/* To do: * Don't store drive configuration on the config DB: read each drive's header * to decide where it is. * * Accept any old crap in the config_ functions, and complain when * we try to bring it up. * * When trying to bring volumes up, check that the complete address range * is covered. */ /*- * Copyright (c) 1997, 1998 * Nan Yang Computer Services Limited. All rights reserved. * * This software is distributed under the so-called ``Berkeley * License'': * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Nan Yang Computer * Services Limited. * 4. Neither the name of the Company nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * This software is provided ``as is'', and any express or implied * warranties, including, but not limited to, the implied warranties of * merchantability and fitness for a particular purpose are disclaimed. * In no event shall the company or contributors be liable for any * direct, indirect, incidental, special, exemplary, or consequential * damages (including, but not limited to, procurement of substitute * goods or services; loss of use, data, or profits; or business * interruption) however caused and on any theory of liability, whether * in contract, strict liability, or tort (including negligence or * otherwise) arising in any way out of the use of this software, even if * advised of the possibility of such damage. * * $Id: config.c,v 1.20 1998/10/26 02:05:34 grog Exp grog $ */ #define STATIC /* nothing while we're testing XXX */ #define REALLYKERNEL #include "vinumhdr.h" extern jmp_buf command_fail; /* return on a failed command */ #if __FreeBSD__ >= 3 /* Why aren't these declared anywhere? XXX */ void longjmp(jmp_buf, int); #endif #define MAXTOKEN 64 /* maximum number of tokens in a line */ /* We can afford the luxury of global variables here, * since start_config ensures that these functions * are single-threaded. */ /* These are indices in vinum_conf of the last-mentioned of each kind of object */ static int current_drive = -1; /* note the last drive we mention, for * some defaults */ static int current_plex = -1; /* and the same for the last plex */ static int current_volume = -1; /* and the last volme */ static struct _ioctl_reply *ioctl_reply; /* struct to return via ioctl */ /* These values are used by most of these routines, so set them as globals */ static char *token[MAXTOKEN]; /* pointers to individual tokens */ static int tokens; /* number of tokens */ #define TOCONS 0x01 #define TOTTY 0x02 #define TOLOG 0x04 struct putchar_arg { int flags; struct tty *tty; }; #define MSG_MAX 1024 /* maximum length of a formatted message */ /* Format an error message and return to the user in the reply. * CARE: This routine is designed to be called only from the * configuration routines, so it assumes it's the owner of * the configuration lock, and unlocks it on exit */ void throw_rude_remark(int error, char *msg,...) { BROKEN_GDB; int retval; va_list ap; char *text; static int finishing; /* don't recurse */ int was_finishing; va_start(ap, msg); if ((ioctl_reply != NULL) /* we're called from the user */ &&(!(vinum_conf.flags & VF_KERNELOP))) { /* and we're not doing kernel things: return msg */ /* XXX We can't just format to ioctl_reply, since it * may contain our input parameters */ text = Malloc(MSG_MAX); if (text == NULL) { printf("vinum: can't allocate error message buffer"); printf("vinum: "); vprintf(msg, ap); /* print to the console */ printf("\n"); } else { retval = kvprintf(msg, NULL, (void *) text, 10, ap); text[retval] = '\0'; /* delimit */ strcpy(ioctl_reply->msg, text); ioctl_reply->error = error; /* first byte is the error number */ Free(text); } } else { printf("vinum: "); vprintf(msg, ap); /* print to the console */ printf("\n"); } va_end(ap); if (vinum_conf.flags & VF_READING_CONFIG) /* go through to the bitter end, */ return; /* We have a problem here: we want to unlock the * configuration, which implies tidying up, but * if we find an error while tidying up, we could * recurse for ever. Use this kludge to only try * once */ was_finishing = finishing; finishing = 1; finish_config(was_finishing); /* unlock anything we may be holding */ finishing = was_finishing; longjmp(command_fail, error); } /* Function declarations */ int atoi(char *); /* no atoi in the kernel */ /* Minimal version of atoi */ int atoi(char *s) { /* no atoi in the kernel */ BROKEN_GDB; int r = 0; int sign = 1; while (((*s >= '0') && (*s <= '9')) || (*s == '-')) { if (*s == '-') sign = -sign; else r = r * 10 + (*s - '0'); } return r; } /* Find index of volume in vinum_conf. Return the index * if found, or -1 if not */ int volume_index(struct volume *vol) { BROKEN_GDB; int i; for (i = 0; i < vinum_conf.volumes_used; i++) if (&VOL[i] == vol) return i; return -1; } /* Find index of plex in vinum_conf. Return the index * if found, or -1 if not */ int plex_index(struct plex *plex) { BROKEN_GDB; int i; for (i = 0; i < vinum_conf.plexes_used; i++) if (&PLEX[i] == plex) return i; return -1; } /* Find index of subdisk in vinum_conf. Return the index * if found, or -1 if not */ int sd_index(struct sd *sd) { BROKEN_GDB; int i; for (i = 0; i < vinum_conf.subdisks_used; i++) if (&SD[i] == sd) return i; return -1; } /* Find index of drive in vinum_conf. Return the index * if found, or -1 if not */ int drive_index(struct drive *drive) { BROKEN_GDB; int i; for (i = 0; i < vinum_conf.drives_used; i++) if (&DRIVE[i] == drive) return i; return -1; } /* Check a volume to see if the plex is already assigned to it. * Return index in volume->plex, or -1 if not assigned */ int my_plex(int volno, int plexno) { BROKEN_GDB; int i; struct volume *vol; vol = &VOL[volno]; /* point to volno */ for (i = 0; i < vol->plexes; i++) if (vol->plex[i] == plexno) return i; return -1; /* not found */ } /* Check a plex to see if the subdisk is already assigned to it. * Return index in plex->sd, or -1 if not assigned */ int my_sd(int plexno, int sdno) { BROKEN_GDB; int i; struct plex *plex; plex = &PLEX[plexno]; for (i = 0; i < plex->subdisks; i++) if (plex->sdnos[i] == sdno) return i; return -1; /* not found */ } /* Check that this operation is being done in the kernel. * longjmp out if not. op the name of the operation. */ void checkkernel(char *op) { BROKEN_GDB; if (vinum_conf.flags & VF_KERNELOP == 0) throw_rude_remark(EPERM, "Can't perform '%s' from user space", op); } /* Add plex to the volume if possible */ int give_plex_to_volume(int volno, int plexno) { BROKEN_GDB; struct volume *vol; /* XXX It's not an error for the plex to already * belong to the volume, but we need to check a * number of things to make sure it's done right. * Some day. */ if (my_plex(volno, plexno) >= 0) return plexno; /* that's it */ vol = &VOL[volno]; /* point to volume */ if (vol->plexes == MAXPLEX) /* all plexes allocated */ throw_rude_remark(ENOSPC, "Too many plexes for volume %s", vol->name); vol->plex[vol->plexes] = plexno; /* this one */ vol->plexes++; /* add another plex */ PLEX[plexno].volno = volno; /* note the number of our volume */ return vol->plexes - 1; /* and return its index */ } /* Add subdisk to a plex if possible */ int give_sd_to_plex(int plexno, int sdno) { BROKEN_GDB; int i; struct plex *plex; struct sd *sd; /* XXX It's not an error for the sd to already * belong to the plex, but we need to check a * number of things to make sure it's done right. * Some day. */ i = my_sd(plexno, sdno); if (i >= 0) /* does it already belong to us? */ return i; /* that's it */ plex = &PLEX[plexno]; /* point to the plex */ sd = &SD[sdno]; /* and the subdisk */ /* Do we have an offset? Otherwise put it after the last one */ if (sd->plexoffset < 0) { /* no offset specified */ if (plex->subdisks > 0) { struct sd *lastsd = &SD[plex->sdnos[plex->subdisks - 1]]; /* last subdisk */ sd->plexoffset = lastsd->sectors + lastsd->plexoffset; /* take it */ } else /* first subdisk */ sd->plexoffset = 0; /* start at the beginning */ } if (plex->subdisks == MAXSD) /* we already have our maximum */ throw_rude_remark(ENOSPC, /* crap out */ "Can't add %s to %s: plex full\n", sd->name, plex->name); plex->subdisks++; /* another entry */ if (plex->subdisks >= plex->subdisks_allocated) /* need more space */ EXPAND(plex->sdnos, int, plex->subdisks_allocated, INITIAL_SUBDISKS_IN_PLEX); /* XXX I'm not sure this makes any sense * for anything except concatenated plexes, * and it comes up with the wrong answer for * RAID-5 plexes, but it's currently needed * for the calculations. We'll adjust for * RAID-5 in config_plex */ if ((sd->sectors + sd->plexoffset) > plex->length) { /* gone beyond the end of the plex */ plex->length = sd->sectors + sd->plexoffset; /* adjust the length */ if ((plex->volno >= 0) /* we have a volume */ &&(plex->length > VOL[plex->volno].size)) /* and we're now the longest plex */ VOL[plex->volno].size = plex->length; /* increase the size of the volume */ } /* We need to check that the subdisks don't overlap, * but we can't do that until a point where we *must* * know the size of all the subdisks. That's not * here. But we need to sort them by offset */ for (i = 0; i < plex->subdisks - 1; i++) { if (sd->plexoffset < SD[plex->sdnos[i]].plexoffset) { /* it fits before this one */ /* First move any remaining subdisks by one */ int j; for (j = plex->subdisks - 1; j > i; j--) /* move up one at a time */ plex->sdnos[j] = plex->sdnos[j - 1]; plex->sdnos[i] = sdno; return i; } } /* The plex doesn't have any subdisk with a larger * offset. Insert it */ plex->sdnos[i] = sdno; return i; } /* Add a subdisk to drive if possible. The pointer to the drive * must already be stored in the sd structure, but the drive * doesn't know about the subdisk yet. */ static void give_sd_to_drive(int sdno) { BROKEN_GDB; struct sd *sd; /* pointer to subdisk */ struct drive *drive; /* and drive */ int fe; /* index in free list */ sd = &SD[sdno]; /* point to sd */ drive = &DRIVE[sd->driveno]; /* and drive */ if (drive->state != drive_up) /* not up */ throw_rude_remark(EIO, "Drive %s is not accessible", drive->label.name); else if (sd->sectors > drive->sectors_available) { /* too big, */ sd->driveoffset = -1; /* don't be confusing */ throw_rude_remark(ENOSPC, "No space for %s on %s", sd->name, drive->label.name); } drive->subdisks_used++; /* one more subdisk */ /* no offset specified, find one */ if (sd->driveoffset < 0) { for (fe = 0; fe < drive->freelist_entries; fe++) { if (drive->freelist[fe].sectors >= sd->sectors) { /* it'll fit here */ sd->driveoffset = drive->freelist[fe].offset; if (sd->sectors == drive->freelist[fe].sectors) { /* used up the entire entry */ if (fe < (drive->freelist_entries - 1)) /* not the last one, */ bcopy(&drive->freelist[fe + 1], &drive->freelist[fe], (drive->freelist_entries - fe) * sizeof(struct drive_freelist)); drive->freelist_entries--; /* one less entry */ } else { drive->freelist[fe].sectors -= sd->sectors; /* this much less space */ drive->freelist[fe].offset += sd->sectors; /* this much further on */ } drive->sectors_available -= sd->sectors; /* and note how much less space we have */ break; } } if (fe == drive->freelist_entries) /* Didn't find anything. Although the drive has * enough space, it's too fragmented */ { sd->driveoffset = -1; /* don't be confusing */ throw_rude_remark(ENOSPC, "No space for %s on %s", sd->name, drive->label.name); } } else { /* specific offset */ /* For a specific offset to work, the space must be * entirely in a single freelist entry. Look for it. */ u_int64_t sdend = sd->driveoffset + sd->sectors; /* end of our subdisk */ for (fe = 0; fe < drive->freelist_entries; fe++) { u_int64_t dend = drive->freelist[fe].offset + drive->freelist[fe].sectors; /* end of entry */ if (dend >= sdend) { /* fits before here */ if (drive->freelist[fe].offset > sd->driveoffset) /* starts after the beginning of sd area */ throw_rude_remark(ENOSPC, "No space for subdisk %s on drive %s at offset %qd\n", sd->name, drive->label.name); /* We've found the space, and we can allocate it. * We don't need to say that to the subdisk, which * already knows about it. We need to tell it to * the free list, though. We have four possibilities: * * 1. The subdisk exactly eats up the entry. That's the * same as above. * 2. The subdisk starts at the beginning and leaves space * at the end. * 3. The subdisk starts after the beginning and leaves * space at the end as well: we end up with another * fragment. * 4. The subdisk leaves space at the beginning and finishes * at the end. */ drive->sectors_available -= sd->sectors; /* note how much less space we have */ if (sd->driveoffset == drive->freelist[fe].offset) { /* 1 or 2 */ if (sd->sectors == drive->freelist[fe].sectors) { /* 1: used up the