/*- * Copyright (c) 2012 Ganbold Tsagaankhuu * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /** * Timer registers addr * */ #define SW_TIMER_IRQ_EN_REG 0x00 #define SW_TIMER_IRQ_STA_REG 0x04 #define SW_TIMER0_CTRL_REG 0x10 #define SW_TIMER0_INT_VALUE_REG 0x14 #define SW_TIMER0_CUR_VALUE_REG 0x18 #define SW_COUNTER64LO_REG 0xa4 #define SW_COUNTER64HI_REG 0xa8 #define CNT64_CTRL_REG 0xa0 #define CNT64_RL_EN 0x02 /* read latch enable */ #define TIMER_ENABLE (1<<0) #define TIMER_AUTORELOAD (1<<1) #define TIMER_OSC24M (1<<2) /* oscillator = 24mhz */ #define TIMER_PRESCALAR (0<<4) /* prescalar = 1 */ #define SYS_TIMER_CLKSRC 24000000 /* clock source */ struct a10_timer_softc { device_t sc_dev; struct resource *res[2]; bus_space_tag_t sc_bst; bus_space_handle_t sc_bsh; void *sc_ih; /* interrupt handler */ uint32_t sc_period; uint32_t timer0_freq; struct eventtimer et; }; int a10_timer_get_timerfreq(struct a10_timer_softc *); #define timer_read_4(sc, reg) \ bus_space_read_4(sc->sc_bst, sc->sc_bsh, reg) #define timer_write_4(sc, reg, val) \ bus_space_write_4(sc->sc_bst, sc->sc_bsh, reg, val) static u_int a10_timer_get_timecount(struct timecounter *); static int a10_timer_timer_start(struct eventtimer *, sbintime_t first, sbintime_t period); static int a10_timer_timer_stop(struct eventtimer *); static uint64_t timer_read_counter64(void); static int a10_timer_initialized = 0; static int a10_timer_hardclock(void *); static int a10_timer_probe(device_t); static int a10_timer_attach(device_t); static struct timecounter a10_timer_timecounter = { .tc_name = "a10_timer timer0", .tc_get_timecount = a10_timer_get_timecount, .tc_counter_mask = ~0u, .tc_frequency = 0, .tc_quality = 1000, }; struct a10_timer_softc *a10_timer_sc = NULL; static struct resource_spec a10_timer_spec[] = { { SYS_RES_MEMORY, 0, RF_ACTIVE }, { SYS_RES_IRQ, 0, RF_ACTIVE }, { -1, 0 } }; static uint64_t timer_read_counter64(void) { uint32_t lo, hi; /* Latch counter, wait for it to be ready to read. */ timer_write_4(a10_timer_sc, CNT64_CTRL_REG, CNT64_RL_EN); while (timer_read_4(a10_timer_sc, CNT64_CTRL_REG) & CNT64_RL_EN) continue; hi = timer_read_4(a10_timer_sc, SW_COUNTER64HI_REG); lo = timer_read_4(a10_timer_sc, SW_COUNTER64LO_REG); return (((uint64_t)hi << 32) | lo); } static int a10_timer_probe(device_t dev) { struct a10_timer_softc *sc; u_int soc_family; sc = device_get_softc(dev); if (!ofw_bus_is_compatible(dev, "allwinner,sun4i-a10-timer")) return (ENXIO); soc_family = allwinner_soc_family(); if (soc_family != ALLWINNERSOC_SUN4I && soc_family != ALLWINNERSOC_SUN5I) return (ENXIO); device_set_desc(dev, "Allwinner A10/A20 timer"); return (BUS_PROBE_DEFAULT); } static int a10_timer_attach(device_t dev) { struct a10_timer_softc *sc; int err; uint32_t val; sc = device_get_softc(dev); if (bus_alloc_resources(dev, a10_timer_spec, sc->res)) { device_printf(dev, "could not allocate resources\n"); return (ENXIO); } sc->sc_dev = dev; sc->sc_bst = rman_get_bustag(sc->res[0]); sc->sc_bsh = rman_get_bushandle(sc->res[0]); /* Setup and enable the timer interrupt */ err = bus_setup_intr(dev, sc->res[1], INTR_TYPE_CLK, a10_timer_hardclock, NULL, sc, &sc->sc_ih); if (err != 0) { bus_release_resources(dev, a10_timer_spec, sc->res); device_printf(dev, "Unable to setup the clock irq handler, " "err = %d\n", err); return (ENXIO); } /* Set clock source to OSC24M, 16 pre-division */ val = timer_read_4(sc, SW_TIMER0_CTRL_REG); val |= TIMER_PRESCALAR | TIMER_OSC24M; timer_write_4(sc, SW_TIMER0_CTRL_REG, val); /* Enable timer0 */ val = timer_read_4(sc, SW_TIMER_IRQ_EN_REG); val |= TIMER_ENABLE; timer_write_4(sc, SW_TIMER_IRQ_EN_REG, val); sc->timer0_freq = SYS_TIMER_CLKSRC; /* Set desired frequency in