/*- * Copyright (c) 2011 Chelsio Communications, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "common/common.h" #include "common/jhash.h" #include "common/t4_msg.h" #include "t4_l2t.h" /* * Module locking notes: There is a RW lock protecting the L2 table as a * whole plus a spinlock per L2T entry. Entry lookups and allocations happen * under the protection of the table lock, individual entry changes happen * while holding that entry's spinlock. The table lock nests outside the * entry locks. Allocations of new entries take the table lock as writers so * no other lookups can happen while allocating new entries. Entry updates * take the table lock as readers so multiple entries can be updated in * parallel. An L2T entry can be dropped by decrementing its reference count * and therefore can happen in parallel with entry allocation but no entry * can change state or increment its ref count during allocation as both of * these perform lookups. * * Note: We do not take refereces to ifnets in this module because both * the TOE and the sockets already hold references to the interfaces and the * lifetime of an L2T entry is fully contained in the lifetime of the TOE. */ /* identifies sync vs async L2T_WRITE_REQs */ #define S_SYNC_WR 12 #define V_SYNC_WR(x) ((x) << S_SYNC_WR) #define F_SYNC_WR V_SYNC_WR(1) enum { L2T_STATE_VALID, /* entry is up to date */ L2T_STATE_STALE, /* entry may be used but needs revalidation */ L2T_STATE_RESOLVING, /* entry needs address resolution */ L2T_STATE_SYNC_WRITE, /* synchronous write of entry underway */ /* when state is one of the below the entry is not hashed */ L2T_STATE_SWITCHING, /* entry is being used by a switching filter */ L2T_STATE_UNUSED /* entry not in use */ }; struct l2t_data { struct rwlock lock; volatile int nfree; /* number of free entries */ struct l2t_entry *rover;/* starting point for next allocation */ struct l2t_entry l2tab[L2T_SIZE]; }; static int do_l2t_write_rpl(struct sge_iq *, const struct rss_header *, struct mbuf *); #define VLAN_NONE 0xfff #define SA(x) ((struct sockaddr *)(x)) #define SIN(x) ((struct sockaddr_in *)(x)) #define SINADDR(x) (SIN(x)->sin_addr.s_addr) /* * Allocate a free L2T entry. Must be called with l2t_data.lock held. */ static struct l2t_entry * alloc_l2e(struct l2t_data *d) { struct l2t_entry *end, *e, **p; rw_assert(&d->lock, RA_WLOCKED); if (!atomic_load_acq_int(&d->nfree)) return (NULL); /* there's definitely a free entry */ for (e = d->rover, end = &d->l2tab[L2T_SIZE]; e != end; ++e) if (atomic_load_acq_int(&e->refcnt) == 0) goto found; for (e = d->l2tab; atomic_load_acq_int(&e->refcnt); ++e) ; found: d->rover = e + 1; atomic_subtract_int(&d->nfree, 1); /* * The entry we found may be an inactive entry that is * presently in the hash table. We need to remove it. */ if (e->state < L2T_STATE_SWITCHING) { for (p = &d->l2tab[e->hash].first; *p; p = &(*p)->next) { if (*p == e) { *p = e->next; e->next = NULL; break; } } } e->state = L2T_STATE_UNUSED; return (e); } /* * Write an L2T entry. Must be called with the entry locked. * The write may be synchronous or asynchronous. */ static int write_l2e(struct adapter *sc, struct l2t_entry *e, int sync) { struct mbuf *m; struct cpl_l2t_write_req *req; mtx_assert(&e->lock, MA_OWNED); if ((m = m_gethdr(M_NOWAIT, MT_DATA)) == NULL) return (ENOMEM); req = mtod(m, struct cpl_l2t_write_req *); m->m_pkthdr.len = m->m_len = sizeof(*req); INIT_TP_WR(req, 0); OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, e->idx | V_SYNC_WR(sync) | V_TID_QID(sc->sge.fwq.abs_id))); req->params = htons(V_L2T_W_PORT(e->lport) | V_L2T_W_NOREPLY(!sync)); req->l2t_idx = htons(e->idx); req->vlan = htons(e->vlan); memcpy(req->dst_mac, e->dmac, sizeof(req->dst_mac)); t4_mgmt_tx(sc, m); if (sync && e->state != L2T_STATE_SWITCHING) e->state = L2T_STATE_SYNC_WRITE; return (0); } /* * Allocate an L2T entry for use by a switching rule. Such need to be * explicitly freed and while busy they are not on any hash chain, so normal * address resolution updates do not see them. */ struct l2t_entry * t4_l2t_alloc_switching(struct l2t_data *d) { struct l2t_entry *e; rw_rlock(&d->lock); e = alloc_l2e(d); if (e) { mtx_lock(&e->lock); /* avoid race with t4_l2t_free */ e->state = L2T_STATE_SWITCHING; atomic_store_rel_int(&e->refcnt, 1); mtx_unlock(&e->lock); } rw_runlock(&d->lock); return e; } /* * Sets/updates the contents of a switching L2T entry that has been allocated * with an earlier call to @t4_l2t_alloc_switching. */ int t4_l2t_set_switching(struct adapter *sc, struct l2t_entry *e, uint16_t vlan, uint8_t port, uint8_t *eth_addr) { int rc; e->vlan = vlan; e->lport = port; memcpy(e->dmac, eth_addr, ETHER_ADDR_LEN); mtx_lock(&e->lock); rc = write_l2e(sc, e, 0); mtx_unlock(&e->lock); return (rc); } int t4_init_l2t(struct adapter *sc, int flags) { int i; struct l2t_data *d; d = malloc(sizeof(*d), M_CXGBE, M_ZERO | flags); if (!d) return (ENOMEM); d->rover = d->l2tab; atomic_store_rel_int(&d->nfree, L2T_SIZE); rw_init(&d->lock, "L2T"); for (i = 0; i < L2T_SIZE; i++) { d->l2tab[i].idx = i; d->l2tab[i].state = L2T_STATE_UNUSED; mtx_init(&d->l2tab[i].lock, "L2T_E", NULL, MTX_DEF); atomic_store_rel_int(&d->l2tab[i].refcnt, 0); } sc->l2t = d; t4_register_cpl_handler(sc, CPL_L2T_WRITE_RPL, do_l2t_write_rpl); return (0); } int t4_free_l2t(struct l2t_data *d) { int i; for (i = 0; i < L2T_SIZE; i++) mtx_destroy(&d->l2tab[i].lock); rw_destroy(&d->lock); free(d, M_CXGBE); return (0); } #ifdef SBUF_DRAIN static inline unsigned int vlan_prio(const struct l2t_entry *e) { return e->vlan >> 13; } static char l2e_state(const struct l2t_entry *e) { switch (e->state) { case L2T_STATE_VALID: return 'V'; /* valid, fast-path entry */ case L2T_STATE_STALE: return 'S'; /* needs revalidation, but usable */ case L2T_STATE_SYNC_WRITE: return 'W'; case L2T_STATE_RESOLVING: return e->arpq_head ? 'A' : 'R'; case L2T_STATE_SWITCHING: return 'X'; default: return 'U'; } } int sysctl_l2t(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct l2t_data *l2t = sc->l2t; struct l2t_entry *e; struct sbuf *sb; int rc, i, header = 0; char ip[60]; if (l2t == NULL) return (ENXIO); rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); if (sb == NULL) return (ENOMEM); e = &l2t->l2tab[0]; for (i = 0; i < L2T_SIZE; i++, e++) { mtx_lock(&e->lock); if (e->state == L2T_STATE_UNUSED) goto skip; if (header == 0) { sbuf_printf(sb, " Idx IP address " "Ethernet address VLAN/P LP State Users Port"); header = 1; } if (e->state == L2T_STATE_SWITCHING || e->v6) ip[0] = 0; else snprintf(ip, sizeof(ip), "%s", inet_ntoa(*(struct in_addr *)&e->addr[0])); /* XXX: accessing lle probably not safe? */ sbuf_printf(sb, "\n%4u %-15s %02x:%02x:%02x:%02x:%02x:%02x %4d" " %u %2u %c %5u %s", e->idx, ip, e->dmac[0], e->dmac[1], e->dmac[2], e->dmac[3], e->dmac[4], e->dmac[5], e->vlan & 0xfff, vlan_prio(e), e->lport, l2e_state(e), atomic_load_acq_int(&e->refcnt), e->lle ? e->lle->lle_tbl->llt_ifp->if_xname : ""); skip: mtx_unlock(&e->lock); } rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } #endif #ifndef TCP_OFFLOAD_DISABLE