entire entry */ if (fe < (drive->freelist_entries - 1)) /* not the last one, */ bcopy(&drive->freelist[fe + 1], &drive->freelist[fe], (drive->freelist_entries - fe) * sizeof(struct drive_freelist)); drive->freelist_entries--; /* one less entry */ } else { /* 2: space at the end */ drive->freelist[fe].sectors -= sd->sectors; /* this much less space */ drive->freelist[fe].offset += sd->sectors; /* this much further on */ } } else { /* 3 or 4 */ drive->freelist[fe].sectors = sd->driveoffset - drive->freelist[fe].offset; if (dend > sdend) { /* 3: space at the end as well */ if (fe < (drive->freelist_entries - 1)) /* not the last one */ bcopy(&drive->freelist[fe], /* move the rest down */ &drive->freelist[fe + 1], (drive->freelist_entries - fe) * sizeof(struct drive_freelist)); drive->freelist_entries++; /* one less entry */ drive->freelist[fe + 1].offset = sdend; /* second entry starts after sd */ drive->freelist[fe + 1].sectors = dend - sdend; /* and is this long */ } } break; } } } drive->opencount++; /* one more subdisk attached */ } /* Get an empty drive entry from the drive table */ int get_empty_drive(void) { BROKEN_GDB; int driveno; struct drive *drive; /* first see if we have one which has been deallocated */ for (driveno = 0; driveno < vinum_conf.drives_used; driveno++) { if (DRIVE[driveno].state == drive_unallocated) /* bingo */ break; } if (driveno >= vinum_conf.drives_used) /* Couldn't find a deallocated drive. Allocate a new one */ { vinum_conf.drives_used++; if (vinum_conf.drives_used > vinum_conf.drives_allocated) /* we've used all our allocation */ EXPAND(DRIVE, struct drive, vinum_conf.drives_allocated, INITIAL_DRIVES); } /* got a drive entry. Make it pretty */ drive = &DRIVE[driveno]; bzero(drive, sizeof(struct drive)); drive->driveno = driveno; /* put number in structure */ return driveno; /* return the index */ } /* Find the named drive in vinum_conf.drive, return a pointer * return the index in vinum_conf.drive. * Don't mark the drive as allocated (XXX SMP) * If create != 0, create an entry if it doesn't exist */ /* XXX check if we have it open from attach */ int find_drive(const char *name, int create) { BROKEN_GDB; int driveno; struct drive *drive; if (name != NULL) { for (driveno = 0; driveno < vinum_conf.drives_used; driveno++) { drive = &DRIVE[driveno]; /* point to drive */ if ((drive->label.name[0] != '\0') /* it has a name */ &&(strcmp(drive->label.name, name) == 0)) /* and it's this one: found */ return driveno; } } /* the drive isn't in the list. Add it if he wants */ if (create == 0) /* don't want to create */ return -1; /* give up */ driveno = get_empty_drive(); drive = &DRIVE[driveno]; if (name != NULL) bcopy(name, /* put in its name */ drive->label.name, min(sizeof(drive->label.name), strlen(name))); drive->state = drive_uninit; /* in use, nothing worthwhile there */ return driveno; /* return the index */ } /* Find a drive given its device name. * devname must be valid. * Otherwise the same as find_drive above */ int find_drive_by_dev(const char *devname, int create) { BROKEN_GDB; int driveno; struct drive *drive; for (driveno = 0; driveno < vinum_conf.drives_used; driveno++) { drive = &DRIVE[driveno]; /* point to drive */ if ((drive->label.name[0] != '\0') /* it has a name */ &&(strcmp(drive->label.name, devname) == 0)) /* and it's this one: found */ return driveno; } /* the drive isn't in the list. Add it if he wants */ if (create == 0) /* don't want to create */ return -1; /* give up */ driveno = get_empty_drive(); drive = &DRIVE[driveno]; bcopy(devname, /* put in its name */ drive->devicename, min(sizeof(drive->devicename), strlen(devname))); drive->state = drive_uninit; /* in use, nothing worthwhile there */ return driveno; /* return the index */ } /* Find an empty subdisk in the subdisk table */ int get_empty_sd(void) { BROKEN_GDB; int sdno; struct sd *sd; /* first see if we have one which has been deallocated */ for (sdno = 0; sdno < vinum_conf.subdisks_used; sdno++) { if (SD[sdno].state == sd_unallocated) /* bingo */ break; } if (sdno >= vinum_conf.subdisks_used) { /* No unused sd found. Allocate a new one */ vinum_conf.subdisks_used++; if (vinum_conf.subdisks_used > vinum_conf.subdisks_allocated) EXPAND(SD, struct sd, vinum_conf.subdisks_allocated, INITIAL_SUBDISKS); } /* initialize some things */ sd = &SD[sdno]; /* point to it */ bzero(sd, sizeof(struct sd)); /* initialize */ sd->plexno = -1; /* no plex */ sd->driveno = -1; /* and no drive */ sd->plexoffset = -1; /* and no offsets */ sd->driveoffset = -1; return sdno; /* return the index */ } /* return a drive to the free pool */ void free_drive(struct drive *drive) { BROKEN_GDB; if (drive->vp != NULL) /* device open */ vn_close(drive->vp, FREAD | FWRITE, FSCRED, drive->p); bzero(drive, sizeof(struct drive)); /* this also sets drive_unallocated */ vinum_conf.drives_used--; /* one less drive */ } /* Find the named subdisk in vinum_conf.sd. * If create != 0, create an entry if it doesn't exist * * Return index in vinum_conf.sd */ int find_subdisk(const char *name, int create) { BROKEN_GDB; int sdno; struct sd *sd; for (sdno = 0; sdno < vinum_conf.subdisks_allocated; sdno++) { if (strcmp(SD[sdno].name, name) == 0) /* found it */ return sdno; } /* the subdisk isn't in the list. Add it if he wants */ if (create == 0) /* don't want to create */ return -1; /* give up */ /* Allocate one and insert the name */ sdno = get_empty_sd(); sd = &SD[sdno]; bcopy(name, sd->name, min(sizeof(sd->name), strlen(name))); /* put in its name */ return sdno; /* return the pointer */ } /* Free an allocated sd entry * This performs memory management only. remove() * is responsible for checking relationships. */ void free_sd(int sdno) { BROKEN_GDB; struct sd *sd; struct drive *drive; int fe; /* free list entry */ u_int64_t sdend; /* end of our subdisk */ u_int64_t dend; /* end of our freelist entry */ sd = &SD[sdno]; if ((sd->driveno >= 0) /* we have a drive, */ &&(sd->sectors > 0)) { /* and some space on it */ drive = &DRIVE[sd->driveno]; sdend = sd->driveoffset + sd->sectors; /* end of our subdisk */ /* Look for where to return the sd address space */ for (fe = 0; (fe < drive->freelist_entries) && (drive->freelist[fe].offset < sd->driveoffset); fe++); /* Now we are pointing to the last entry, the first * with a higher offset than the subdisk, or both. */ if ((fe > 1) /* not the first entry */ &&((fe == drive->freelist_entries) /* gone past the end */ ||(drive->freelist[fe].offset > sd->driveoffset))) /* or past the block were looking for */ fe--; /* point to the block before */ dend = drive->freelist[fe].offset + drive->freelist[fe].sectors; /* end of the entry */ /* At this point, we are pointing to the correct * place in the free list. A number of possibilities * exist: * * 1. The block to be freed immediately follows * the block to which we are pointing. Just * enlarge it. * 2. The block to be freed starts at the end of * the current block and ends at the beginning * of the following block. Merge the three * areas into a single block. * 3. The block to be freed starts after the end * of the block and ends before the start of * the following block. Create a new free block. * 4. The block to be freed starts after the end * of the block, but ends at the start of the * following block. Enlarge the following block * downwards. * */ if (sd->driveoffset == dend) { /* it starts after the end of this block */ if ((fe < drive->freelist_entries - 1) /* we're not the last block in the free list */ &&(sdend == drive->freelist[fe + 1].offset)) { /* and the subdisk ends at the start of the * next block */ drive->freelist[fe].sectors = drive->freelist[fe + 1].sectors; /* 2: merge all three blocks */ if (fe < drive->freelist_entries - 2) /* still more blocks after next */ bcopy(&drive->freelist[fe + 2], /* move down one */ &drive->freelist[fe + 1], (drive->freelist_entries - 2 - fe) * sizeof(struct drive_freelist)); drive->freelist_entries--; /* one less entry in the free list */ } else /* 1: just enlarge this block */ drive->freelist[fe].sectors += sd->sectors; } else { if (sd->driveoffset > dend) /* it starts after this block */ fe++; /* so look at the next block */ if ((fe < drive->freelist_entries) /* we're not the last block in the free list */ &&(sdend == drive->freelist[fe].offset)) { /* and the subdisk ends at the start of * this block: case 4 */ drive->freelist[fe].offset = sd->driveoffset; /* it starts where the sd was */ drive->freelist[fe].sectors += sd->sectors; /* and it's this much bigger */ } else { /* case 3: non-contiguous */ if (fe < drive->freelist_entries) /* not after the last block, */ bcopy(&drive->freelist[fe], /* move the rest up one entry */ &drive->freelist[fe + 1], (drive->freelist_entries - fe) * sizeof(struct drive_freelist)); drive->freelist_entries++; /* one less entry */ drive->freelist[fe].offset = sd->driveoffset; /* this entry represents the sd */ drive->freelist[fe].sectors = sd->sectors; } } drive->opencount--; /* one less subdisk attached */ } bzero(sd, sizeof(struct sd)); /* and clear it out */ sd->state = sd_unallocated; vinum_conf.subdisks_used--; /* one less sd */ } /* Find an empty plex in the plex table */ int get_empty_plex(void) { BROKEN_GDB; int plexno; struct plex *plex; /* if we allocate one */ /* first see if we have one which has been deallocated */ for (plexno = 0; plexno < vinum_conf.plexes_used; plexno++) { if (PLEX[plexno].state == plex_unallocated) /* bingo */ break; /* and get out of here */ } if (plexno >= vinum_conf.plexes_used) { /* Couldn't find a deallocated plex. Allocate a new one */ vinum_conf.plexes_used++; if (vinum_conf.plexes_used > vinum_conf.plexes_allocated) EXPAND(PLEX, struct plex, vinum_conf.plexes_allocated, INITIAL_PLEXES); } /* Found a plex. Give it an sd structure */ plex = &PLEX[plexno]; /* this one is ours */ bzero(plex, sizeof(struct plex)); /* polish it up */ plex->sdnos = (int *) Malloc(sizeof(int) * INITIAL_SUBDISKS_IN_PLEX); /* allocate sd table */ CHECKALLOC(plex->sdnos, "vinum: Can't allocate plex subdisk table"); bzero(plex->sdnos, (sizeof(int) * INITIAL_SUBDISKS_IN_PLEX)); /* do we need this? */ plex->subdisks = 0; /* no subdisks in use */ plex->subdisks_allocated = INITIAL_SUBDISKS_IN_PLEX; /* and we have space for this many */ plex->organization = plex_disorg; /* and it's not organized */ plex->volno = -1; /* no volume yet */ return plexno; /* return the index */ } /* Find the named plex in vinum_conf.plex * If create != 0, create an entry if it doesn't exist * return index in vinum_conf.plex */ int find_plex(const char *name, int create) { BROKEN_GDB; int plexno; struct plex *plex; for (plexno = 0; plexno < vinum_conf.plexes_allocated; plexno++) { if (strcmp(PLEX[plexno].name, name) == 0) /* found it */ return plexno; } /* the plex isn't in the list. Add it if he wants */ if (create == 0) /* don't want to create */ return -1; /* give up */ /* Allocate one and insert the name */ plexno = get_empty_plex(); plex = &PLEX[plexno]; /* point to it */ bcopy(name, plex->name, min(sizeof(plex->name), strlen(name))); /* put in its name */ return plexno; /* return the pointer */ } /* Free an allocated plex entry * and its associated memory areas */ void free_plex(int plexno) { BROKEN_GDB; struct plex *plex; plex = &PLEX[plexno]; if (plex->sdnos) Free(plex->sdnos); if (plex->lock) Free(plex->lock); if (plex->defective_region) Free(plex->defective_region); if (plex->unmapped_region) Free(plex->unmapped_region); bzero(plex, sizeof(struct plex)); /* and clear it out */ plex->state = plex_unallocated; vinum_conf.plexes_used--; /* one less plex */ } /* Find an empty volume in the volume table */ int get_empty_volume(void) { BROKEN_GDB; int volno; struct volume *vol; /* first see if we have one which has been deallocated */ for (volno = 0; volno < vinum_conf.volumes_used; volno++) { if (VOL[volno].state == volume_unallocated) /* bingo */ break; } if (volno >= vinum_conf.volumes_used) /* Couldn't find a deallocated volume. Allocate a new one */ { vinum_conf.volumes_used++; if (vinum_conf.volumes_used > vinum_conf.volumes_allocated) EXPAND(VOL, struct volume, vinum_conf.volumes_allocated, INITIAL_VOLUMES); } /* Now initialize fields */ vol = &VOL[volno]; bzero(vol, sizeof(struct volume)); vol->preferred_plex = -1; /* default to round robin */ vol->preferred_plex = ROUND_ROBIN_READPOL; /* round robin */ return volno; /* return the index */ } /* Find the named volume in vinum_conf.volume. * If create != 0, create an entry if it doesn't exist * return the index in vinum_conf */ int find_volume(const char *name, int create) { BROKEN_GDB; int volno; struct volume *vol; for (volno = 0; volno < vinum_conf.volumes_used; volno++) { if (strcmp(VOL[volno].name, name) == 0) /* found it */ return volno; } /* the volume isn't in the list. Add it if he wants */ if (create == 0) /* don't want to create */ return -1; /* give up */ /* Allocate one and insert the name */ volno = get_empty_volume(); vol = &VOL[volno]; bcopy(name, vol->name, min(sizeof(vol->name), strlen(name))); /* put in its name */ vol->blocksize = DEV_BSIZE; /* block size of this volume */ return volno; /* return the pointer */ } /* Free an allocated volume entry * and its associated memory areas */ void free_volume(int volno) { BROKEN_GDB; struct volume *vol; vol = &VOL[volno]; bzero(vol, sizeof(struct volume)); /* and clear it out */ vol->state = volume_unallocated; vinum_conf.volumes_used--; /* one less volume */ } /* Handle a drive definition. We store the information in the global variable * drive, so we don't need to allocate. * * If we find an error, print a message and return */ void config_drive(void) { BROKEN_GDB; enum drive_label_info partition_status; /* info about the partition */ int parameter; int driveno; /* index of drive in vinum_conf */ struct drive *drive; /* and pointer to it */ if (tokens < 2) /* not enough tokens */ throw_rude_remark(EINVAL, "Drive has no name"); driveno = find_drive(token[1], 1); /* allocate a drive to initialize */ drive = &DRIVE[driveno]; /* and get a pointer */ if (drive->state != drive_uninit) { /* we already know this drive */ /* XXX Check which definition is more up-to-date. Give * preference for the definition on its own drive */ return; /* XXX */ } for (parameter = 2; parameter < tokens; parameter++) { /* look at the other tokens */ switch (get_keyword(token[parameter], &keyword_set)) { case kw_device: parameter++; if (drive->devicename[0] != '\0') { /* we know this drive... */ if (strcmp(drive->devicename, token[parameter])) /* different name */ close_drive(drive); /* close it if it's open */ else /* no change */ break; } bcopy(token[parameter], /* insert device information */ drive->devicename, min(sizeof(drive->devicename), strlen(token[parameter]))); /* open the device and get the configuration */ partition_status = read_drive_label(drive); if (partition_status == DL_CANT_OPEN) { /* not our kind */ close_drive(drive); if (drive->lasterror == EFTYPE) /* wrong kind of partition */ throw_rude_remark(drive->lasterror, "Drive %s has invalid partition type", drive->label.name); else /* I/O error of some kind */ throw_rude_remark(drive->lasterror, "Can't initialize drive %s", drive->label.name); } else if (partition_status == DL_WRONG_DRIVE) { /* valid drive, not ours */ close_drive(drive); throw_rude_remark(drive->lasterror, "Incorrect drive name %s specified for drive %s", token[1], drive->label.name); } break; case kw_state: checkkernel(token[++parameter]); /* must be a kernel user */ drive->state = DriveState(token[parameter]); /* set the state */ break; default: close_drive(drive); throw_rude_remark(EINVAL, "Drive %s, invalid keyword: %s", token[1], token[parameter]); } } if (drive->devicename[0] == '\0') { drive->state = drive_unallocated; /* deallocate the drive */ throw_rude_remark(EINVAL, "No device name for %s", drive->label.name); } } /* Handle a subdisk definition. We store the information in the global variable * sd, so we don't need to allocate. * * If we find an error, print a message and return */ void config_subdisk(void) { BROKEN_GDB; int parameter; int sdno; /* index of sd in vinum_conf */ struct sd *sd; /* and pointer to it */ u_int64_t size; int sectors; /* sector offset value */ int detached = 0; /* set to 1 if this is a detached subdisk */ int sdindex = -1; /* index in plexes subdisk table */ sdno = get_empty_sd(); /* allocate an SD to initialize */ sd = &SD[sdno]; /* and get a pointer */ for (parameter = 1; parameter < tokens; parameter++) { /* look at the other tokens */ switch (get_keyword(token[parameter], &keyword_set)) { case kw_detached: detached = 1; break; case kw_plexoffset: size = sizespec(token[++parameter]); if ((size % DEV_BSIZE) != 0) throw_rude_remark(EINVAL, "sd %s, bad plex offset alignment: %qd", sd->name, size); else sd->plexoffset = size / DEV_BSIZE; break; case kw_driveoffset: size = sizespec(token[++parameter]); if ((size % DEV_BSIZE) != 0) throw_rude_remark(EINVAL, "sd %s, bad drive offset alignment: %qd", sd->name, size); else sd->driveoffset = size / DEV_BSIZE; break; case kw_name: ++parameter; bcopy(token[parameter], sd->name, min(sizeof(sd->name), strlen(token[parameter]))); break; case kw_len: size = sizespec(token[++parameter]); if ((size % DEV_BSIZE) != 0) throw_rude_remark(EINVAL, "sd %s, length %d not multiple of sector size", sd->name, size); else sd->sectors = size / DEV_BSIZE; break; case kw_drive: sd->driveno = find_drive(token[++parameter], 1); /* insert drive information */ break; case kw_plex: sd->plexno = find_plex(token[++parameter], 1); /* insert plex information */ break; case kw_state: checkkernel(token[++parameter]); /* must be a kernel user */ sd->state = SdState(token[parameter]); /* set the state */ break; default: throw_rude_remark(EINVAL, "sd %s, invalid keyword: %s", sd->name, token[parameter]); } } /* Check we have a drive name */ if (sd->driveno < 0) { /* didn't specify a drive */ sd->driveno = current_drive; /* set to the current drive */ if (sd->driveno < 0) /* no current drive? */ throw_rude_remark(EINVAL, "Subdisk %s is not associated with a drive", sd->name); } /* Check for a plex name */ if ((sd->plexno < 0) /* didn't specify a plex */ &&(!detached)) /* and didn't say not to, */ sd->plexno = current_plex; /* set to the current plex */ if (sd->plexno >= 0) sdindex = give_sd_to_plex(sd->plexno, sdno); /* now tell the plex that it has this sd */ sd->sdno = sdno; /* point to our entry in the table */ /* Does the subdisk have a name? If not, give it one */ if (sd->name[0] == '\0') { /* no name */ char sdsuffix[8]; /* form sd name suffix here */ /* Do we have a plex name? */ if (sdindex >= 0) /* we have a plex */ strcpy(sd->name, PLEX[sd->plexno].name); /* take it from there */ else /* no way */ throw_rude_remark(EINVAL, "Unnamed sd is not associated with a plex"); sprintf(sdsuffix, ".s%d", sdindex); /* form the suffix */ strcat(sd->name, sdsuffix); /* and add it to the name */ } /* do we have complete info for this subdisk? */ if (sd->sectors == 