING) return; prodidx = sc->bge_tx_prodidx; for (count = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) { if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) { ifp->if_drv_flags |= IFF_DRV_OACTIVE; break; } IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) break; /* * XXX * The code inside the if() block is never reached since we * must mark CSUM_IP_FRAGS in our if_hwassist to start getting * requests to checksum TCP/UDP in a fragmented packet. * * XXX * safety overkill. If this is a fragmented packet chain * with delayed TCP/UDP checksums, then only encapsulate * it if we have enough descriptors to handle the entire * chain at once. * (paranoia -- may not actually be needed) */ if (m_head->m_flags & M_FIRSTFRAG && m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) { if ((BGE_TX_RING_CNT - sc->bge_txcnt) < m_head->m_pkthdr.csum_data + 16) { IFQ_DRV_PREPEND(&ifp->if_snd, m_head); ifp->if_drv_flags |= IFF_DRV_OACTIVE; break; } } /* * Pack the data into the transmit ring. If we * don't have room, set the OACTIVE flag and wait * for the NIC to drain the ring. */ if (bge_encap(sc, &m_head, &prodidx)) { if (m_head == NULL) break; IFQ_DRV_PREPEND(&ifp->if_snd, m_head); ifp->if_drv_flags |= IFF_DRV_OACTIVE; break; } ++count; /* * If there's a BPF listener, bounce a copy of this frame * to him. */ #ifdef ETHER_BPF_MTAP ETHER_BPF_MTAP(ifp, m_head); #else BPF_MTAP(ifp, m_head); #endif } if (count > 0) { bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag, sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE); /* Transmit. */ bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx); /* 5700 b2 errata */ if (sc->bge_chiprev == BGE_CHIPREV_5700_BX) bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx); sc->bge_tx_prodidx = prodidx; /* * Set a timeout in case the chip goes out to lunch. */ sc->bge_timer = 5; } } /* * Main transmit routine. To avoid having to do mbuf copies, we put pointers * to the mbuf data regions directly in the transmit descriptors. */ static void bge_start(struct ifnet *ifp) { struct bge_softc *sc; sc = ifp->if_softc; BGE_LOCK(sc); bge_start_locked(ifp); BGE_UNLOCK(sc); } static void bge_init_locked(struct bge_softc *sc) { struct ifnet *ifp; uint16_t *m; BGE_LOCK_ASSERT(sc); ifp = sc->bge_ifp; if (ifp->if_drv_flags & IFF_DRV_RUNNING) return; /* Cancel pending I/O and flush buffers. */ bge_stop(sc); bge_stop_fw(sc); bge_sig_pre_reset(sc, BGE_RESET_START); bge_reset(sc); bge_sig_legacy(sc, BGE_RESET_START); bge_sig_post_reset(sc, BGE_RESET_START); bge_chipinit(sc); /* * Init the various state machines, ring * control blocks and firmware. */ if (bge_blockinit(sc)) { device_printf(sc->bge_dev, "initialization failure\n"); return; } ifp = sc->bge_ifp; /* Specify MTU. */ CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + (ifp->if_capenable & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0)); /* Load our MAC address. */ m = (uint16_t *)IF_LLADDR(sc->bge_ifp); CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0])); CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2])); /* Program promiscuous mode. */ bge_setpromisc(sc); /* Program multicast filter. */ bge_setmulti(sc); /* Program VLAN tag stripping. */ bge_setvlan(sc); /* Init RX ring. */ if (bge_init_rx_ring_std(sc) != 0) { device_printf(sc->bge_dev, "no memory for std Rx buffers.\n"); bge_stop(sc); return; } /* * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's * memory to insure that the chip has in fact read the first * entry of the ring. */ if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) { uint32_t v, i; for (i = 0; i < 10; i++) { DELAY(20); v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8); if (v == (MCLBYTES - ETHER_ALIGN)) break; } if (i == 10) device_printf (sc->bge_dev, "5705 A0 chip failed to load RX ring\n"); } /* Init jumbo RX ring. */ if (ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN)) { if (bge_init_rx_ring_jumbo(sc) != 0) { device_printf(sc->bge_dev, "no memory for std Rx buffers.