static inline void l2t_hold(struct l2t_data *d, struct l2t_entry *e) { if (atomic_fetchadd_int(&e->refcnt, 1) == 0) /* 0 -> 1 transition */ atomic_subtract_int(&d->nfree, 1); } /* * To avoid having to check address families we do not allow v4 and v6 * neighbors to be on the same hash chain. We keep v4 entries in the first * half of available hash buckets and v6 in the second. */ enum { L2T_SZ_HALF = L2T_SIZE / 2, L2T_HASH_MASK = L2T_SZ_HALF - 1 }; static inline unsigned int arp_hash(const uint32_t *key, int ifindex) { return jhash_2words(*key, ifindex, 0) & L2T_HASH_MASK; } static inline unsigned int ipv6_hash(const uint32_t *key, int ifindex) { uint32_t xor = key[0] ^ key[1] ^ key[2] ^ key[3]; return L2T_SZ_HALF + (jhash_2words(xor, ifindex, 0) & L2T_HASH_MASK); } static inline unsigned int addr_hash(const uint32_t *addr, int addr_len, int ifindex) { return addr_len == 4 ? arp_hash(addr, ifindex) : ipv6_hash(addr, ifindex); } /* * Checks if an L2T entry is for the given IP/IPv6 address. It does not check * whether the L2T entry and the address are of the same address family. * Callers ensure an address is only checked against L2T entries of the same * family, something made trivial by the separation of IP and IPv6 hash chains * mentioned above. Returns 0 if there's a match, */ static inline int addreq(const struct l2t_entry *e, const uint32_t *addr) { if (e->v6) return (e->addr[0] ^ addr[0]) | (e->addr[1] ^ addr[1]) | (e->addr[2] ^ addr[2]) | (e->addr[3] ^ addr[3]); return e->addr[0] ^ addr[0]; } /* * Add a packet to an L2T entry's queue of packets awaiting resolution. * Must be called with the entry's lock held. */ static inline void arpq_enqueue(struct l2t_entry *e, struct mbuf *m) { mtx_assert(&e->lock, MA_OWNED); KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt not NULL", __func__)); if (e->arpq_head) e->arpq_tail->m_nextpkt = m; else e->arpq_head = m; e->arpq_tail = m; } static inline void send_pending(struct adapter *sc, struct l2t_entry *e) { struct mbuf *m, *next; mtx_assert(&e->lock, MA_OWNED); for (m = e->arpq_head; m; m = next) { next = m->m_nextpkt; m->m_nextpkt = NULL; t4_wrq_tx(sc, MBUF_EQ(m), m); } e->arpq_head = e->arpq_tail = NULL; } #ifdef INET /* * Looks up and fills up an l2t_entry's lle. We grab all the locks that we need * ourself, and update e->state at the end if e->lle was successfully filled. * * The lle passed in comes from arpresolve and is ignored as it does not appear * to be of much use. */ static int l2t_fill_lle(struct adapter *sc, struct l2t_entry *e, struct llentry *unused) { int rc = 0; struct sockaddr_in sin; struct ifnet *ifp = e->ifp; struct llentry *lle; bzero(&sin, sizeof(struct sockaddr_in)); if (e->v6) panic("%s: IPv6 L2 resolution not supported yet.", __func__); sin.sin_family = AF_INET; sin.sin_len = sizeof(struct sockaddr_in); memcpy(&sin.sin_addr, e->addr, sizeof(struct sockaddr_in)); mtx_assert(&e->lock, MA_NOTOWNED); KASSERT(e->addr && ifp, ("%s: bad prep before call", __func__)); IF_AFDATA_LOCK(ifp); lle = lla_lookup(LLTABLE(ifp), LLE_EXCLUSIVE, SA(&sin)); IF_AFDATA_UNLOCK(ifp); if (!LLE_IS_VALID(lle)) return (ENOMEM); if (!