/* * Copyright (c) 2001 Wind River Systems * Copyright (c) 1997, 1998, 1999, 2001 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ */ /* * Broadcom BCM570x family gigabit ethernet driver for FreeBSD. * * Written by Bill Paul * Senior Engineer, Wind River Systems */ /* * The Broadcom BCM5700 is based on technology originally developed by * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has * two on-board MIPS R4000 CPUs and can have as much as 16MB of external * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo * frames, highly configurable RX filtering, and 16 RX and TX queues * (which, along with RX filter rules, can be used for QOS applications). * Other features, such as TCP segmentation, may be available as part * of value-added firmware updates. Unlike the Tigon I and Tigon II, * firmware images can be stored in hardware and need not be compiled * into the driver. * * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus. * * The BCM5701 is a single-chip solution incorporating both the BCM5700 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701 * does not support external SSRAM. * * Broadcom also produces a variation of the BCM5700 under the "Altima" * brand name, which is functionally similar but lacks PCI-X support. * * Without external SSRAM, you can only have at most 4 TX rings, * and the use of the mini RX ring is disabled. This seems to imply * that these features are simply not available on the BCM5701. As a * result, this driver does not implement any support for the mini RX * ring. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* for vtophys */ #include /* for vtophys */ #include /* for DELAY */ #include #include #include #include #include #include #include #include #include #include #include #include #define BGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) MODULE_DEPEND(bge, miibus, 1, 1, 1); /* "controller miibus0" required. See GENERIC if you get errors here. */ #include "miibus_if.h" #if !defined(lint) static const char rcsid[] = "$FreeBSD$"; #endif /* * Various supported device vendors/types and their names. Note: the * spec seems to indicate that the hardware still has Alteon's vendor * ID burned into it, though it will always be overriden by the vendor * ID in the EEPROM. Just to be safe, we cover all possibilities. */ static struct bge_type bge_devs[] = { { ALT_VENDORID, ALT_DEVICEID_BCM5700, "Broadcom BCM5700 Gigabit Ethernet" }, { ALT_VENDORID, ALT_DEVICEID_BCM5701, "Broadcom BCM5701 Gigabit Ethernet" }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5700, "Broadcom BCM5700 Gigabit Ethernet" }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5701, "Broadcom BCM5701 Gigabit Ethernet" }, { BCOM_VENDORID, BCOM_DEVICEID_BCM5703X, "Broadcom BCM5703X Gigabit Ethernet" }, { SK_VENDORID, SK_DEVICEID_ALTIMA, "SysKonnect Gigabit Ethernet" }, { ALTIMA_VENDORID, ALTIMA_DEVICE_AC1000, "Altima AC1000 Gigabit Ethernet" }, { ALTIMA_VENDORID, ALTIMA_DEVICE_AC9100, "Altima AC9100 Gigabit Ethernet" }, { 0, 0, NULL } }; static int bge_probe (device_t); static int bge_attach (device_t); static int bge_detach (device_t); static void bge_release_resources (struct bge_softc *); static void bge_txeof (struct bge_softc *); static void bge_rxeof (struct bge_softc *); static void bge_tick (void *); static void bge_stats_update (struct bge_softc *); static int bge_encap (struct bge_softc *, struct mbuf *, u_int32_t *); static void bge_intr (void *); static void bge_start (struct ifnet *); static int bge_ioctl (struct ifnet *, u_long, caddr_t); static void bge_init (void *); static void bge_stop (struct bge_softc *); static void bge_watchdog (struct ifnet *); static void bge_shutdown (device_t); static int bge_ifmedia_upd (struct ifnet *); static void bge_ifmedia_sts (struct ifnet *, struct ifmediareq *); static u_int8_t bge_eeprom_getbyte (struct bge_softc *, int, u_int8_t *); static int bge_read_eeprom (struct bge_softc *, caddr_t, int, int); static u_int32_t bge_crc (caddr_t); static void bge_setmulti (struct bge_softc *); static void bge_handle_events (struct bge_softc *); static int bge_alloc_jumbo_mem (struct bge_softc *); static void bge_free_jumbo_mem (struct bge_softc *); static void *bge_jalloc (struct bge_softc *); static void bge_jfree (void *, void *); static int bge_newbuf_std (struct bge_softc *, int, struct mbuf *); static int bge_newbuf_jumbo (struct bge_softc *, int, struct mbuf *); static int bge_init_rx_ring_std (struct bge_softc *); static void bge_free_rx_ring_std (struct bge_softc *); static int bge_init_rx_ring_jumbo (struct bge_softc *); static void bge_free_rx_ring_jumbo (struct bge_softc *); static void bge_free_tx_ring (struct bge_softc *); static int bge_init_tx_ring (struct bge_softc *); static int bge_chipinit (struct bge_softc *); static int bge_blockinit (struct bge_softc *); #ifdef notdef static u_int8_t bge_vpd_readbyte(struct bge_softc *, int); static void bge_vpd_read_res (struct bge_softc *, struct vpd_res *, int); static void bge_vpd_read (struct bge_softc *); #endif static u_int32_t bge_readmem_ind (struct bge_softc *, int); static void bge_writemem_ind (struct bge_softc *, int, int); #ifdef notdef static u_int32_t bge_readreg_ind (struct bge_softc *, int); #endif static void bge_writereg_ind (struct bge_softc *, int, int); static int bge_miibus_readreg (device_t, int, int); static int bge_miibus_writereg (device_t, int, int, int); static void bge_miibus_statchg (device_t); static void bge_reset (struct bge_softc *); static void bge_phy_hack (struct bge_softc *); static device_method_t bge_methods[] = { /* Device interface */ DEVMETHOD(device_probe, bge_probe), DEVMETHOD(device_attach, bge_attach), DEVMETHOD(device_detach, bge_detach), DEVMETHOD(device_shutdown, bge_shutdown), /* bus interface */ DEVMETHOD(bus_print_child, bus_generic_print_child), DEVMETHOD(bus_driver_added, bus_generic_driver_added), /* MII interface */ DEVMETHOD(miibus_readreg, bge_miibus_readreg), DEVMETHOD(miibus_writereg, bge_miibus_writereg), DEVMETHOD(miibus_statchg, bge_miibus_statchg), { 0, 0 } }; static driver_t bge_driver = { "bge", bge_methods, sizeof(struct bge_softc) }; static devclass_t bge_devclass; DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, 0, 0); DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0); static u_int32_t bge_readmem_ind(sc, off) struct bge_softc *sc; int off; { device_t dev; dev = sc->bge_dev; pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4); return(pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4)); } static void bge_writemem_ind(sc, off, val) struct bge_softc *sc; int off, val; { device_t dev; dev = sc->bge_dev; pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4); pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4); return; } #ifdef notdef static u_int32_t bge_readreg_ind(sc, off) struct bge_softc *sc; int off; { device_t dev; dev = sc->bge_dev; pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4); return(pci_read_config(dev, BGE_PCI_REG_DATA, 4)); } #endif static void bge_writereg_ind(sc, off, val) struct bge_softc *sc; int off, val; { device_t dev; dev = sc->bge_dev; pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4); pci_write_config(dev, BGE_PCI_REG_DATA, val, 4); return; } #ifdef notdef static u_int8_t bge_vpd_readbyte(sc, addr) struct bge_softc *sc; int addr; { int i; device_t dev; u_int32_t val; dev = sc->bge_dev; pci_write_config(dev, BGE_PCI_VPD_ADDR, addr, 2); for (i = 0; i < BGE_TIMEOUT * 10; i++) { DELAY(10); if (pci_read_config(dev, BGE_PCI_VPD_ADDR, 2) & BGE_VPD_FLAG) break; } if (i == BGE_TIMEOUT) { printf("bge%d: VPD read timed out\n", sc->bge_unit); return(0); } val = pci_read_config(dev, BGE_PCI_VPD_DATA, 4); return((val >> ((addr % 4) * 8)) & 0xFF); } static void bge_vpd_read_res(sc, res, addr) struct bge_softc *sc; struct vpd_res *res; int addr; { int i; u_int8_t *ptr; ptr = (u_int8_t *)res; for (i = 0; i < sizeof(struct vpd_res); i++) ptr[i] = bge_vpd_readbyte(sc, i + addr); return; } static void bge_vpd_read(sc) struct bge_softc *sc; { int pos = 0, i; struct vpd_res res; if (sc->bge_vpd_prodname != NULL) free(sc->bge_vpd_prodname, M_DEVBUF); if (sc->bge_vpd_readonly != NULL) free(sc->bge_vpd_readonly, M_DEVBUF); sc->bge_vpd_prodname = NULL; sc->bge_vpd_readonly = NULL; bge_vpd_read_res(sc, &res, pos); if (res.vr_id != VPD_RES_ID) { printf("bge%d: bad VPD resource id: expected %x got %x\n", sc->bge_unit, VPD_RES_ID, res.vr_id); return; } pos += sizeof(res); sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT); for (i = 0; i < res.vr_len; i++) sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos); sc->bge_vpd_prodname[i] = '\0'; pos += i; bge_vpd_read_res(sc, &res, pos); if (res.vr_id != VPD_RES_READ) { printf("bge%d: bad VPD resource id: expected %x got %x\n", sc->bge_unit, VPD_RES_READ, res.vr_id); return; } pos += sizeof(res); sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT); for (i = 0; i < res.vr_len + 1; i++) sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos); return; } #endif /* * Read a byte of data stored in the EEPROM at address 'addr.' The * BCM570x supports both the traditional bitbang interface and an * auto access interface for reading the EEPROM. We use the auto * access method. */ static u_int8_t bge_eeprom_getbyte(sc, addr, dest) struct bge_softc *sc; int addr; u_int8_t *dest; { int i; u_int32_t byte = 0; /* * Enable use of auto EEPROM access so we can avoid * having to use the bitbang method. */ BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM); /* Reset the EEPROM, load the clock period. */ CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL)); DELAY(20); /* Issue the read EEPROM command. */ CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr); /* Wait for completion */ for(i = 0; i < BGE_TIMEOUT * 10; i++) { DELAY(10); if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE) break; } if (i == BGE_TIMEOUT) { printf("bge%d: eeprom read timed out\n", sc->bge_unit); return(0); } /* Get result. */ byte = CSR_READ_4(sc, BGE_EE_DATA); *dest = (byte >> ((addr % 4) * 8)) & 0xFF; return(0); } /* * Read a sequence of bytes from the EEPROM. */ static int bge_read_eeprom(sc, dest, off, cnt) struct bge_softc *sc; caddr_t dest; int off; int cnt; { int err = 0, i; u_int8_t byte = 0; for (i = 0; i < cnt; i++) { err = bge_eeprom_getbyte(sc, off + i, &byte); if (err) break; *(dest + i) = byte; } return(err ? 1 : 0); } static int bge_miibus_readreg(dev, phy, reg) device_t dev; int phy, reg; { struct bge_softc *sc; struct ifnet *ifp; u_int32_t val; int i; sc = device_get_softc(dev); ifp = &sc->arpcom.ac_if; if (phy != 1) switch(sc->bge_asicrev) { case BGE_ASICREV_BCM5701_B5: case BGE_ASICREV_BCM5703_A2: return(0); } CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY| BGE_MIPHY(phy)|BGE_MIREG(reg)); for (i = 0; i < BGE_TIMEOUT; i++) { val = CSR_READ_4(sc, BGE_MI_COMM); if (!(val & BGE_MICOMM_BUSY)) break; } if (i == BGE_TIMEOUT) { printf("bge%d: PHY read timed out\n", sc->bge_unit); return(0); } val = CSR_READ_4(sc, BGE_MI_COMM); if (val & BGE_MICOMM_READFAIL) return(0); return(val & 0xFFFF); } static int bge_miibus_writereg(dev, phy, reg, val) device_t dev; int phy, reg, val; { struct bge_softc *sc; int i; sc = device_get_softc(dev); CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY| BGE_MIPHY(phy)|BGE_MIREG(reg)|val); for (i = 0; i < BGE_TIMEOUT; i++) { if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) break; } if (i == BGE_TIMEOUT) { printf("bge%d: PHY read timed out\n", sc->bge_unit); return(0); } return(0); } static void bge_miibus_statchg(dev) device_t dev; { struct bge_softc *sc; struct mii_data *mii; sc = device_get_softc(dev); mii = device_get_softc(sc->bge_miibus); BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE); if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) { BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII); } else { BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII); } if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX); } else { BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX); } bge_phy_hack(sc); return; } /* * Handle events that have triggered interrupts. */ static void bge_handle_events(sc) struct bge_softc *sc; { return; } /* * Memory management for jumbo frames. */ static int bge_alloc_jumbo_mem(sc) struct bge_softc *sc; { caddr_t ptr; register int i; struct bge_jpool_entry *entry; /* Grab a big chunk o' storage. */ sc->bge_cdata.bge_jumbo_buf = contigmalloc(BGE_JMEM, M_DEVBUF, M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0); if (sc->bge_cdata.bge_jumbo_buf == NULL) { printf("bge%d: no memory for jumbo buffers!\n", sc->bge_unit); return(ENOBUFS); } SLIST_INIT(&sc->bge_jfree_listhead); SLIST_INIT(&sc->bge_jinuse_listhead); /* * Now divide it up into 9K pieces and save the addresses * in an array. */ ptr = sc->bge_cdata.bge_jumbo_buf; for (i = 0; i < BGE_JSLOTS; i++) { sc->bge_cdata.bge_jslots[i] = ptr; ptr += BGE_JLEN; entry = malloc(sizeof(struct bge_jpool_entry), M_DEVBUF, M_NOWAIT); if (entry == NULL) { contigfree(sc->bge_cdata.bge_jumbo_buf, BGE_JMEM, M_DEVBUF); sc->bge_cdata.bge_jumbo_buf = NULL; printf("bge%d: no memory for jumbo " "buffer queue!\n", sc->bge_unit); return(ENOBUFS); } entry->slot = i; SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries); } return(0); } static void bge_free_jumbo_mem(sc) struct bge_softc *sc; { int i; struct bge_jpool_entry *entry; for (i = 0; i < BGE_JSLOTS; i++) { entry = SLIST_FIRST(&sc->bge_jfree_listhead); SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries); free(entry, M_DEVBUF); } contigfree(sc->bge_cdata.bge_jumbo_buf, BGE_JMEM, M_DEVBUF); return; } /* * Allocate a jumbo buffer. */ static void * bge_jalloc(sc) struct bge_softc *sc; { struct bge_jpool_entry *entry; entry = SLIST_FIRST(&sc->bge_jfree_listhead); if (entry == NULL) { printf("bge%d: no free jumbo buffers\n", sc->bge_unit); return(NULL); } SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries); SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries); return(sc->bge_cdata.bge_jslots[entry->slot]); } /* * Release a jumbo buffer. */ static void bge_jfree(buf, args) void *buf; void *args; { struct bge_jpool_entry *entry; struct bge_softc *sc; int i; /* Extract the softc struct pointer. */ sc = (struct bge_softc *)args; if (sc == NULL) panic("bge_jfree: can't find softc pointer!"); /* calculate the slot this buffer belongs to */ i = ((vm_offset_t)buf - (vm_offset_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN; if ((i < 0) || (i >= BGE_JSLOTS)) panic("bge_jfree: asked to free buffer that we don't manage!"); entry = SLIST_FIRST(&sc->bge_jinuse_listhead); if (entry == NULL) panic("bge_jfree: buffer not in use!"); entry->slot = i; SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries); SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries); return; } /* * Intialize a standard receive ring descriptor. */ static int bge_newbuf_std(sc, i, m) struct bge_softc *sc; int i; struct mbuf *m; { struct mbuf *m_new = NULL; struct bge_rx_bd *r; if (m == NULL) { MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) { return(ENOBUFS); } MCLGET(m_new, M_DONTWAIT); if (!(m_new->m_flags & M_EXT)) { m_freem(m_new); return(ENOBUFS); } m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; } else { m_new = m; m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; m_new->m_data = m_new->m_ext.ext_buf; } if (!sc->bge_rx_alignment_bug) m_adj(m_new, ETHER_ALIGN); sc->bge_cdata.bge_rx_std_chain[i] = m_new; r = &sc->bge_rdata->bge_rx_std_ring[i]; BGE_HOSTADDR(r->bge_addr) = vtophys(mtod(m_new, caddr_t)); r->bge_flags = BGE_RXBDFLAG_END; r->bge_len = m_new->m_len; r->bge_idx = i; return(0); } /* * Initialize a jumbo receive ring descriptor. This allocates * a jumbo buffer from the pool managed internally by the driver. */ static int bge_newbuf_jumbo(sc, i, m) struct bge_softc *sc; int i; struct mbuf *m; { struct mbuf *m_new = NULL; struct bge_rx_bd *r; if (m == NULL) { caddr_t *buf = NULL; /* Allocate the mbuf. */ MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) { return(ENOBUFS); } /* Allocate the jumbo buffer */ buf = bge_jalloc(sc); if (buf == NULL) { m_freem(m_new); printf("bge%d: jumbo allocation failed " "-- packet dropped!