\n"); bge_stop(sc); return; } } /* Init our RX return ring index. */ sc->bge_rx_saved_considx = 0; /* Init our RX/TX stat counters. */ sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0; /* Init TX ring. */ bge_init_tx_ring(sc); /* Turn on transmitter. */ BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE); /* Turn on receiver. */ BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE); /* Tell firmware we're alive. */ BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); #ifdef DEVICE_POLLING /* Disable interrupts if we are polling. */ if (ifp->if_capenable & IFCAP_POLLING) { BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); bge_writembx(sc, BGE_MBX_IRQ0_LO, 1); } else #endif /* Enable host interrupts. */ { BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA); BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); bge_writembx(sc, BGE_MBX_IRQ0_LO, 0); } bge_ifmedia_upd_locked(ifp); ifp->if_drv_flags |= IFF_DRV_RUNNING; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc); } static void bge_init(void *xsc) { struct bge_softc *sc = xsc; BGE_LOCK(sc); bge_init_locked(sc); BGE_UNLOCK(sc); } /* * Set media options. */ static int bge_ifmedia_upd(struct ifnet *ifp) { struct bge_softc *sc = ifp->if_softc; int res; BGE_LOCK(sc); res = bge_ifmedia_upd_locked(ifp); BGE_UNLOCK(sc); return (res); } static int bge_ifmedia_upd_locked(struct ifnet *ifp) { struct bge_softc *sc = ifp->if_softc; struct mii_data *mii; struct mii_softc *miisc; struct ifmedia *ifm; BGE_LOCK_ASSERT(sc); ifm = &sc->bge_ifmedia; /* If this is a 1000baseX NIC, enable the TBI port. */ if (sc->bge_flags & BGE_FLAG_TBI) { if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) return (EINVAL); switch(IFM_SUBTYPE(ifm->ifm_media)) { case IFM_AUTO: /* * The BCM5704 ASIC appears to have a special * mechanism for programming the autoneg * advertisement registers in TBI mode. */ if (sc->bge_asicrev == BGE_ASICREV_BCM5704) { uint32_t sgdig; sgdig = CSR_READ_4(sc, BGE_SGDIG_STS); if (sgdig & BGE_SGDIGSTS_DONE) { CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0); sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG); sgdig |= BGE_SGDIGCFG_AUTO | BGE_SGDIGCFG_PAUSE_CAP | BGE_SGDIGCFG_ASYM_PAUSE; CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig | BGE_SGDIGCFG_SEND); DELAY(5); CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig); } } break; case IFM_1000_SX: if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) { BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX); } else { BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX); } break; default: return (EINVAL); } return (0); } sc->bge_link_evt++; mii = device_get_softc(sc->bge_miibus); if (mii->mii_instance) LIST_FOREACH(miisc, &mii->mii_phys, mii_list) mii_phy_reset(miisc); mii_mediachg(mii); /* * Force an interrupt so that we will call bge_link_upd * if needed and clear any pending link state attention. * Without this we are not getting any further interrupts * for link state changes and thus will not UP the link and * not be able to send in bge_start_locked. The only * way to get things working was to receive a packet and * get an RX intr. * bge_tick should help for fiber cards and we might not * need to do this here if BGE_FLAG_TBI is set but as * we poll for fiber anyway it should not harm. */ if (sc->bge_asicrev == BGE_ASICREV_BCM5700 || sc->bge_flags & BGE_FLAG_5788) BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET); else BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW); return (0); } /* * Report current media status. */ static void bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct bge_softc *sc = ifp->if_softc; struct mii_data *mii; BGE_LOCK(sc); if (sc->bge_flags & BGE_FLAG_TBI) { ifmr->ifm_status = IFM_AVALID; ifmr->ifm_active = IFM_ETHER; if (CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_TBI_PCS_SYNCHED) ifmr->ifm_status |= IFM_ACTIVE; else { ifmr->ifm_active |= IFM_NONE; BGE_UNLOCK(sc); return; } ifmr->ifm_active |= IFM_1000_SX; if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX) ifmr->ifm_active |= IFM_HDX; else ifmr->ifm_active |= IFM_FDX; BGE_UNLOCK(sc); return; } mii = device_get_softc(sc->bge_miibus); mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; BGE_UNLOCK(sc); } static int bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data) { struct bge_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; struct mii_data *mii; int flags, mask, error = 0; switch (command) { case SIOCSIFMTU: if (ifr->ifr_mtu < ETHERMIN || ((BGE_IS_JUMBO_CAPABLE(sc)) && ifr->ifr_mtu > BGE_JUMBO_MTU) || ((!BGE_IS_JUMBO_CAPABLE(sc)) && ifr->ifr_mtu > ETHERMTU)) error = EINVAL; else if (ifp->if_mtu != ifr->ifr_mtu) { ifp->if_mtu = ifr->ifr_mtu; ifp->if_drv_flags &= ~IFF_DRV_RUNNING; bge_init(sc); } break; case SIOCSIFFLAGS: BGE_LOCK(sc); if (ifp->if_flags & IFF_UP) { /* * If only the state of the PROMISC flag changed, * then just use the 'set promisc mode' command * instead of reinitializing the entire NIC. Doing * a full re-init means reloading the firmware and * waiting for it to start up, which may take a * second or two. Similarly for ALLMULTI. */ if (ifp->if_drv_flags & IFF_DRV_RUNNING) { flags = ifp->if_flags ^ sc->bge_if_flags; if (flags & IFF_PROMISC) bge_setpromisc(sc); if (flags & IFF_ALLMULTI) bge_setmulti(sc); } else bge_init_locked(sc); } else { if (ifp->if_drv_flags & IFF_DRV_RUNNING) { bge_stop(sc); } } sc->bge_if_flags = ifp->if_flags; BGE_UNLOCK(sc); error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: if (ifp->if_drv_flags & IFF_DRV_RUNNING) { BGE_LOCK(sc); bge_setmulti(sc); BGE_UNLOCK(sc); error = 0; } break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: if (sc->bge_flags & BGE_FLAG_TBI) { error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia, command); } else { mii = device_get_softc(sc->bge_miibus); error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); } break; case SIOCSIFCAP: mask = ifr->ifr_reqcap ^ ifp->if_capenable; #ifdef DEVICE_POLLING if (mask & IFCAP_POLLING) { if (ifr->ifr_reqcap & IFCAP_POLLING) { error = ether_poll_register(bge_poll, ifp); if (error) return (error); BGE_LOCK(sc); BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); bge_writembx(sc, BGE_MBX_IRQ0_LO, 1); ifp->if_capenable |= IFCAP_POLLING; BGE_UNLOCK(sc); } else { error = ether_poll_deregister(ifp); /* Enable interrupt even in error case */ BGE_LOCK(sc); BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); bge_writembx(sc, BGE_MBX_IRQ0_LO, 0); ifp->if_capenable &= ~IFCAP_POLLING; BGE_UNLOCK(sc); } } #endif if (mask & IFCAP_HWCSUM) { ifp->if_capenable ^= IFCAP_HWCSUM; if (IFCAP_HWCSUM & ifp->if_capenable && IFCAP_HWCSUM & ifp->if_capabilities) ifp->if_hwassist |= BGE_CSUM_FEATURES; else ifp->if_hwassist &= ~BGE_CSUM_FEATURES; #ifdef VLAN_CAPABILITIES VLAN_CAPABILITIES(ifp); #endif } if ((mask & IFCAP_TSO4) != 0 && (ifp->if_capabilities & IFCAP_TSO4) != 0) { ifp->if_capenable ^= IFCAP_TSO4; if ((ifp->if_capenable & IFCAP_TSO4) != 0) ifp->if_hwassist |= CSUM_TSO; else ifp->if_hwassist &= ~CSUM_TSO; } if (mask & IFCAP_VLAN_MTU) { ifp->if_capenable ^= IFCAP_VLAN_MTU; ifp->if_drv_flags &= ~IFF_DRV_RUNNING; bge_init(sc); } if (mask & IFCAP_VLAN_HWTAGGING) { ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; BGE_LOCK(sc); bge_setvlan(sc); BGE_UNLOCK(sc); #ifdef VLAN_CAPABILITIES VLAN_CAPABILITIES(ifp); #endif } break; default: error = ether_ioctl(ifp, command, data); break; } return (error); } static void bge_watchdog(struct bge_softc *sc) { struct ifnet *ifp; BGE_LOCK_ASSERT(sc); if (sc->bge_timer == 0 || --sc->bge_timer) return; ifp = sc->bge_ifp; if_printf(ifp, "watchdog timeout -- resetting\n"); ifp->if_drv_flags &= ~IFF_DRV_RUNNING; bge_init_locked(sc); ifp->if_oerrors++; } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ static void bge_stop(struct bge_softc *sc) { struct ifnet *ifp; BGE_LOCK_ASSERT(sc); ifp = sc->bge_ifp; callout_stop(&sc->bge_stat_ch); /* Disable host interrupts. */ BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); bge_writembx(sc, BGE_MBX_IRQ0_LO, 1); /* * Tell firmware we're shutting down. */ bge_stop_fw(sc); bge_sig_pre_reset(sc, BGE_RESET_STOP); /* * Disable all of the receiver blocks. */ BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE); BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE); BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE); if (!(BGE_IS_5705_PLUS(sc))) BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE); BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE); BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE); BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE); /* * Disable all of the transmit blocks. */ BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE); BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE); BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE); BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE); BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE); if (!