(lle->la_flags & LLE_VALID)) { rc = EINVAL; goto done; } LLE_ADDREF(lle); mtx_lock(&e->lock); if (e->state == L2T_STATE_RESOLVING) { KASSERT(e->lle == NULL, ("%s: lle already valid", __func__)); e->lle = lle; memcpy(e->dmac, &lle->ll_addr, ETHER_ADDR_LEN); write_l2e(sc, e, 1); } else { KASSERT(e->lle == lle, ("%s: lle changed", __func__)); LLE_REMREF(lle); } mtx_unlock(&e->lock); done: LLE_WUNLOCK(lle); return (rc); } #endif int t4_l2t_send(struct adapter *sc, struct mbuf *m, struct l2t_entry *e) { #ifndef INET return (EINVAL); #else struct llentry *lle = NULL; struct sockaddr_in sin; struct ifnet *ifp = e->ifp; if (e->v6) panic("%s: IPv6 L2 resolution not supported yet.", __func__); bzero(&sin, sizeof(struct sockaddr_in)); sin.sin_family = AF_INET; sin.sin_len = sizeof(struct sockaddr_in); memcpy(&sin.sin_addr, e->addr, sizeof(struct sockaddr_in)); again: switch (e->state) { case L2T_STATE_STALE: /* entry is stale, kick off revalidation */ if (arpresolve(ifp, NULL, NULL, SA(&sin), e->dmac, &lle) == 0) l2t_fill_lle(sc, e, lle); /* Fall through */ case L2T_STATE_VALID: /* fast-path, send the packet on */ return t4_wrq_tx(sc, MBUF_EQ(m), m); case L2T_STATE_RESOLVING: case L2T_STATE_SYNC_WRITE: mtx_lock(&e->lock); if (e->state != L2T_STATE_SYNC_WRITE && e->state != L2T_STATE_RESOLVING) { /* state changed by the time we got here */ mtx_unlock(&e->lock); goto again; } arpq_enqueue(e, m); mtx_unlock(&e->lock); if (e->state == L2T_STATE_RESOLVING && arpresolve(ifp, NULL, NULL, SA(&sin), e->dmac, &lle) == 0) l2t_fill_lle(sc, e, lle); } return (0); #endif } /* * Called when an L2T entry has no more users. The entry is left in the hash * table since it is likely to be reused but we also bump nfree to indicate * that the entry can be reallocated for a different neighbor. We also drop * the existing neighbor reference in case the neighbor is going away and is * waiting on our reference. * * Because entries can be reallocated to other neighbors once their ref count * drops to 0 we need to take the entry's lock to avoid races with a new * incarnation. */ static void t4_l2e_free(struct l2t_entry *e) { struct llentry *lle = NULL; struct l2t_data *d; mtx_lock(&e->lock); if (atomic_load_acq_int(&e->refcnt) == 0) { /* hasn't been recycled */ lle = e->lle; e->lle = NULL; /* * Don't need to worry about the arpq, an L2T entry can't be * released if any packets are waiting for resolution as we * need to be able to communicate with the device to close a * connection. */ } mtx_unlock(&e->lock); d = container_of(e, struct l2t_data, l2tab[e->idx]); atomic_add_int(&d->nfree, 1); if (lle) LLE_FREE(lle); } void t4_l2t_release(struct l2t_entry *e) { if (atomic_fetchadd_int(&e->refcnt, -1) == 1) t4_l2e_free(e); } static int do_l2t_write_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct adapter *sc = iq->adapter; const struct cpl_l2t_write_rpl *rpl = (const void *)(rss + 1); unsigned int tid = GET_TID(rpl); unsigned int idx = tid & (L2T_SIZE - 1); if (__predict_false(rpl->status != CPL_ERR_NONE)) { log(LOG_ERR, "Unexpected L2T_WRITE_RPL status %u for entry %u\n", rpl->status, idx); return (EINVAL); } if (tid & F_SYNC_WR) { struct l2t_entry *e = &sc->l2t->l2tab[idx]; mtx_lock(&e->lock); if (e->state != L2T_STATE_SWITCHING) { send_pending(sc, e); e->state = L2T_STATE_VALID; } mtx_unlock(&e->lock); } return (0); } /* * Reuse an L2T entry that was previously used for the same next hop. */ static void reuse_entry(struct l2t_entry *e) { struct llentry *lle; mtx_lock(&e->lock); /* avoid race with t4_l2t_free */ lle = e->lle; if (lle) { KASSERT(lle->la_flags & LLE_VALID, ("%s: invalid lle stored in l2t_entry", __func__)); if (lle->la_expire >= time_uptime) e->state = L2T_STATE_STALE; else e->state = L2T_STATE_VALID; } else e->state = L2T_STATE_RESOLVING; mtx_unlock(&e->lock); } /* * The TOE wants an L2 table entry that it can use to reach the next hop over * the specified port. Produce