\n", sc->bge_unit); return(ENOBUFS); } /* Attach the buffer to the mbuf. */ m_new->m_data = (void *) buf; m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN; MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, bge_jfree, (struct bge_softc *)sc, 0, EXT_NET_DRV); } else { m_new = m; m_new->m_data = m_new->m_ext.ext_buf; m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN; } if (!sc->bge_rx_alignment_bug) m_adj(m_new, ETHER_ALIGN); /* Set up the descriptor. */ r = &sc->bge_rdata->bge_rx_jumbo_ring[i]; sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new; BGE_HOSTADDR(r->bge_addr) = vtophys(mtod(m_new, caddr_t)); r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING; r->bge_len = m_new->m_len; r->bge_idx = i; return(0); } /* * The standard receive ring has 512 entries in it. At 2K per mbuf cluster, * that's 1MB or memory, which is a lot. For now, we fill only the first * 256 ring entries and hope that our CPU is fast enough to keep up with * the NIC. */ static int bge_init_rx_ring_std(sc) struct bge_softc *sc; { int i; for (i = 0; i < BGE_SSLOTS; i++) { if (bge_newbuf_std(sc, i, NULL) == ENOBUFS) return(ENOBUFS); }; sc->bge_std = i - 1; CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std); return(0); } static void bge_free_rx_ring_std(sc) struct bge_softc *sc; { int i; for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) { m_freem(sc->bge_cdata.bge_rx_std_chain[i]); sc->bge_cdata.bge_rx_std_chain[i] = NULL; } bzero((char *)&sc->bge_rdata->bge_rx_std_ring[i], sizeof(struct bge_rx_bd)); } return; } static int bge_init_rx_ring_jumbo(sc) struct bge_softc *sc; { int i; struct bge_rcb *rcb; struct bge_rcb_opaque *rcbo; for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS) return(ENOBUFS); }; sc->bge_jumbo = i - 1; rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb; rcbo = (struct bge_rcb_opaque *)rcb; rcb->bge_flags = 0; CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcbo->bge_reg2); CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo); return(0); } static void bge_free_rx_ring_jumbo(sc) struct bge_softc *sc; { int i; for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) { m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]); sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL; } bzero((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], sizeof(struct bge_rx_bd)); } return; } static void bge_free_tx_ring(sc) struct bge_softc *sc; { int i; if (sc->bge_rdata->bge_tx_ring == NULL) return; for (i = 0; i < BGE_TX_RING_CNT; i++) { if (sc->bge_cdata.bge_tx_chain[i] != NULL) { m_freem(sc->bge_cdata.bge_tx_chain[i]); sc->bge_cdata.bge_tx_chain[i] = NULL; } bzero((char *)&sc->bge_rdata->bge_tx_ring[i], sizeof(struct bge_tx_bd)); } return; } static int bge_init_tx_ring(sc) struct bge_softc *sc; { sc->bge_txcnt = 0; sc->bge_tx_saved_considx = 0; CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0); CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0); return(0); } #define BGE_POLY 0xEDB88320 static u_int32_t bge_crc(addr) caddr_t addr; { u_int32_t idx, bit, data, crc; /* Compute CRC for the address value. */ crc = 0xFFFFFFFF; /* initial value */ for (idx = 0; idx < 6; idx++) { for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) crc = (crc >> 1) ^ (((crc ^ data) & 1) ? BGE_POLY : 0); } return(crc & 0x7F); } static void bge_setmulti(sc) struct bge_softc *sc; { struct ifnet *ifp; struct ifmultiaddr *ifma; u_int32_t hashes[4] = { 0, 0, 0, 0 }; int h, i; ifp = &sc->arpcom.ac_if; if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { for (i = 0; i < 4; i++) CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF); return; } /* First, zot all the existing filters. */ for (i = 0; i < 4; i++) CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0); /* Now program new ones. */ TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; h = bge_crc(LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F); } for (i = 0; i < 4; i++) CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]); return; } /* * Do endian, PCI and DMA initialization. Also check the on-board ROM * self-test results. */ static int bge_chipinit(sc) struct bge_softc *sc; { int i; /* Set endianness before we access any non-PCI registers. */ #if BYTE_ORDER == BIG_ENDIAN pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, BGE_BIGENDIAN_INIT, 4); #else pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, BGE_LITTLEENDIAN_INIT, 4); #endif /* * Check the 'ROM failed' bit on the RX CPU to see if * self-tests passed. */ if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) { printf("bge%d: RX CPU self-diagnostics failed!\n", sc->bge_unit); return(ENODEV); } /* Clear the MAC control register */ CSR_WRITE_4(sc, BGE_MAC_MODE, 0); /* * Clear the MAC statistics block in the NIC's * internal memory. */ for (i = BGE_STATS_BLOCK; i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t)) BGE_MEMWIN_WRITE(sc, i, 0); for (i = BGE_STATUS_BLOCK; i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t)) BGE_MEMWIN_WRITE(sc, i, 0); /* Set up the PCI DMA control register. */ if (pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) & BGE_PCISTATE_PCI_BUSMODE) { /* Conventional PCI bus */ pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD|0x3F000F, 4); } else { /* PCI-X bus */ pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD|0x1B000F, 4); } /* * Set up general mode register. */ CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_WORDSWAP_NONFRAME| BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA| BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS| BGE_MODECTL_NO_RX_CRC|BGE_MODECTL_TX_NO_PHDR_CSUM| BGE_MODECTL_RX_NO_PHDR_CSUM); /* * Disable memory write invalidate. Apparently it is not supported * properly by these devices. */ PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4); #ifdef __brokenalpha__ /* * Must insure that we do not cross an 8K (bytes) boundary * for DMA reads. Our highest limit is 1K bytes. This is a * restriction on some ALPHA platforms with early revision * 21174 PCI chipsets, such as the AlphaPC 164lx */ PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024BYTES, 4); #endif /* Set the timer prescaler (always 66Mhz) */ CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/); return(0); } static int bge_blockinit(sc) struct bge_softc *sc; { struct bge_rcb *rcb; struct bge_rcb_opaque *rcbo; int i; /* * Initialize the memory window pointer register so that * we can access the first 32K of internal NIC RAM. This will * allow us to set up the TX send ring RCBs and the RX return * ring RCBs, plus other things which live in NIC memory. */ CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0); /* Configure mbuf memory pool */ if (sc->bge_extram) { CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_EXT_SSRAM); CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000); } else { CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1); CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000); } /* Configure DMA resource pool */ CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, BGE_DMA_DESCRIPTORS); CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000); /* Configure mbuf pool watermarks */ CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24); CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24); CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48); /* Configure DMA resource watermarks */ CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5); CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10); /* Enable buffer manager */ CSR_WRITE_4(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN); /* Poll for buffer manager start indication */ for (i = 0; i < BGE_TIMEOUT; i++) { if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE) break; DELAY(10); } if (i == BGE_TIMEOUT) { printf("bge%d: buffer manager failed to start\n", sc->bge_unit); return(ENXIO); } /* Enable flow-through queues */ CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF); CSR_WRITE_4(sc, BGE_FTQ_RESET, 0); /* Wait until queue initialization is complete */ for (i = 0; i < BGE_TIMEOUT; i++) { if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0) break; DELAY(10); } if (i == BGE_TIMEOUT) { printf("bge%d: flow-through queue init failed\n", sc->bge_unit); return(ENXIO); } /* Initialize the standard RX ring control block */ rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb; BGE_HOSTADDR(rcb->bge_hostaddr) = vtophys(&sc->bge_rdata->bge_rx_std_ring); rcb->bge_max_len = BGE_MAX_FRAMELEN; if (sc->bge_extram) rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS; else rcb->bge_nicaddr = BGE_STD_RX_RINGS; rcb->bge_flags = 0; rcbo = (struct bge_rcb_opaque *)rcb; CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcbo->bge_reg0); CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcbo->bge_reg1); CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcbo->bge_reg2); CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcbo->bge_reg3); /* * Initialize the jumbo RX ring control block * We set the 'ring disabled' bit in the flags * field until we're actually ready to start * using this ring (i.e. once we set the MTU * high enough to require it). */ rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb; BGE_HOSTADDR(rcb->bge_hostaddr) = vtophys(&sc->bge_rdata->bge_rx_jumbo_ring); rcb->bge_max_len = BGE_MAX_FRAMELEN; if (sc->bge_extram) rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS; else rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS; rcb->bge_flags = BGE_RCB_FLAG_RING_DISABLED; rcbo = (struct bge_rcb_opaque *)rcb; CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI, rcbo->bge_reg0); CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO, rcbo->bge_reg1); CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcbo->bge_reg2); CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcbo->bge_reg3); /* Set up dummy disabled mini ring RCB */ rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb; rcb->bge_flags = BGE_RCB_FLAG_RING_DISABLED; rcbo = (struct bge_rcb_opaque *)rcb; CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, rcbo->bge_reg2); /* * Set the BD ring replentish thresholds. The recommended * values are 1/8th the number of descriptors allocated to * each ring. */ CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8); CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8); /* * Disable all unused send rings by setting the 'ring disabled' * bit in the flags field of all the TX send ring control blocks. * These are located in NIC memory. */ rcb = (struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START + BGE_SEND_RING_RCB); for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) { rcb->bge_flags = BGE_RCB_FLAG_RING_DISABLED; rcb->bge_max_len = 0; rcb->bge_nicaddr = 0; rcb++; } /* Configure TX RCB 0 (we use only the first ring) */ rcb = (struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START + BGE_SEND_RING_RCB); rcb->bge_hostaddr.bge_addr_hi = 0; BGE_HOSTADDR(rcb->bge_hostaddr) = vtophys(&sc->bge_rdata->bge_tx_ring); rcb->bge_nicaddr = BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT); rcb->bge_max_len = BGE_TX_RING_CNT; rcb->bge_flags = 0; /* Disable all unused RX return rings */ rcb = (struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB); for (i = 0; i < BGE_RX_RINGS_MAX; i++) { rcb->bge_hostaddr.bge_addr_hi = 0; rcb->bge_hostaddr.bge_addr_lo = 0; rcb->bge_flags = BGE_RCB_FLAG_RING_DISABLED; rcb->bge_max_len = BGE_RETURN_RING_CNT; rcb->bge_nicaddr = 0; CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO + (i * (sizeof(u_int64_t))), 0); rcb++; } /* Initialize RX ring indexes */ CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0); CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0); CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0); /* * Set up RX return ring 0 * Note that the NIC address for RX return rings is 0x00000000. * The return rings live entirely within the host, so the * nicaddr field in the RCB isn't used. */ rcb = (struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB); rcb->bge_hostaddr.bge_addr_hi = 0; BGE_HOSTADDR(rcb->bge_hostaddr) = vtophys(&sc->bge_rdata->bge_rx_return_ring); rcb->bge_nicaddr = 0x00000000; rcb->bge_max_len = BGE_RETURN_RING_CNT; rcb->bge_flags = 0; /* Set random backoff seed for TX */ CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF, sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] + sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] + sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] + BGE_TX_BACKOFF_SEED_MASK); /* Set inter-packet gap */ CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620); /* * Specify which ring to use for packets that don't match * any RX rules. */ CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08); /* * Configure number of RX lists. One interrupt distribution * list, sixteen active lists, one bad frames class. */ CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181); /* Inialize RX list placement stats mask. */ CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF); CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1); /* Disable host coalescing until we get it set up */ CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000); /* Poll to make sure it's shut down. */ for (i = 0; i < BGE_TIMEOUT; i++) { if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE)) break; DELAY(10); } if (i == BGE_TIMEOUT) { printf("bge%d: host coalescing engine failed to idle\n", sc->bge_unit); return(ENXIO); } /* Set up host coalescing defaults */ CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks); CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks); CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds); CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds); CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0); CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0); CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0); CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0); CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks); /* Set up address of statistics block */ CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK); CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, 0); CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, vtophys(&sc->bge_rdata->bge_info.bge_stats)); /* Set up address of status block */ CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK); CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, 0); CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, vtophys(&sc->bge_rdata->bge_status_block)); sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0; sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0; /* Turn on host coalescing state machine */ CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE); /* Turn on RX BD completion state machine and enable attentions */ CSR_WRITE_4(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN); /* Turn on RX list placement state machine */ CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE); /* Turn on RX list selector state machine. */ CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE); /* Turn on DMA, clear stats */ CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB| BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR| BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB| BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB| (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII)); /* Set misc. local control, enable interrupts on attentions */ CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN); #ifdef notdef /* Assert GPIO pins for PHY reset */ BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0| BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2); BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0| BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2); #endif /* Turn on DMA completion state machine */ CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE); /* Turn on write DMA state machine */ CSR_WRITE_4(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS); /* Turn on read DMA state machine */ CSR_WRITE_4(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS); /* Turn on RX data completion state machine */ CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE); /* Turn on RX BD initiator state machine */ CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE); /* Turn on RX data and RX BD initiator state machine */ CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE); /* Turn on Mbuf cluster free state machine */ CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE); /* Turn on send BD completion state machine */ CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE); /* Turn on send data completion state machine */ CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE); /* Turn on send data initiator state machine */ CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE); /* Turn on send BD initiator state machine */ CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE); /* Turn on send BD selector state machine */ CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE); CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF); CSR_WRITE_4(sc, BGE_SDI_STATS_CTL, BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER); /* init LED register */ CSR_WRITE_4(sc, BGE_MAC_LED_CTL, 0x00000000); /* ack/clear link change events */ CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED| BGE_MACSTAT_CFG_CHANGED); CSR_WRITE_4(sc, BGE_MI_STS, 0); /* Enable PHY auto polling (for MII/GMII only) */ if (sc->bge_tbi) { CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK); } else { BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16); if (sc->bge_asicrev == BGE_ASICREV_BCM5700) CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_MI_INTERRUPT); } /* Enable link state change attentions. */ BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED); return(0); } /* * Probe for a Broadcom chip. Check the PCI vendor and device IDs * against our list and return its name if we find a match. Note * that since the Broadcom controller contains VPD support, we * can get the device name string from the controller itself instead * of the compiled-in string. This is a little slow, but it guarantees * we'll always announce the right product name. */ static int bge_probe(dev) device_t dev; { struct bge_type *t; struct bge_softc *sc; t = bge_devs; sc = device_get_softc(dev); bzero(sc, sizeof(struct bge_softc)); sc->bge_unit = device_get_unit(dev); sc->bge_dev = dev; while(t->bge_name != NULL) { if ((pci_get_vendor(dev) == t->bge_vid) && (pci_get_device(dev) == t->bge_did)) { #ifdef notdef bge_vpd_read(sc); device_set_desc(dev, sc->bge_vpd_prodname); #endif device_set_desc(dev, t->bge_name); return(0); } t++; } return(ENXIO); } static int bge_attach(dev) device_t dev; { int s; u_int32_t command; struct ifnet *ifp; struct bge_softc *sc; u_int32_t hwcfg = 0; u_int32_t mac_addr = 0; int unit, error = 0, rid; s = splimp(); sc = device_get_softc(dev); unit = device_get_unit(dev); sc->bge_dev = dev; sc->bge_unit = unit; /* * Map control/status registers. */ pci_enable_busmaster(dev); pci_enable_io(dev, SYS_RES_MEMORY); command = pci_read_config(dev, PCIR_COMMAND, 4); if (!(command & PCIM_CMD_MEMEN)) { printf("bge%d: failed to enable memory mapping!\n", unit); error = ENXIO; goto fail; } rid = BGE_PCI_BAR0; sc->bge_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid, 0, ~0, 1, RF_ACTIVE); if (sc->bge_res == NULL) { printf ("bge%d: couldn't map memory\n", unit); error = ENXIO; goto fail; } sc->bge_btag = rman_get_bustag(sc->bge_res); sc->bge_bhandle = rman_get_bushandle(sc->bge_res); sc->bge_vhandle = (vm_offset_t)rman_get_virtual(sc->bge_res); /* * XXX FIXME: rman_get_virtual() on the alpha is currently * broken and returns a physical address instead of a kernel * virtual address. Consequently, we need to do a little * extra mangling of the vhandle on the alpha. This should * eventually be fixed! The whole idea here is to get rid * of platform dependencies. */ #ifdef __alpha__ if (pci_cvt_to_bwx(sc->bge_vhandle)) sc->bge_vhandle = pci_cvt_to_bwx(sc->bge_vhandle); else sc->bge_vhandle = pci_cvt_to_dense(sc->bge_vhandle); sc->bge_vhandle = ALPHA_PHYS_TO_K0SEG(sc->bge_vhandle); #endif /* Allocate interrupt */ rid = 0; sc->bge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1, RF_SHAREABLE | RF_ACTIVE); if (sc->bge_irq == NULL) { printf("bge%d: couldn't map interrupt\n", unit); error = ENXIO; goto fail; } error = bus_setup_intr(dev, sc->bge_irq, INTR_TYPE_NET, bge_intr, sc, &sc->bge_intrhand); if (error) { bge_release_resources(sc); printf("bge%d: couldn't set up irq\n", unit); goto fail; } sc->bge_unit = unit; /* Try to reset the chip. */ bge_reset(sc); if (bge_chipinit(sc)) { printf("bge%d: chip initialization failed\n", sc->bge_unit); bge_release_resources(sc); error = ENXIO; goto fail; } /* * Get station address from the EEPROM. */ mac_addr = bge_readmem_ind(sc, 0x0c14); if ((mac_addr >> 16) == 0x484b) { sc->arpcom.ac_enaddr[0] = (u_char)(mac_addr >> 8); sc->arpcom.ac_enaddr[1] = (u_char)mac_addr; mac_addr = bge_readmem_ind(sc, 0x0c18); sc->arpcom.ac_enaddr[2] = (u_char)(mac_addr >> 24); sc->arpcom.ac_enaddr[3] = (u_char)(mac_addr >> 16); sc->arpcom.ac_enaddr[4] = (u_char)(mac_addr >> 8); sc->arpcom.ac_enaddr[5] = (u_char)mac_addr; } else if (bge_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr, BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) { printf("bge%d: failed to read station address\n", unit); bge_release_resources(sc); error = ENXIO; goto fail; } /* * A Broadcom chip was detected. Inform the world. */ printf("bge%d: Ethernet address: %6D\n", unit, sc->arpcom.ac_enaddr, ":"); /* Allocate the general information block and ring buffers. */ sc->bge_rdata = contigmalloc(sizeof(struct bge_ring_data), M_DEVBUF, M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0); if (sc->bge_rdata == NULL) { bge_release_resources(sc); error = ENXIO; printf("bge%d: no memory for list buffers!\n", sc->bge_unit); goto fail; } bzero(sc->bge_rdata, sizeof(struct bge_ring_data)); /* Try to allocate memory for jumbo buffers. */ if (bge_alloc_jumbo_mem(sc)) { printf("bge%d: jumbo buffer allocation " "failed\n", sc->bge_unit); bge_release_resources(sc); error = ENXIO; goto fail; } /* Set default tuneable values. */ sc->bge_stat_ticks = BGE_TICKS_PER_SEC; sc->bge_rx_coal_ticks = 150; sc->bge_tx_coal_ticks = 150; sc->bge_rx_max_coal_bds = 64; sc->bge_tx_max_coal_bds = 128; /* Set up ifnet structure */ ifp = &sc->arpcom.ac_if; ifp->if_softc = sc; ifp->if_unit = sc->bge_unit; ifp->if_name = "bge"; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = bge_ioctl; ifp->if_output = ether_output; ifp->if_start = bge_start; ifp->if_watchdog = bge_watchdog; ifp->if_init = bge_init; ifp->if_mtu = ETHERMTU; ifp->if_snd.ifq_maxlen = BGE_TX_RING_CNT - 1; ifp->if_hwassist = BGE_CSUM_FEATURES; ifp->if_capabilities = IFCAP_HWCSUM; ifp->if_capenable = ifp->if_capabilities; /* Save ASIC rev. */ sc->bge_asicrev = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) & BGE_PCIMISCCTL_ASICREV; /* Pretend all 5700s are the same */ if ((sc->bge_asicrev & 0xFF000000) == BGE_ASICREV_BCM5700) sc->bge_asicrev = BGE_ASICREV_BCM5700; /* * Figure out what sort of media we have by checking the * hardware config word in the EEPROM. Note: on some BCM5700 * cards, this value appears to be unset. If that's the * case, we have to rely on identifying the NIC by its PCI * subsystem ID, as we do below for the SysKonnect SK-9D41. */ bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET, sizeof(hwcfg)); if ((ntohl(hwcfg) & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) sc->bge_tbi = 1; /* The SysKonnect SK-9D41 is a 1000baseSX card. */ if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) == SK_SUBSYSID_9D41) sc->bge_tbi = 1; if (sc->bge_tbi) { ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd, bge_ifmedia_sts); ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL); ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL); ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL); ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO); } else { /* * Do transceiver setup. */ if (mii_phy_probe(dev, &sc->bge_miibus, bge_ifmedia_upd, bge_ifmedia_sts)) { printf("bge%d: MII without any PHY!