(BGE_IS_5705_PLUS(sc))) BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE); BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE); /* * Shut down all of the memory managers and related * state machines. */ BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE); BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE); if (!(BGE_IS_5705_PLUS(sc))) BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE); CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF); CSR_WRITE_4(sc, BGE_FTQ_RESET, 0); if (!(BGE_IS_5705_PLUS(sc))) { BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE); BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE); } bge_reset(sc); bge_sig_legacy(sc, BGE_RESET_STOP); bge_sig_post_reset(sc, BGE_RESET_STOP); /* * Keep the ASF firmware running if up. */ if (sc->bge_asf_mode & ASF_STACKUP) BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); else BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); /* Free the RX lists. */ bge_free_rx_ring_std(sc); /* Free jumbo RX list. */ if (BGE_IS_JUMBO_CAPABLE(sc)) bge_free_rx_ring_jumbo(sc); /* Free TX buffers. */ bge_free_tx_ring(sc); sc->bge_tx_saved_considx = BGE_TXCONS_UNSET; /* Clear MAC's link state (PHY may still have link UP). */ if (bootverbose && sc->bge_link) if_printf(sc->bge_ifp, "link DOWN\n"); sc->bge_link = 0; ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); } /* * Stop all chip I/O so that the kernel's probe routines don't * get confused by errant DMAs when rebooting. */ static int bge_shutdown(device_t dev) { struct bge_softc *sc; sc = device_get_softc(dev); BGE_LOCK(sc); bge_stop(sc); bge_reset(sc); BGE_UNLOCK(sc); return (0); } static int bge_suspend(device_t dev) { struct bge_softc *sc; sc = device_get_softc(dev); BGE_LOCK(sc); bge_stop(sc); BGE_UNLOCK(sc); return (0); } static int bge_resume(device_t dev) { struct bge_softc *sc; struct ifnet *ifp; sc = device_get_softc(dev); BGE_LOCK(sc); ifp = sc->bge_ifp; if (ifp->if_flags & IFF_UP) { bge_init_locked(sc); if (ifp->if_drv_flags & IFF_DRV_RUNNING) bge_start_locked(ifp); } BGE_UNLOCK(sc); return (0); } static void bge_link_upd(struct bge_softc *sc) { struct mii_data *mii; uint32_t link, status; BGE_LOCK_ASSERT(sc); /* Clear 'pending link event' flag. */ sc->bge_link_evt = 0; /* * Process link state changes. * Grrr. The link status word in the status block does * not work correctly on the BCM5700 rev AX and BX chips, * according to all available information. Hence, we have * to enable MII interrupts in order to properly obtain * async link changes. Unfortunately, this also means that * we have to read the MAC status register to detect link * changes, thereby adding an additional register access to * the interrupt handler. * * XXX: perhaps link state detection procedure used for * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions. */ if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && sc->bge_chipid != BGE_CHIPID_BCM5700_B2) { status = CSR_READ_4(sc, BGE_MAC_STS); if (status & BGE_MACSTAT_MI_INTERRUPT) { mii = device_get_softc(sc->bge_miibus); mii_pollstat(mii); if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE && IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { sc->bge_link++; if (bootverbose) if_printf(sc->bge_ifp, "link UP\n"); } else if (sc->bge_link && (!(mii->mii_media_status & IFM_ACTIVE) || IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) { sc->bge_link = 0; if (bootverbose) if_printf(sc->bge_ifp, "link DOWN\n"); } /* Clear the interrupt. */ CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_MI_INTERRUPT); bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR); bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR, BRGPHY_INTRS); } return; } if (sc->bge_flags & BGE_FLAG_TBI) { status = CSR_READ_4(sc, BGE_MAC_STS); if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) { if (!sc->bge_link) { sc->bge_link++; if (sc->bge_asicrev == BGE_ASICREV_BCM5704) BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_TBI_SEND_CFGS); CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF); if (bootverbose) if_printf(sc->bge_ifp, "link UP\n"); if_link_state_change(sc->bge_ifp, LINK_STATE_UP); } } else if (sc->bge_link) { sc->bge_link = 0; if (bootverbose) if_printf(sc->bge_ifp, "link