0) throw_rude_remark(EINVAL, "sd %s has no length spec", sd->name); if (sd->state == sd_unallocated) /* no state decided, */ sd->state = sd_init; /* at least we're in the game */ /* register the subdisk with the drive. This action * will have the side effect of setting the offset if * we haven't specified one, and causing an error * message if it overlaps with another subdisk. */ give_sd_to_drive(sdno); } /* Handle a plex definition. * If we find an error, print a message, deallocate the nascent plex, and return */ void config_plex(void) { BROKEN_GDB; int parameter; int plexno; /* index of plex in vinum_conf */ struct plex *plex; /* and pointer to it */ int pindex = MAXPLEX; /* index in volume's plex list */ int detached = 0; /* don't give it to a volume */ current_plex = -1; /* forget the previous plex */ plexno = get_empty_plex(); /* allocate a plex */ plex = &PLEX[plexno]; /* and point to it */ plex->plexno = plexno; /* and back to the config */ for (parameter = 1; parameter < tokens; parameter++) { /* look at the other tokens */ switch (get_keyword(token[parameter], &keyword_set)) { case kw_detached: detached = 1; break; case kw_name: { int namedplexno; namedplexno = find_plex(token[++parameter], 0); /* find an existing plex with this name */ if (namedplexno >= 0) throw_rude_remark(EINVAL, "Duplicate plex %s", token[parameter]); } bcopy(token[parameter], /* put in the name */ plex->name, min(MAXPLEXNAME, strlen(token[parameter]))); break; case kw_org: /* plex organization */ switch (get_keyword(token[++parameter], &keyword_set)) { case kw_concat: plex->organization = plex_concat; break; case kw_striped: { int stripesize = sizespec(token[++parameter]); plex->organization = plex_striped; if (stripesize % DEV_BSIZE != 0) /* not a multiple of block size, */ throw_rude_remark(EINVAL, "plex %s: stripe size %d not a multiple of sector size", plex->name, stripesize); else plex->stripesize = stripesize / DEV_BSIZE; break; } default: throw_rude_remark(EINVAL, "Invalid plex organization"); } if (((plex->organization == plex_striped) ) && (plex->stripesize == 0)) /* didn't specify a valid stripe size */ throw_rude_remark(EINVAL, "Need a stripe size parameter"); break; case kw_volume: plex->volno = find_volume(token[++parameter], 1); /* insert a pointer to the volume */ break; case kw_sd: /* add a subdisk */ { int sdno; sdno = find_subdisk(token[++parameter], 1); /* find a subdisk */ SD[sdno].plexoffset = sizespec(token[++parameter]); /* get the offset */ give_sd_to_plex(plexno, sdno); /* and insert it there */ break; } case kw_state: checkkernel(token[++parameter]); /* only for kernel use */ plex->state = PlexState(token[parameter]); /* set the state */ break; default: throw_rude_remark(EINVAL, "plex %s, invalid keyword: %s", plex->name, token[parameter]); } } if ((plex->volno < 0) /* we don't have a volume */ &&(!detached)) /* and we wouldn't object */ plex->volno = current_volume; if (plex->volno >= 0) pindex = give_plex_to_volume(plex->volno, plexno); /* Now tell the volume that it has this plex */ /* Does the plex have a name? If not, give it one */ if (plex->name[0] == '\0') { /* no name */ char plexsuffix[8]; /* form plex name suffix here */ /* Do we have a volume name? */ if (plex->volno >= 0) /* we have a volume */ strcpy(plex->name, /* take it from there */ VOL[plex->volno].name); else /* no way */ throw_rude_remark(EINVAL, "Unnamed plex is not associated with a volume"); sprintf(plexsuffix, ".p%d", pindex); /* form the suffix */ strcat(plex->name, plexsuffix); /* and add it to the name */ } /* Note the last plex we configured */ current_plex = plexno; if (plex->state == plex_unallocated) /* we haven't changed the state, */ plex->state = plex_init; /* we're initialized now */ } /* Handle a volume definition. * If we find an error, print a message, deallocate the nascent volume, and return */ void config_volume(void) { BROKEN_GDB; int parameter; int volno; struct volume *vol; /* collect volume info here */ int i; if (tokens < 2) /* not enough tokens */ throw_rude_remark(EINVAL, "Volume has no name"); current_volume = -1; /* forget the previous volume */ volno = find_volume(token[1], 1); /* allocate a volume to initialize */ vol = &VOL[volno]; /* and get a pointer */ for (parameter = 2; parameter < tokens; parameter++) { /* look at all tokens */ switch (get_keyword(token[parameter], &keyword_set)) { case kw_plex: { int plexno; /* index of this plex */ plexno = find_plex(token[++parameter], 1); /* find a plex */ if (plexno < 0) /* couldn't */ break; /* we've already had an error message */ plexno = my_plex(volno, plexno); /* does it already belong to us? */ if (plexno > 0) /* yes, shouldn't get it again */ throw_rude_remark(EINVAL, "Plex %s already belongs to volume %s", token[parameter], vol->name); else if (++vol->plexes > 8) /* another entry */ throw_rude_remark(EINVAL, "Too many plexes for volume %s", vol->name); vol->plex[vol->plexes - 1] = plexno; } break; case kw_readpol: switch (get_keyword(token[++parameter], &keyword_set)) { /* decide what to do */ case kw_round: vol->preferred_plex = ROUND_ROBIN_READPOL; /* default */ break; case kw_prefer: { int myplexno; /* index of this plex */ myplexno = find_plex(token[++parameter], 1); /* find a plex */ if (myplexno < 0) /* couldn't */ break; /* we've already had an error message */ myplexno = my_plex(volno, myplexno); /* does it already belong to us? */ if (myplexno > 0) /* yes */ vol->preferred_plex = myplexno; /* just note the index */ else if (++vol->plexes > 8) /* another entry */ throw_rude_remark(EINVAL, "Too many plexes"); else { /* space for the new plex */ vol->plex[vol->plexes - 1] = myplexno; /* add it to our list */ vol->preferred_plex = vol->plexes - 1; /* and note the index */ } } break; default: throw_rude_remark(EINVAL, "Invalid read policy"); } case kw_setupstate: vol->flags |= VF_CONFIG_SETUPSTATE; /* set the volume up later on */ break; case kw_state: checkkernel(token[++parameter]); /* must be a kernel user */ vol->state = VolState(token[parameter]); /* set the state */ break; /* XXX experimental ideas. These are not * documented, and will not be until I * decide they're worth keeping */ case kw_writethrough: /* set writethrough mode */ vol->flags |= VF_WRITETHROUGH; break; case kw_writeback: /* set writeback mode */ vol->flags &= ~VF_WRITETHROUGH; break; case kw_raw: vol->flags |= VF_RAW; /* raw volume (no label) */ break; default: throw_rude_remark(EINVAL, "volume %s, invalid keyword: %s", vol->name, token[parameter]); } } current_volume = volno; /* note last referred volume */ vol->devno = VINUMBDEV(volno, 0, 0, VINUM_VOLUME_TYPE); /* also note device number */ /* Before we can actually use the volume, we need * a volume label. We could start to fake one here, * but it will be a lot easier when we have some * to copy from the drives, so defer it until we * set up the configuration. XXX */ if (vol->state == volume_unallocated) vol->state = volume_down; /* now ready to bring up at the end */ /* Find out how big our volume is */ for (i = 0; i < vol->plexes; i++) vol->size = max(vol->size, PLEX[vol->plex[i]].length); } /* Parse a config entry. CARE! This destroys the original contents of the * config entry, which we don't really need after this. More specifically, it * places \0 characters at the end of each token. * * Return 0 if all is well, otherwise EINVAL */ int parse_config(char *cptr, struct keywordset *keyset) { BROKEN_GDB; int status; status = 0; /* until proven otherwise */ tokens = tokenize(cptr, token); /* chop up into tokens */ if (tokens <= 0) /* screwed up or empty line */ return tokens; /* give up */ if (token[0][0] == '#') /* comment line */ return 0; switch (get_keyword(token[0], keyset)) { /* decide what to do */ case kw_read: /* read config from a specified drive */ vinum_conf.flags |= VF_KERNELOP | VF_READING_CONFIG; /* kernel operation: reading config */ status = check_drive(token[1]); /* check the drive info */ vinum_conf.flags &= ~(VF_KERNELOP | VF_READING_CONFIG); if (status != 0) { char *msg = "Can't read configuration from %s"; if (status == ENODEV) msg = "No vinum configuration on %s"; throw_rude_remark(status, msg, token[1]); } updateconfig(VF_KERNELOP); /* update from kernel space */ break; case kw_drive: config_drive(); break; case kw_subdisk: config_subdisk(); break; case kw_plex: config_plex(); break; case kw_volume: config_volume(); break; /* Anything else is invalid in this context */ default: throw_rude_remark(EINVAL, /* should we die? */ "Invalid configuration information: %s", token[0]); } return status; } /* parse a line handed in from userland via ioctl. * This differs only by the error reporting mechanism: * we return the error indication in the reply to the * ioctl, so we need to set a global static pointer in * this file. This technique works because we have * ensured that configuration is performed in a single- * threaded manner */ int parse_user_config(char *cptr, struct keywordset *keyset) { BROKEN_GDB; int status; ioctl_reply = (struct _ioctl_reply *) cptr; status = parse_config(cptr, keyset); ioctl_reply = NULL; /* don't do this again */ return status; } /* Remove an object */ void remove(struct vinum_ioctl_msg *msg) { struct vinum_ioctl_msg message = *msg; /* make a copy to hand on */ ioctl_reply = (struct _ioctl_reply *) msg; /* reinstate the address to reply to */ ioctl_reply->error = 0; /* no error, */ ioctl_reply->msg[0] = '\0'; /* no message */ switch (message.type) { case drive_object: remove_drive_entry(message.index, message.force, message.recurse); updateconfig(0); return; case sd_object: remove_sd_entry(message.index, message.force, message.recurse); updateconfig(0); return; case plex_object: remove_plex_entry(message.index, message.force, message.recurse); updateconfig(0); return; case volume_object: remove_volume_entry(message.index, message.force, message.recurse); updateconfig(0); return; default: ioctl_reply->error = EINVAL; strcpy(ioctl_reply->msg, "Invalid object type"); } } /* Remove a drive. */ void remove_drive_entry(int driveno, int force, int recurse) { struct drive *drive = &DRIVE[driveno]; if ((driveno > vinum_conf.drives_used) /* not a valid drive */ ||(drive->state == drive_unallocated)) { /* or nothing there */ ioctl_reply->error = EINVAL; strcpy(ioctl_reply->msg, "No such drive"); } else if (drive->opencount > 0) { /* we have subdisks */ if (force) { /* do it at any cost */ int sdno; struct vinum_ioctl_msg sdmsg; for (sdno = 0; sdno < vinum_conf.subdisks_used; sdno++) { if ((SD[sdno].state != sd_unallocated) /* subdisk is allocated */ &&(SD[sdno].driveno == driveno)) { /* and it belongs to this drive */ sdmsg.type = sd_object; sdmsg.recurse = 1; sdmsg.force = force; remove(&sdmsg); /* remove the subdisk by force */ } } remove_drive(driveno); /* now remove it */ } else ioctl_reply->error = EBUSY; /* can't do that */ } else remove_drive(driveno); /* just remove it */ } /* remove a subdisk */ void remove_sd_entry(int sdno, int force, int recurse) { struct sd *sd = &SD[sdno]; if ((sdno > vinum_conf.subdisks_used) /* not a valid sd */ ||(sd->state == sd_unallocated)) { /* or nothing there */ ioctl_reply->error = EINVAL; strcpy(ioctl_reply->msg, "No such subdisk"); } else if (sd->plexno >= 0) { /* we have a plex */ if (force) { /* do it at any cost */ struct plex *plex = &PLEX[sd->plexno]; /* point to our plex */ int mysdno; for (mysdno = 0; /* look for ourselves */ mysdno < plex->subdisks && &SD[plex->sdnos[mysdno]] != sd; mysdno++); if (mysdno == plex->subdisks) /* didn't find it */ throw_rude_remark(ENOENT, "plex %s does not contain subdisk %s", plex->name, sd->name); if (mysdno < (plex->subdisks - 1)) /* not the last subdisk */ bcopy(&plex->sdnos[mysdno + 1], &plex->sdnos[mysdno], (plex->subdisks - 1 - mysdno) * sizeof(int)); plex->subdisks--; /* removing a subdisk from a striped or * RAID-5 plex really tears the hell out * of the structure, and it needs to be * reinitialized */ if (plex->organization != plex_concat) /* not concatenated, */ set_plex_state(plex->plexno, plex_faulty, setstate_force); /* need to reinitialize */ rebuild_plex_unmappedlist(plex); /* and see what remains */ free_sd(sdno); } else ioctl_reply->error = EBUSY; /* can't do that */ } else free_sd(sdno); } /* remove a plex */ void remove_plex_entry(int plexno, int force, int recurse) { struct plex *plex = &PLEX[plexno]; int sdno; if ((plexno > vinum_conf.plexes_used) /* not a valid plex */ ||(plex->state == plex_unallocated)) { /* or nothing there */ ioctl_reply->error = EINVAL; strcpy(ioctl_reply->msg, "No such plex"); } else if (plex->pid) { /* we're open */ ioctl_reply->error = EBUSY; /* no getting around that */ return; } if (plex->subdisks) { if (force) { /* do it anyway */ if (recurse) { /* remove all below */ for (sdno = 0; sdno < plex->subdisks; sdno++) free_sd(plex->sdnos[sdno]); /* free all subdisks */ } else { /* just tear them out */ for (sdno = 0; sdno < plex->subdisks; sdno++) SD[plex->sdnos[sdno]].plexno = -1; /* no plex any more */ } } else { /* can't do it without force */ ioctl_reply->error = EBUSY; /* can't do that */ return; } } if (plex->volno >= 0) { /* we are part of a volume */ /* XXX This should be more intelligent. We should * be able to remove a plex as long as the volume * does not lose any data, which is normally the * case when it has more than one plex. To do it * right we must compare the completeness of the * mapping of all the plexes in the volume */ if (force) { /* do it at any cost */ struct volume *vol = &VOL[plex->volno]; int myplexno; for (myplexno = 0; myplexno < vol->plexes; myplexno++) if (vol->plex[myplexno] == plexno) /* found it */ break; if (myplexno == vol->plexes) /* didn't find it. Huh? */ throw_rude_remark(ENOENT, "volume %s does not contain plex %s", vol->name, plex->name); if (myplexno < (vol->plexes - 1)) /* not the last plex in the list */ bcopy(&vol->plex[myplexno + 1], &vol->plex[myplexno], vol->plexes - 1 - myplexno); vol->plexes--; } else { ioctl_reply->error = EBUSY; /* can't do that */ return; } } free_plex(plexno); } /* remove a volume */ void remove_volume_entry(int volno, int force, int recurse) { struct volume *vol = &VOL[volno]; int plexno; if ((volno > vinum_conf.volumes_used) /* not a valid volume */ ||(vol->state == volume_unallocated)) { /* or nothing there */ ioctl_reply->error = EINVAL; strcpy(ioctl_reply->msg, "No such volume"); } else if (vol->opencount) /* we're open */ ioctl_reply->error = EBUSY; /* no getting around that */ else if (vol->plexes) { if (recurse && force) { /* remove all below */ struct vinum_ioctl_msg plexmsg; plexmsg.type = plex_object; plexmsg.recurse = 1; plexmsg.force = force; for (plexno = 0; plexno < vol->plexes; plexno++) { plexmsg.index = vol->plex[plexno]; /* plex number */ remove(&plexmsg); } free_volume(volno); } else ioctl_reply->error = EBUSY; /* can't do that */ } else free_volume(volno); } void update_sd_config(int sdno, int kernelstate) { if (!kernelstate) set_sd_state(sdno, sd_up, setstate_configuring | setstate_norecurse); } void update_plex_config(int plexno, int kernelstate) { int error = 0; int size; int sdno; struct plex *plex = &PLEX[plexno]; enum plexstate state = plex_up; /* state we want the plex in */ /* XXX Insert checks here for sparse plexes and volumes */ /* Check that our subdisks make sense. For * striped and RAID5 plexes, we need at least * two subdisks, and they must all be the same * size */ if (((plex->organization == plex_striped) ) && (plex->subdisks < 2)) { error = 1; printf("vinum: plex %s does not have at least 2 subdisks\n", plex->name); if (!kernelstate) set_plex_state(plexno, plex_down, setstate_force | setstate_configuring | setstate_norecurse); } size = 0; for (sdno = 0; sdno < plex->subdisks; sdno++) { if (((plex->organization == plex_striped) ) && (sdno > 0) && (SD[plex->sdnos[sdno]].sectors != SD[plex->sdnos[sdno - 1]].sectors)) { error = 1; printf("vinum: plex %s must have equal sized subdisks\n", plex->name); set_plex_state(plexno, plex_down, setstate_force | setstate_configuring | setstate_norecurse); } size += SD[plex->sdnos[sdno]].sectors; } if (plex->subdisks) { /* plex has subdisks, calculate size */ rebuild_plex_unmappedlist(plex); /* rebuild the unmapped list first */ plex->length = size; } else { /* no subdisks, */ plex->length = 0; /* no size */ state = plex_down; /* take it down */ } if (!(kernelstate || error)) set_plex_state(plexno, state, setstate_none | setstate_configuring | setstate_norecurse); } void update_volume_config(int volno, int kernelstate) { struct volume *vol = &VOL[volno]; struct plex *plex; int plexno; if (vol->state != volume_unallocated) /* Recalculate the size of the volume */ { vol->size = 0; for (plexno = 0; plexno < vol->plexes; plexno++) { plex = &PLEX[vol->plex[plexno]]; vol->size = max(plex->length, vol->size); /* maximum size */ plex->volplexno = plexno; /* note it in the plex */ } } if (!kernelstate) /* try to bring it up */ set_volume_state(volno, volume_up, setstate_configuring | setstate_norecurse); } /* Update the global configuration. * kernelstate is != 0 if we're reading in a config * from disk. In this case, we don't try to * bring the devices up, though we will bring * them down if there's some error which got * missed when writing to disk. */ void updateconfig(int kernelstate) { BROKEN_GDB; int sdno; int plexno; int volno; struct volume *vol; struct plex *plex; for (sdno = 0; sdno < vinum_conf.subdisks_used; sdno++) update_sd_config(sdno, kernelstate); for (plexno = 0; plexno < vinum_conf.plexes_used; plexno++) update_plex_config(plexno, kernelstate); for (volno = 0; volno < vinum_conf.volumes_used; volno++) update_volume_config(volno, kernelstate); save_config(); } /* Start manual changes to the configuration and lock out * others who may wish to do so. * XXX why do we need this and lock_config too? */ int start_config(void) { int error; while ((vinum_conf.flags & VF_CONFIGURING) != 0) { vinum_conf.flags |= VF_WILL_CONFIGURE; if ((error = tsleep(&vinum_conf, PRIBIO | PCATCH, "vincfg", 0)) != 0) return error; } /* We need two flags here: VF_CONFIGURING * tells other processes to hold off (this * function), and VF_CONFIG_INCOMPLETE * tells the state change routines not to * propagate incrememntal state changes */ vinum_conf.flags |= VF_CONFIGURING | VF_CONFIG_INCOMPLETE; current_drive = -1; /* reset the defaults */ current_plex = -1; /* and the same for the last plex */ current_volume = -1; /* and the last volme */ return 0; } /* Update the config if update is 1, and unlock * it. We won't update the configuration if we * are called in a recursive loop via throw_rude_remark. */ void finish_config(int update) { vinum_conf.flags &= ~VF_CONFIG_INCOMPLETE; /* we've finished our config */ if (update) updateconfig(0); /* so update things */ else updateconfig(1); /* do some updates only */ vinum_conf.flags &= ~VF_CONFIGURING; /* and now other people can take a turn */ if ((vinum_conf.flags & VF_WILL_CONFIGURE) != 0) { vinum_conf.flags &= ~VF_WILL_CONFIGURE; wakeup(&vinum_conf); } }