event timer and timecounter */ sc->et.et_frequency = sc->timer0_freq; sc->et.et_name = "a10_timer Eventtimer"; sc->et.et_flags = ET_FLAGS_ONESHOT | ET_FLAGS_PERIODIC; sc->et.et_quality = 1000; sc->et.et_min_period = (0x00000005LLU << 32) / sc->et.et_frequency; sc->et.et_max_period = (0xfffffffeLLU << 32) / sc->et.et_frequency; sc->et.et_start = a10_timer_timer_start; sc->et.et_stop = a10_timer_timer_stop; sc->et.et_priv = sc; et_register(&sc->et); if (device_get_unit(dev) == 0) a10_timer_sc = sc; a10_timer_timecounter.tc_frequency = sc->timer0_freq; tc_init(&a10_timer_timecounter); if (bootverbose) { device_printf(sc->sc_dev, "clock: hz=%d stathz = %d\n", hz, stathz); device_printf(sc->sc_dev, "event timer clock frequency %u\n", sc->timer0_freq); device_printf(sc->sc_dev, "timecounter clock frequency %lld\n", a10_timer_timecounter.tc_frequency); } a10_timer_initialized = 1; return (0); } static int a10_timer_timer_start(struct eventtimer *et, sbintime_t first, sbintime_t period) { struct a10_timer_softc *sc; uint32_t count; uint32_t val; sc = (struct a10_timer_softc *)et->et_priv; if (period != 0) sc->sc_period = ((uint32_t)et->et_frequency * period) >> 32; else sc->sc_period = 0; if (first != 0) count = ((uint32_t)et->et_frequency * first) >> 32; else count = sc->sc_period; /* Update timer values */ timer_write_4(sc, SW_TIMER0_INT_VALUE_REG, sc->sc_period); timer_write_4(sc, SW_TIMER0_CUR_VALUE_REG, count); val = timer_read_4(sc, SW_TIMER0_CTRL_REG); if (period != 0) { /* periodic */ val |= TIMER_AUTORELOAD; } else { /* oneshot */ val &= ~TIMER_AUTORELOAD; } /* Enable timer0 */ val |= TIMER_ENABLE; timer_write_4(sc, SW_TIMER0_CTRL_REG, val); return (0); } static int a10_timer_timer_stop(struct eventtimer *et) { struct a10_timer_softc *sc; uint32_t val; sc = (struct a10_timer_softc *)et->et_priv; /* Disable timer0 */ val = timer_read_4(sc, SW_TIMER0_CTRL_REG); val &= ~TIMER_ENABLE; timer_write_4(sc, SW_TIMER0_CTRL_REG, val); sc->sc_period = 0; return (0); } int a10_timer_get_timerfreq(struct a10_timer_softc *sc) { return (sc->timer0_freq); } static int a10_timer_hardclock(void *arg) { struct a10_timer_softc *sc; uint32_t val; sc = (struct a10_timer_softc *)arg; /* Clear interrupt pending bit. */ timer_write_4(sc, SW_TIMER_IRQ_STA_REG, 0x1); val = timer_read_4(sc, SW_TIMER0_CTRL_REG); /* * Disabled autoreload and sc_period > 0 means * timer_start was called with non NULL first value. * Now we will set periodic timer with the given period * value. */ if ((val & (1<<1)) == 0 && sc->sc_period > 0) { /* Update timer */ timer_write_4(sc, SW_TIMER0_CUR_VALUE_REG, sc->sc_period); /* Make periodic and enable */ val |= TIMER_AUTORELOAD | TIMER_ENABLE; timer_write_4(sc, SW_TIMER0_CTRL_REG, val); } if (sc->et.et_active) sc->et.et_event_cb(&sc->et, sc->et.et_arg); return (FILTER_HANDLED); } u_int a10_timer_get_timecount(struct timecounter *tc) { if (a10_timer_sc == NULL) return (0); return ((u_int)timer_read_counter64()); } static device_method_t a10_timer_methods[] = { DEVMETHOD(device_probe, a10_timer_probe), DEVMETHOD(device_attach, a10_timer_attach), DEVMETHOD_END }; static driver_t a10_timer_driver = { "a10_timer", a10_timer_methods, sizeof(struct a10_timer_softc), }; static devclass_t a10_timer_devclass; EARLY_DRIVER_MODULE(a10_timer, simplebus, a10_timer_driver, a10_timer_devclass, 0, 0, BUS_PASS_TIMER + BUS_PASS_ORDER_MIDDLE); void DELAY(int usec) { uint32_t counter; uint64_t end, now; if (!a10_timer_initialized) { for (; usec > 0; usec--) for (counter = 50; counter > 0; counter--) cpufunc_nullop(); return; } now = timer_read_counter64(); end = now + (a10_timer_sc->timer0_freq / 1000000) * (usec + 1); while (now < end) now = timer_read_counter64(); }