DOWN\n"); if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN); } } else if (CSR_READ_4(sc, BGE_MI_MODE) & BGE_MIMODE_AUTOPOLL) { /* * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit * in status word always set. Workaround this bug by reading * PHY link status directly. */ link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0; if (link != sc->bge_link || sc->bge_asicrev == BGE_ASICREV_BCM5700) { mii = device_get_softc(sc->bge_miibus); mii_pollstat(mii); if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE && IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { sc->bge_link++; if (bootverbose) if_printf(sc->bge_ifp, "link UP\n"); } else if (sc->bge_link && (!(mii->mii_media_status & IFM_ACTIVE) || IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) { sc->bge_link = 0; if (bootverbose) if_printf(sc->bge_ifp, "link DOWN\n"); } } } else { /* * Discard link events for MII/GMII controllers * if MI auto-polling is disabled. */ } /* Clear the attention. */ CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED | BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE | BGE_MACSTAT_LINK_CHANGED); } #define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \ SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, CTLTYPE_UINT|CTLFLAG_RD, \ sc, offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", \ desc) static void bge_add_sysctls(struct bge_softc *sc) { struct sysctl_ctx_list *ctx; struct sysctl_oid_list *children, *schildren; struct sysctl_oid *tree; ctx = device_get_sysctl_ctx(sc->bge_dev); children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev)); #ifdef BGE_REGISTER_DEBUG SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info", CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I", "Debug Information"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read", CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I", "Register Read"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read", CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I", "Memory Read"); #endif /* * A common design characteristic for many Broadcom client controllers * is that they only support a single outstanding DMA read operation * on the PCIe bus. This means that it will take twice as long to fetch * a TX frame that is split into header and payload buffers as it does * to fetch a single, contiguous TX frame (2 reads vs. 1 read). For * these controllers, coalescing buffers to reduce the number of memory * reads is effective way to get maximum performance(about 940Mbps). * Without collapsing TX buffers the maximum TCP bulk transfer * performance is about 850Mbps. However forcing coalescing mbufs * consumes a lot of CPU cycles, so leave it off by default. */ SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_collapse", CTLFLAG_RW, &sc->bge_forced_collapse, 0, "Number of fragmented TX buffers of a frame allowed before " "forced collapsing"); resource_int_value(device_get_name(sc->bge_dev), device_get_unit(sc->bge_dev), "forced_collapse", &sc->bge_forced_collapse); if (BGE_IS_5705_PLUS(sc)) return; tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", CTLFLAG_RD, NULL, "BGE Statistics"); schildren = children = SYSCTL_CHILDREN(tree); BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters", children, COSFramesDroppedDueToFilters, "FramesDroppedDueToFilters"); BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full", children, nicDmaWriteQueueFull, "DmaWriteQueueFull"); BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full", children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull"); BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors", children, nicNoMoreRxBDs, "NoMoreRxBDs"); BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames", children, ifInDiscards, "InputDiscards"); BGE_SYSCTL_STAT(sc, ctx, "Input