\n", sc->bge_unit); bge_release_resources(sc); bge_free_jumbo_mem(sc); error = ENXIO; goto fail; } } /* * When using the BCM5701 in PCI-X mode, data corruption has * been observed in the first few bytes of some received packets. * Aligning the packet buffer in memory eliminates the corruption. * Unfortunately, this misaligns the packet payloads. On platforms * which do not support unaligned accesses, we will realign the * payloads by copying the received packets. */ switch (sc->bge_asicrev) { case BGE_ASICREV_BCM5701_A0: case BGE_ASICREV_BCM5701_B0: case BGE_ASICREV_BCM5701_B2: case BGE_ASICREV_BCM5701_B5: /* If in PCI-X mode, work around the alignment bug. */ if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) & (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) == BGE_PCISTATE_PCI_BUSSPEED) sc->bge_rx_alignment_bug = 1; break; } /* * Call MI attach routine. */ ether_ifattach(ifp, ETHER_BPF_SUPPORTED); callout_handle_init(&sc->bge_stat_ch); fail: splx(s); return(error); } static int bge_detach(dev) device_t dev; { struct bge_softc *sc; struct ifnet *ifp; int s; s = splimp(); sc = device_get_softc(dev); ifp = &sc->arpcom.ac_if; ether_ifdetach(ifp, ETHER_BPF_SUPPORTED); bge_stop(sc); bge_reset(sc); if (sc->bge_tbi) { ifmedia_removeall(&sc->bge_ifmedia); } else { bus_generic_detach(dev); device_delete_child(dev, sc->bge_miibus); } bge_release_resources(sc); bge_free_jumbo_mem(sc); splx(s); return(0); } static void bge_release_resources(sc) struct bge_softc *sc; { device_t dev; dev = sc->bge_dev; if (sc->bge_vpd_prodname != NULL) free(sc->bge_vpd_prodname, M_DEVBUF); if (sc->bge_vpd_readonly != NULL) free(sc->bge_vpd_readonly, M_DEVBUF); if (sc->bge_intrhand != NULL) bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand); if (sc->bge_irq != NULL) bus_release_resource(dev, SYS_RES_IRQ, 0, sc->bge_irq); if (sc->bge_res != NULL) bus_release_resource(dev, SYS_RES_MEMORY, BGE_PCI_BAR0, sc->bge_res); if (sc->bge_rdata != NULL) contigfree(sc->bge_rdata, sizeof(struct bge_ring_data), M_DEVBUF); return; } static void bge_reset(sc) struct bge_softc *sc; { device_t dev; u_int32_t cachesize, command, pcistate; int i, val = 0; dev = sc->bge_dev; /* Save some important PCI state. */ cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4); command = pci_read_config(dev, BGE_PCI_CMD, 4); pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4); pci_write_config(dev, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR| BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4); /* Issue global reset */ bge_writereg_ind(sc, BGE_MISC_CFG, BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1)); DELAY(1000); /* Reset some of the PCI state that got zapped by reset */ pci_write_config(dev, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR| BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4); pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4); pci_write_config(dev, BGE_PCI_CMD, command, 4); bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1)); /* * Prevent PXE restart: write a magic number to the * general communications memory at 0xB50. */ bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER); /* * Poll the value location we just wrote until * we see the 1's complement of the magic number. * This indicates that the firmware initialization * is complete. */ for (i = 0; i < BGE_TIMEOUT; i++) { val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM); if (val == ~BGE_MAGIC_NUMBER) break; DELAY(10); } if (i == BGE_TIMEOUT) { printf("bge%d: firmware handshake timed out\n", sc->bge_unit); return; } /* * XXX Wait for the value of the PCISTATE register to * return to its original pre-reset state. This is a * fairly good indicator of reset completion. If we don't * wait for the reset to fully complete, trying to read * from the device's non-PCI registers may yield garbage * results. */ for (i = 0; i < BGE_TIMEOUT; i++) { if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate) break; DELAY(10); } /* Enable memory arbiter. */ CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE); /* Fix up byte swapping */ CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_BYTESWAP_NONFRAME| BGE_MODECTL_BYTESWAP_DATA); CSR_WRITE_4(sc, BGE_MAC_MODE, 0); DELAY(10000); return; } /* * Frame reception handling. This is called if there's a frame * on the receive return list. * * Note: we have to be able to handle two possibilities here: * 1) the frame is from the jumbo recieve ring * 2) the frame is from the standard receive ring */ static void bge_rxeof(sc) struct bge_softc *sc; { struct ifnet *ifp; int stdcnt = 0, jumbocnt = 0; ifp = &sc->arpcom.ac_if; while(sc->bge_rx_saved_considx != sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) { struct bge_rx_bd *cur_rx; u_int32_t rxidx; struct ether_header *eh; struct mbuf *m = NULL; u_int16_t vlan_tag = 0; int have_tag = 0; cur_rx = &sc->bge_rdata->bge_rx_return_ring[sc->bge_rx_saved_considx]; rxidx = cur_rx->bge_idx; BGE_INC(sc->bge_rx_saved_considx, BGE_RETURN_RING_CNT); if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) { have_tag = 1; vlan_tag = cur_rx->bge_vlan_tag; } if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) { BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT); m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx]; sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL; jumbocnt++; if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) { ifp->if_ierrors++; bge_newbuf_jumbo(sc, sc->bge_jumbo, m); continue; } if (bge_newbuf_jumbo(sc, sc->bge_jumbo, NULL) == ENOBUFS) { ifp->if_ierrors++; bge_newbuf_jumbo(sc, sc->bge_jumbo, m); continue; } } else { BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT); m = sc->bge_cdata.bge_rx_std_chain[rxidx]; sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL; stdcnt++; if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) { ifp->if_ierrors++; bge_newbuf_std(sc, sc->bge_std, m); continue; } if (bge_newbuf_std(sc, sc->bge_std, NULL) == ENOBUFS) { ifp->if_ierrors++; bge_newbuf_std(sc, sc->bge_std, m); continue; } } ifp->if_ipackets++; #ifndef __i386__ /* * The i386 allows unaligned accesses, but for other * platforms we must make sure the payload is aligned. */ if (sc->bge_rx_alignment_bug) { bcopy(m->m_data, m->m_data + ETHER_ALIGN, cur_rx->bge_len); m->m_data += ETHER_ALIGN; } #endif eh = mtod(m, struct ether_header *); m->m_pkthdr.len = m->m_len = cur_rx->bge_len; m->m_pkthdr.rcvif = ifp; /* Remove header from mbuf and pass it on. */ m_adj(m, sizeof(struct ether_header)); #if 0 /* currently broken for some packets, possibly related to TCP options */ if (ifp->if_hwassist) { m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; if ((cur_rx->bge_ip_csum ^ 0xffff) == 0) m->m_pkthdr.csum_flags |= CSUM_IP_VALID; if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) { m->m_pkthdr.csum_data = cur_rx->bge_tcp_udp_csum; m->m_pkthdr.csum_flags |= CSUM_DATA_VALID; } } #endif /* * If we received a packet with a vlan tag, pass it * to vlan_input() instead of ether_input(). */ if (have_tag) { VLAN_INPUT_TAG(eh, m, vlan_tag); have_tag = vlan_tag = 0; continue; } ether_input(ifp, eh, m); } CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx); if (stdcnt) CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std); if (jumbocnt) CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo); return; } static void bge_txeof(sc) struct bge_softc *sc; { struct bge_tx_bd *cur_tx = NULL; struct ifnet *ifp; ifp = &sc->arpcom.ac_if; /* * Go through our tx ring and free mbufs for those * frames that have been sent. */ while (sc->bge_tx_saved_considx != sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) { u_int32_t idx = 0; idx = sc->bge_tx_saved_considx; cur_tx = &sc->bge_rdata->bge_tx_ring[idx]; if (cur_tx->bge_flags & BGE_TXBDFLAG_END) ifp->if_opackets++; if (sc->bge_cdata.bge_tx_chain[idx] != NULL) { m_freem(sc->bge_cdata.bge_tx_chain[idx]); sc->bge_cdata.bge_tx_chain[idx] = NULL; } sc->bge_txcnt--; BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT); ifp->if_timer = 0; } if (cur_tx != NULL) ifp->if_flags &= ~IFF_OACTIVE; return; } static void bge_intr(xsc) void *xsc; { struct bge_softc *sc; struct ifnet *ifp; sc = xsc; ifp = &sc->arpcom.ac_if; #ifdef notdef /* Avoid this for now -- checking this register is expensive. */ /* Make sure this is really