such an entry - create one if needed. * * Note that the ifnet could be a pseudo-device like if_vlan, if_lagg, etc. on * top of the real cxgbe interface. */ struct l2t_entry * t4_l2t_get(struct port_info *pi, struct ifnet *ifp, struct sockaddr *sa) { struct l2t_entry *e; struct l2t_data *d = pi->adapter->l2t; int addr_len; uint32_t *addr; int hash; struct sockaddr_in6 *sin6; unsigned int smt_idx = pi->port_id; if (sa->sa_family == AF_INET) { addr = (uint32_t *)&SINADDR(sa); addr_len = sizeof(SINADDR(sa)); } else if (sa->sa_family == AF_INET6) { sin6 = (struct sockaddr_in6 *)sa; addr = (uint32_t *)&sin6->sin6_addr.s6_addr; addr_len = sizeof(sin6->sin6_addr.s6_addr); } else return (NULL); #ifndef VLAN_TAG if (ifp->if_type == IFT_L2VLAN) return (NULL); #endif hash = addr_hash(addr, addr_len, ifp->if_index); rw_wlock(&d->lock); for (e = d->l2tab[hash].first; e; e = e->next) { if (!addreq(e, addr) && e->ifp == ifp && e->smt_idx == smt_idx){ l2t_hold(d, e); if (atomic_load_acq_int(&e->refcnt) == 1) reuse_entry(e); goto done; } } /* Need to allocate a new entry */ e = alloc_l2e(d); if (e) { mtx_lock(&e->lock); /* avoid race with t4_l2t_free */ e->state = L2T_STATE_RESOLVING; memcpy(e->addr, addr, addr_len); e->ifindex = ifp->if_index; e->smt_idx = smt_idx; e->ifp = ifp; e->hash = hash; e->lport = pi->lport; e->v6 = (addr_len == 16); e->lle = NULL; atomic_store_rel_int(&e->refcnt, 1); #ifdef VLAN_TAG if (ifp->if_type == IFT_L2VLAN) VLAN_TAG(ifp, &e->vlan); else e->vlan = VLAN_NONE; #endif e->next = d->l2tab[hash].first; d->l2tab[hash].first = e; mtx_unlock(&e->lock); } done: rw_wunlock(&d->lock); return e; } /* * Called when the host's neighbor layer makes a change to some entry that is * loaded into the HW L2 table. */ void t4_l2t_update(struct adapter *sc, struct llentry *lle) { struct l2t_entry *e; struct l2t_data *d = sc->l2t; struct sockaddr *sa = L3_ADDR(lle); struct llentry *old_lle = NULL; uint32_t *addr = (uint32_t *)&SINADDR(sa); struct ifnet *ifp = lle->lle_tbl->llt_ifp; int hash = addr_hash(addr, sizeof(*addr), ifp->if_index); KASSERT(d != NULL, ("%s: no L2 table", __func__)); LLE_WLOCK_ASSERT(lle); KASSERT(lle->la_flags & LLE_VALID || lle->la_flags & LLE_DELETED, ("%s: entry neither valid nor deleted.", __func__)); rw_rlock(&d->lock); for (e = d->l2tab[hash].first; e; e = e->next) { if (!addreq(e, addr) && e->ifp == ifp) { mtx_lock(&e->lock); if (atomic_load_acq_int(&e->refcnt)) goto found; e->state = L2T_STATE_STALE; mtx_unlock(&e->lock); break; } } rw_runlock(&d->lock); /* The TOE has no interest in this LLE */ return; found: rw_runlock(&d->lock); if (atomic_load_acq_int(&e->refcnt)) { /* Entry is referenced by at least 1 offloaded connection. */ /* Handle deletes first */ if (lle->la_flags & LLE_DELETED) { if (lle == e->lle) { e->lle = NULL; e->state = L2T_STATE_RESOLVING; LLE_REMREF(lle); } goto done; } if (lle != e->lle) { old_lle = e->lle; LLE_ADDREF(lle); e->lle = lle; } if (e->state == L2T_STATE_RESOLVING || memcmp(e->dmac, &lle->ll_addr, ETHER_ADDR_LEN)) { /* unresolved -> resolved; or dmac changed */ memcpy(e->dmac, &lle->ll_addr, ETHER_ADDR_LEN); write_l2e(sc, e, 1); } else { /* +ve reinforcement of a valid or stale entry */ } e->state = L2T_STATE_VALID; } else { /* * Entry was used previously but is unreferenced right now. * e->lle has been released and NULL'd out by t4_l2t_free, or * l2t_release is about to call t4_l2t_free and do that. * * Either way this is of no interest to us. */ } done: mtx_unlock(&e->lock); if (old_lle) LLE_FREE(old_lle); } #endif