Errors", children, ifInErrors, "InputErrors"); BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit", children, nicRecvThresholdHit, "RecvThresholdHit"); BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full", children, nicDmaReadQueueFull, "DmaReadQueueFull"); BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full", children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull"); BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full", children, nicSendDataCompQueueFull, "SendDataCompQueueFull"); BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index", children, nicRingSetSendProdIndex, "RingSetSendProdIndex"); BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update", children, nicRingStatusUpdate, "RingStatusUpdate"); BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts", children, nicInterrupts, "Interrupts"); BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts", children, nicAvoidedInterrupts, "AvoidedInterrupts"); BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit", children, nicSendThresholdHit, "SendThresholdHit"); tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", CTLFLAG_RD, NULL, "BGE RX Statistics"); children = SYSCTL_CHILDREN(tree); BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets", children, rxstats.ifHCInOctets, "Octets"); BGE_SYSCTL_STAT(sc, ctx, "Fragments", children, rxstats.etherStatsFragments, "Fragments"); BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets", children, rxstats.ifHCInUcastPkts, "UcastPkts"); BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets", children, rxstats.ifHCInMulticastPkts, "MulticastPkts"); BGE_SYSCTL_STAT(sc, ctx, "FCS Errors", children, rxstats.dot3StatsFCSErrors, "FCSErrors"); BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors", children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors"); BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received", children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived"); BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received", children, rxstats.xoffPauseFramesReceived, "xoffPauseFramesReceived"); BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received", children, rxstats.macControlFramesReceived, "ControlFramesReceived"); BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered", children, rxstats.xoffStateEntered, "xoffStateEntered"); BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long", children, rxstats.dot3StatsFramesTooLong, "FramesTooLong"); BGE_SYSCTL_STAT(sc, ctx, "Jabbers", children, rxstats.etherStatsJabbers, "Jabbers"); BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets", children, rxstats.etherStatsUndersizePkts, "UndersizePkts"); BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors", children, rxstats.inRangeLengthError, "inRangeLengthError"); BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors", children, rxstats.outRangeLengthError, "outRangeLengthError"); tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", CTLFLAG_RD, NULL, "BGE TX Statistics"); children = SYSCTL_CHILDREN(tree); BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets", children, txstats.ifHCOutOctets, "Octets"); BGE_SYSCTL_STAT(sc, ctx, "TX Collisions", children, txstats.etherStatsCollisions, "Collisions"); BGE_SYSCTL_STAT(sc, ctx, "XON Sent", children, txstats.outXonSent, "XonSent"); BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent", children, txstats.outXoffSent, "XoffSent"); BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done", children, txstats.flowControlDone, "flowControlDone"); BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors", children, txstats.dot3StatsInternalMacTransmitErrors, "InternalMacTransmitErrors"); BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames", children, txstats.dot3StatsSingleCollisionFrames, "SingleCollisionFrames"); BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames", children, txstats.dot3StatsMultipleCollisionFrames, "MultipleCollisionFrames"); BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions", children, txstats.dot3StatsDeferredTransmissions, "DeferredTransmissions"); BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions", children, txstats.dot3StatsExcessiveCollisions, "ExcessiveCollisions"); BGE_SYSCTL_STAT(sc, ctx, "Late Collisions", children, txstats.dot3StatsLateCollisions, "LateCollisions"); BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets", children, txstats.ifHCOutUcastPkts, "UcastPkts"); BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets", children, txstats.ifHCOutMulticastPkts, "MulticastPkts"); BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets", children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts"); BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors", children, txstats.dot3StatsCarrierSenseErrors, "CarrierSenseErrors"); BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards", children, txstats.ifOutDiscards, "Discards"); BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors", children, txstats.ifOutErrors, "Errors"); } static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS) { struct