our interrupt. */ if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE)) return; #endif /* Ack interrupt and stop others from occuring. */ CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1); /* * Process link state changes. * Grrr. The link status word in the status block does * not work correctly on the BCM5700 rev AX and BX chips, * according to all avaibable information. Hence, we have * to enable MII interrupts in order to properly obtain * async link changes. Unfortunately, this also means that * we have to read the MAC status register to detect link * changes, thereby adding an additional register access to * the interrupt handler. */ if (sc->bge_asicrev == BGE_ASICREV_BCM5700) { u_int32_t status; status = CSR_READ_4(sc, BGE_MAC_STS); if (status & BGE_MACSTAT_MI_INTERRUPT) { sc->bge_link = 0; untimeout(bge_tick, sc, sc->bge_stat_ch); bge_tick(sc); /* Clear the interrupt */ CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_MI_INTERRUPT); bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR); bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR, BRGPHY_INTRS); } } else { if (sc->bge_rdata->bge_status_block.bge_status & BGE_STATFLAG_LINKSTATE_CHANGED) { sc->bge_link = 0; untimeout(bge_tick, sc, sc->bge_stat_ch); bge_tick(sc); /* Clear the interrupt */ CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED| BGE_MACSTAT_CFG_CHANGED); } } if (ifp->if_flags & IFF_RUNNING) { /* Check RX return ring producer/consumer */ bge_rxeof(sc); /* Check TX ring producer/consumer */ bge_txeof(sc); } bge_handle_events(sc); /* Re-enable interrupts. */ CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0); if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL) bge_start(ifp); return; } static void bge_tick(xsc) void *xsc; { struct bge_softc *sc; struct mii_data *mii = NULL; struct ifmedia *ifm = NULL; struct ifnet *ifp; int s; sc = xsc; ifp = &sc->arpcom.ac_if; s = splimp(); bge_stats_update(sc); sc->bge_stat_ch = timeout(bge_tick, sc, hz); if (sc->bge_link) { splx(s); return; } if (sc->bge_tbi) { ifm = &sc->bge_ifmedia; if (CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_TBI_PCS_SYNCHED) { sc->bge_link++; CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF); printf("bge%d: gigabit link up\n", sc->bge_unit); if (ifp->if_snd.ifq_head != NULL) bge_start(ifp); } splx(s); return; } mii = device_get_softc(sc->bge_miibus); mii_tick(mii); if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE && IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { sc->bge_link++; if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T || IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) printf("bge%d: gigabit link up\n", sc->bge_unit); if (ifp->if_snd.ifq_head != NULL) bge_start(ifp); } splx(s); return; } static void bge_stats_update(sc) struct bge_softc *sc; { struct ifnet *ifp; struct bge_stats *stats; ifp = &sc->arpcom.ac_if; stats = (struct bge_stats *)(sc->bge_vhandle + BGE_MEMWIN_START + BGE_STATS_BLOCK); ifp->if_collisions += (stats->dot3StatsSingleCollisionFrames.bge_addr_lo + stats->dot3StatsMultipleCollisionFrames.bge_addr_lo + stats->dot3StatsExcessiveCollisions.bge_addr_lo + stats->dot3StatsLateCollisions.bge_addr_lo) - ifp->if_collisions; #ifdef notdef ifp->if_collisions += (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames + sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames + sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions + sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) - ifp->if_collisions; #endif return; } /* * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data * pointers to descriptors. */ static int bge_encap(sc, m_head, txidx) struct bge_softc *sc; struct mbuf *m_head; u_int32_t *txidx; { struct bge_tx_bd *f = NULL; struct mbuf *m; u_int32_t frag, cur, cnt = 0; u_int16_t csum_flags = 0; struct ifvlan *ifv = NULL; if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) && m_head->m_pkthdr.rcvif != NULL && m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN) ifv = m_head->m_pkthdr.rcvif->if_softc; m = m_head; cur = frag = *txidx; if (m_head->m_pkthdr.csum_flags) { if (m_head->m_pkthdr.csum_flags & CSUM_IP) csum_flags |= BGE_TXBDFLAG_IP_CSUM; if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM; if (m_head->m_flags & M_LASTFRAG) csum_flags |= BGE_TXBDFLAG_IP_FRAG_END; else if (m_head->m_flags & M_FRAG) csum_flags |= BGE_TXBDFLAG_IP_FRAG; } /* * Start packing the mbufs in this chain into * the fragment pointers. Stop when we run out * of fragments or hit the end of the mbuf chain. */ for (m = m_head; m != NULL; m = m->m_next) { if (m->m_len != 0) { f = &sc->bge_rdata->bge_tx_ring[frag]; if (sc->bge_cdata.bge_tx_chain[frag] != NULL) break; BGE_HOSTADDR(f->bge_addr) = vtophys(mtod(m, vm_offset_t)); f->bge_len = m->m_len; f->bge_flags = csum_flags; if (ifv != NULL) { f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG; f->bge_vlan_tag = ifv->ifv_tag; } else { f->bge_vlan_tag = 0; } /* * Sanity check: avoid coming within 16 descriptors * of the end of the ring. */ if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16) return(ENOBUFS); cur = frag; BGE_INC(frag, BGE_TX_RING_CNT); cnt++; } } if (m != NULL) return(ENOBUFS); if (frag == sc->bge_tx_saved_considx) return(ENOBUFS); sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END; sc->bge_cdata.bge_tx_chain[cur] = m_head; sc->bge_txcnt += cnt; *txidx = frag; return(0); } /* * Main transmit routine. To avoid having to do mbuf copies, we put pointers * to the mbuf data regions directly in the transmit descriptors. */ static void bge_start(ifp) struct ifnet *ifp; { struct bge_softc *sc; struct mbuf *m_head = NULL; u_int32_t prodidx = 0; sc = ifp->if_softc; if (!sc->bge_link && ifp->if_snd.ifq_len < 10) return; prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO); while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) { IF_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) break; /* * XXX * safety overkill. If this is a fragmented packet chain * with delayed TCP/UDP checksums, then only encapsulate * it if we have enough descriptors to handle the entire * chain at once. * (paranoia -- may not actually be needed) */ if (m_head->m_flags & M_FIRSTFRAG && m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) { if ((BGE_TX_RING_CNT - sc->bge_txcnt) < m_head->m_pkthdr.csum_data + 16) { IF_PREPEND(&ifp->if_snd, m_head); ifp->if_flags |= IFF_OACTIVE; break; } } /* * Pack the data into the transmit ring. If we * don't have room, set the OACTIVE flag and wait * for the NIC to drain the ring. */ if (bge_encap(sc, m_head, &prodidx)) { IF_PREPEND(&ifp->if_snd, m_head); ifp->if_flags |= IFF_OACTIVE; break; } /* * If there's a BPF listener, bounce a copy of this frame * to him. */ if (ifp->if_bpf) bpf_mtap(ifp, m_head); } /* Transmit */ CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx); /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; return; } /* * If we have a BCM5400 or BCM5401 PHY, we need to properly * program its internal DSP. Failing to do this can result in * massive packet loss at 1Gb speeds. */ static void bge_phy_hack(sc) struct bge_softc *sc; { struct bge_bcom_hack bhack[] = { { BRGPHY_MII_AUXCTL, 0x4C20 }, { BRGPHY_MII_DSP_ADDR_REG, 0x0012 }, { BRGPHY_MII_DSP_RW_PORT, 0x1804 }, { BRGPHY_MII_DSP_ADDR_REG, 0x0013 }, { BRGPHY_MII_DSP_RW_PORT, 0x1204 }, { BRGPHY_MII_DSP_ADDR_REG, 0x8006 }, { BRGPHY_MII_DSP_RW_PORT, 0x0132 }, { BRGPHY_MII_DSP_ADDR_REG, 0x8006 }, { BRGPHY_MII_DSP_RW_PORT, 0x0232 }, { BRGPHY_MII_DSP_ADDR_REG, 0x201F }, { BRGPHY_MII_DSP_RW_PORT, 0x0A20 }, { 0, 0 } }; u_int16_t vid, did; int i; vid = bge_miibus_readreg(sc->bge_dev, 1, MII_PHYIDR1); did = bge_miibus_readreg(sc->bge_dev, 1, MII_PHYIDR2); if (MII_OUI(vid, did) == MII_OUI_xxBROADCOM && (MII_MODEL(did) == MII_MODEL_xxBROADCOM_BCM5400 || MII_MODEL(did) == MII_MODEL_xxBROADCOM_BCM5401)) { i = 0; while(bhack[i].reg) { bge_miibus_writereg(sc->bge_dev, 1, bhack[i].reg, bhack[i].val); i++; } } return; } static void bge_init(xsc) void *xsc; { struct bge_softc *sc = xsc; struct ifnet *ifp; u_int16_t *m; int s; s = splimp(); ifp = &sc->arpcom.ac_if; if (ifp->if_flags & IFF_RUNNING) { splx(s); return; } /* Cancel pending I/O and flush buffers. */ bge_stop(sc); bge_reset(sc); bge_chipinit(sc); /* * Init the various state machines, ring * control blocks and firmware. */ if (bge_blockinit(sc)) { printf("bge%d: initialization failure\n", sc->bge_unit); splx(s); return; } ifp = &sc->arpcom.ac_if; /* Specify MTU. */ CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN); /* Load our MAC address. */ m = (u_int16_t *)&sc->arpcom.ac_enaddr[0]; CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0])); CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2])); /* Enable or disable promiscuous mode as needed. */ if (ifp->if_flags & IFF_PROMISC) { BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); } else { BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); } /* Program multicast filter. */ bge_setmulti(sc); /* Init RX ring. */ bge_init_rx_ring_std(sc); /* Init jumbo RX ring. */ if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) bge_init_rx_ring_jumbo(sc); /* Init our RX return ring index */ sc->bge_rx_saved_considx = 0; /* Init TX ring. */ bge_init_tx_ring(sc); /* Turn on transmitter */ BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE); /* Turn on receiver */ BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE); /* Tell firmware we're alive. */ BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); /* Enable host interrupts. */ BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA); BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0); bge_ifmedia_upd(ifp); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; splx(s); sc->bge_stat_ch = timeout(bge_tick, sc, hz); return; } /* * Set media options. */ static int bge_ifmedia_upd(ifp) struct ifnet *ifp; { struct bge_softc *sc; struct mii_data *mii; struct ifmedia *ifm; sc = ifp->if_softc; ifm = &sc->bge_ifmedia; /* If this is a 1000baseX NIC, enable the TBI port. */ if (sc->bge_tbi) { if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) return(EINVAL); switch(IFM_SUBTYPE(ifm->ifm_media)) { case IFM_AUTO: break; case IFM_1000_SX: if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) { BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX); } else { BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX); } break; default: return(EINVAL); } return(0); } mii = device_get_softc(sc->bge_miibus); sc->bge_link = 0; if (mii->mii_instance) { struct mii_softc *miisc; for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL; miisc = LIST_NEXT(miisc, mii_list)) mii_phy_reset(miisc); } bge_phy_hack(sc); mii_mediachg(mii); return(0); } /* * Report current media status. */ static void bge_ifmedia_sts(ifp, ifmr) struct ifnet *ifp; struct ifmediareq *ifmr; { struct bge_softc *sc; struct mii_data *mii; sc = ifp->if_softc; if (sc->bge_tbi) { ifmr->ifm_status = IFM_AVALID; ifmr->ifm_active = IFM_ETHER; if (CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_TBI_PCS_SYNCHED) ifmr->ifm_status |= IFM_ACTIVE; ifmr->ifm_active |= IFM_1000_SX; if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX) ifmr->ifm_active |= IFM_HDX; else ifmr->ifm_active |= IFM_FDX; return; } mii = device_get_softc(sc->bge_miibus); mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; return; } static int bge_ioctl(ifp, command, data) struct ifnet *ifp; u_long command; caddr_t data; { struct bge_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; int s, mask, error = 0; struct mii_data *mii; s = splimp(); switch(command) { case SIOCSIFADDR: case SIOCGIFADDR: error = ether_ioctl(ifp, command, data); break; case SIOCSIFMTU: if (ifr->ifr_mtu > BGE_JUMBO_MTU) error = EINVAL; else { ifp->if_mtu = ifr->ifr_mtu; ifp->if_flags &= ~IFF_RUNNING; bge_init(sc); } break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { /* * If only the state of the PROMISC flag changed, * then just use the 'set promisc mode' command * instead of reinitializing the entire NIC. Doing * a full re-init means reloading the firmware and * waiting for it to start up, which may take a * second or two. */ if (ifp->if_flags & IFF_RUNNING && ifp->if_flags & IFF_PROMISC && !(sc->bge_if_flags & IFF_PROMISC)) { BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); } else if (ifp->if_flags & IFF_RUNNING && !(ifp->if_flags & IFF_PROMISC) && sc->bge_if_flags & IFF_PROMISC) { BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); } else bge_init(sc); } else { if (ifp->if_flags & IFF_RUNNING) { bge_stop(sc); } } sc->bge_if_flags = ifp->if_flags; error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: if (ifp->if_flags & IFF_RUNNING) { bge_setmulti(sc); error = 0; } break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: if (sc->bge_tbi) { error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia, command); } else { mii = device_get_softc(sc->bge_miibus); error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); } break; case SIOCSIFCAP: mask = ifr->ifr_reqcap ^ ifp->if_capenable; if (mask & IFCAP_HWCSUM) { if (IFCAP_HWCSUM & ifp->if_capenable) ifp->if_capenable &= ~IFCAP_HWCSUM; else ifp->if_capenable |= IFCAP_HWCSUM; } error = 0; break; default: error = EINVAL; break; } (void)splx(s); return(error); } static void bge_watchdog(ifp) struct ifnet *ifp; { struct bge_softc *sc; sc = ifp->if_softc; printf("bge%d: watchdog timeout -- resetting\n", sc->bge_unit); ifp->if_flags &= ~IFF_RUNNING; bge_init(sc); ifp->if_oerrors++; return; } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ static void bge_stop(sc) struct bge_softc *sc; { struct ifnet *ifp; struct ifmedia_entry *ifm; struct mii_data *mii = NULL; int mtmp, itmp; ifp = &sc->arpcom.ac_if; if (!sc->bge_tbi) mii = device_get_softc(sc->bge_miibus); untimeout(bge_tick, sc, sc->bge_stat_ch); /* * Disable all of the receiver blocks */ BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE); BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE); BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE); BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE); BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE); BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE); BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE); /* * Disable all of the transmit blocks */ BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE); BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE); BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE); BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE); BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE); BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE); BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE); /* * Shut down all of the memory managers and related * state machines. */ BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE); BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE); BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE); CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF); CSR_WRITE_4(sc, BGE_FTQ_RESET, 0); BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE); BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE); /* Disable host interrupts. */ BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1); /* * Tell firmware we're shutting down. */ BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); /* Free the RX lists. */ bge_free_rx_ring_std(sc); /* Free jumbo RX list. */ bge_free_rx_ring_jumbo(sc); /* Free TX buffers. */ bge_free_tx_ring(sc); /* * Isolate/power down the PHY, but leave the media selection * unchanged so that things will be put back to normal when * we bring the interface back up. */ if (!sc->bge_tbi) { itmp = ifp->if_flags; ifp->if_flags |= IFF_UP; ifm = mii->mii_media.ifm_cur; mtmp = ifm->ifm_media; ifm->ifm_media = IFM_ETHER|IFM_NONE; mii_mediachg(mii); ifm->ifm_media = mtmp; ifp->if_flags = itmp; } sc->bge_link = 0; sc->bge_tx_saved_considx = BGE_TXCONS_UNSET; ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); return; } /* * Stop all chip I/O so that the kernel's probe routines don't * get confused by errant DMAs when rebooting. */ static void bge_shutdown(dev) device_t dev; { struct bge_softc *sc; sc = device_get_softc(dev); bge_stop(sc); bge_reset(sc); return; }