bge_softc *sc; uint32_t result; int offset; sc = (struct bge_softc *)arg1; offset = arg2; result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset + offsetof(bge_hostaddr, bge_addr_lo)); return (sysctl_handle_int(oidp, &result, 0, req)); } #ifdef BGE_REGISTER_DEBUG static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS) { struct bge_softc *sc; uint16_t *sbdata; int error; int result; int i, j; result = -1; error = sysctl_handle_int(oidp, &result, 0, req); if (error || (req->newptr == NULL)) return (error); if (result == 1) { sc = (struct bge_softc *)arg1; sbdata = (uint16_t *)sc->bge_ldata.bge_status_block; printf("Status Block:\n"); for (i = 0x0; i < (BGE_STATUS_BLK_SZ / 4); ) { printf("%06x:", i); for (j = 0; j < 8; j++) { printf(" %04x", sbdata[i]); i += 4; } printf("\n"); } printf("Registers:\n"); for (i = 0x800; i < 0xA00; ) { printf("%06x:", i); for (j = 0; j < 8; j++) { printf(" %08x", CSR_READ_4(sc, i)); i += 4; } printf("\n"); } printf("Hardware Flags:\n"); if (BGE_IS_5755_PLUS(sc)) printf(" - 5755 Plus\n"); if (BGE_IS_575X_PLUS(sc)) printf(" - 575X Plus\n"); if (BGE_IS_5705_PLUS(sc)) printf(" - 5705 Plus\n"); if (BGE_IS_5714_FAMILY(sc)) printf(" - 5714 Family\n"); if (BGE_IS_5700_FAMILY(sc)) printf(" - 5700 Family\n"); if (sc->bge_flags & BGE_FLAG_JUMBO) printf(" - Supports Jumbo Frames\n"); if (sc->bge_flags & BGE_FLAG_PCIX) printf(" - PCI-X Bus\n"); if (sc->bge_flags & BGE_FLAG_PCIE) printf(" - PCI Express Bus\n"); if (sc->bge_flags & BGE_FLAG_NO_3LED) printf(" - No 3 LEDs\n"); if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) printf(" - RX Alignment Bug\n"); } return (error); } static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS) { struct bge_softc *sc; int error; uint16_t result; uint32_t val; result = -1; error = sysctl_handle_int(oidp, &result, 0, req); if (error || (req->newptr == NULL)) return (error); if (result < 0x8000) { sc = (struct bge_softc *)arg1; val = CSR_READ_4(sc, result); printf("reg 0x%06X = 0x%08X\n", result, val); } return (error); } static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS) { struct bge_softc *sc; int error; uint16_t result; uint32_t val; result = -1; error = sysctl_handle_int(oidp, &result, 0, req); if (error || (req->newptr == NULL)) return (error); if (result < 0x8000) { sc = (struct bge_softc *)arg1; val = bge_readmem_ind(sc, result); printf("mem 0x%06X = 0x%08X\n", result, val); } return (error); } #endif static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]) { if (sc->bge_flags & BGE_FLAG_EADDR) return (1); #ifdef __sparc64__ OF_getetheraddr(sc->bge_dev, ether_addr); return (0); #endif return (1); } static int bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[]) { uint32_t mac_addr; mac_addr = bge_readmem_ind(sc, 0x0c14); if ((mac_addr >> 16) == 0x484b) { ether_addr[0] = (uint8_t)(mac_addr >> 8); ether_addr[1] = (uint8_t)mac_addr; mac_addr = bge_readmem_ind(sc, 0x0c18); ether_addr[2] = (uint8_t)(mac_addr >> 24); ether_addr[3] = (uint8_t)(mac_addr >> 16); ether_addr[4] = (uint8_t)(mac_addr >> 8); ether_addr[5] = (uint8_t)mac_addr; return (0); } return (1); } static int bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[]) { int mac_offset = BGE_EE_MAC_OFFSET; if (sc->bge_asicrev == BGE_ASICREV_BCM5906) mac_offset = BGE_EE_MAC_OFFSET_5906; return (bge_read_nvram(sc, ether_addr, mac_offset + 2, ETHER_ADDR_LEN)); } static int bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[]) { if (sc->bge_asicrev == BGE_ASICREV_BCM5906) return (1); return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)); } static int bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[]) { static const bge_eaddr_fcn_t bge_eaddr_funcs[] = { /* NOTE: Order is critical */ bge_get_eaddr_fw, bge_get_eaddr_mem, bge_get_eaddr_nvram, bge_get_eaddr_eeprom, NULL }; const bge_eaddr_fcn_t *func; for (func = bge_eaddr_funcs; *func != NULL; ++func) { if ((*func)(sc, eaddr) == 0) break; } return (*func == NULL ? ENXIO : 0); }