/* * Copyright (C) 2011-2014 Matteo Landi, Luigi Rizzo. All rights reserved. * Copyright (C) 2013-2014 Universita` di Pisa. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * $FreeBSD$ * * The header contains the definitions of constants and function * prototypes used only in kernelspace. */ #ifndef _NET_NETMAP_KERN_H_ #define _NET_NETMAP_KERN_H_ #define WITH_VALE // comment out to disable VALE support #if defined(__FreeBSD__) #define likely(x) __builtin_expect((long)!!(x), 1L) #define unlikely(x) __builtin_expect((long)!!(x), 0L) #define NM_LOCK_T struct mtx #define NMG_LOCK_T struct mtx #define NMG_LOCK_INIT() mtx_init(&netmap_global_lock, \ "netmap global lock", NULL, MTX_DEF) #define NMG_LOCK_DESTROY() mtx_destroy(&netmap_global_lock) #define NMG_LOCK() mtx_lock(&netmap_global_lock) #define NMG_UNLOCK() mtx_unlock(&netmap_global_lock) #define NMG_LOCK_ASSERT() mtx_assert(&netmap_global_lock, MA_OWNED) #define NM_SELINFO_T struct selinfo #define MBUF_LEN(m) ((m)->m_pkthdr.len) #define MBUF_IFP(m) ((m)->m_pkthdr.rcvif) #define NM_SEND_UP(ifp, m) ((NA(ifp))->if_input)(ifp, m) #define NM_ATOMIC_T volatile int // XXX ? /* atomic operations */ #include #define NM_ATOMIC_TEST_AND_SET(p) (!atomic_cmpset_acq_int((p), 0, 1)) #define NM_ATOMIC_CLEAR(p) atomic_store_rel_int((p), 0) MALLOC_DECLARE(M_NETMAP); // XXX linux struct, not used in FreeBSD struct net_device_ops { }; struct hrtimer { }; #elif defined (linux) #define NM_LOCK_T safe_spinlock_t // see bsd_glue.h #define NM_SELINFO_T wait_queue_head_t #define MBUF_LEN(m) ((m)->len) #define MBUF_IFP(m) ((m)->dev) #define NM_SEND_UP(ifp, m) \ do { \ m->priority = NM_MAGIC_PRIORITY; \ netif_rx(m); \ } while (0) #define NM_ATOMIC_T volatile long unsigned int // XXX a mtx would suffice here too 20130404 gl #define NMG_LOCK_T struct semaphore #define NMG_LOCK_INIT() sema_init(&netmap_global_lock, 1) #define NMG_LOCK_DESTROY() #define NMG_LOCK() down(&netmap_global_lock) #define NMG_UNLOCK() up(&netmap_global_lock) #define NMG_LOCK_ASSERT() // XXX to be completed #ifndef DEV_NETMAP #define DEV_NETMAP #endif /* DEV_NETMAP */ /* * IFCAP_NETMAP goes into net_device's priv_flags (if_capenable). * This was 16 bits up to linux 2.6.36, so we need a 16 bit value on older * platforms and tolerate the clash with IFF_DYNAMIC and IFF_BRIDGE_PORT. * For the 32-bit value, 0x100000 has no clashes until at least 3.5.1 */ #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,37) #define IFCAP_NETMAP 0x8000 #else #define IFCAP_NETMAP 0x200000 #endif #elif defined (__APPLE__) #warning apple support is incomplete. #define likely(x) __builtin_expect(!!(x), 1) #define unlikely(x) __builtin_expect(!!(x), 0) #define NM_LOCK_T IOLock * #define NM_SELINFO_T struct selinfo #define MBUF_LEN(m) ((m)->m_pkthdr.len) #define NM_SEND_UP(ifp, m) ((ifp)->if_input)(ifp, m) #else #error unsupported platform #endif /* end - platform-specific code */ #define ND(format, ...) #define D(format, ...) \ do { \ struct timeval __xxts; \ microtime(&__xxts); \ printf("%03d.%06d [%4d] %-25s " format "\n", \ (int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec, \ __LINE__, __FUNCTION__, ##__VA_ARGS__); \ } while (0) /* rate limited, lps indicates how many per second */ #define RD(lps, format, ...) \ do { \ static int t0, __cnt; \ if (t0 != time_second) { \ t0 = time_second; \ __cnt = 0; \ } \ if (__cnt++ < lps) \ D(format, ##__VA_ARGS__); \ } while (0) struct netmap_adapter; struct nm_bdg_fwd; struct nm_bridge; struct netmap_priv_d; const char *nm_dump_buf(char *p, int len, int lim, char *dst); #include "netmap_mbq.h" extern NMG_LOCK_T netmap_global_lock; /* * private, kernel view of a ring. Keeps track of the status of * a ring across system calls. * * nr_hwcur index of the next buffer to refill. * It corresponds to ring->head * at the time the system call returns. * * nr_hwtail index of the first buffer owned by the kernel. * On RX, hwcur->hwtail are receive buffers * not yet released. hwcur is advanced following * ring->head, hwtail is advanced on incoming packets, * and a wakeup is generated when hwtail passes ring->cur * On TX, hwcur->rcur have been filled by the sender * but not sent yet to the NIC; rcur->hwtail are available * for new transmissions, and hwtail->hwcur-1 are pending * transmissions not yet acknowledged. * * The indexes in the NIC and netmap rings are offset by nkr_hwofs slots. * This is so that, on a reset, buffers owned by userspace are not * modified by the kernel. In particular: * RX rings: the next empty buffer (hwtail + hwofs) coincides with * the next empty buffer as known by the hardware (next_to_check or so). * TX rings: hwcur + hwofs coincides with next_to_send * * Clients cannot issue concurrent syscall on a ring. The system * detects this and reports an error using two flags, * NKR_WBUSY and NKR_RBUSY * For received packets, slot->flags is set to nkr_slot_flags * so we can provide a proper initial value (e.g. set NS_FORWARD * when operating in 'transparent' mode). * * The following fields are used to implement lock-free copy of packets * from input to output ports in VALE switch: * nkr_hwlease buffer after the last one being copied. * A writer in nm_bdg_flush reserves N buffers * from nr_hwlease, advances it, then does the * copy outside the lock. * In RX rings (used for VALE ports), * nkr_hwtail <= nkr_hwlease < nkr_hwcur+N-1 * In TX rings (used for NIC or host stack ports) * nkr_hwcur <= nkr_hwlease < nkr_hwtail * nkr_leases array of nkr_num_slots where writers can report * completion of their block. NR_NOSLOT (~0) indicates * that the writer has not finished yet * nkr_lease_idx index of next free slot in nr_leases, to be assigned * * The kring is manipulated by txsync/rxsync and generic netmap function. * * Concurrent rxsync or txsync on the same ring are prevented through * by nm_kr_lock() which in turn uses nr_busy. This is all we need * for NIC rings, and for TX rings attached to the host stack. * * RX rings attached to the host stack use an mbq (rx_queue) on both * rxsync_from_host() and netmap_transmit(). The mbq is protected * by its internal lock. * * RX rings attached to the VALE switch are accessed by both sender * and receiver. They are protected through the q_lock on the RX ring. */ struct netmap_kring { struct netmap_ring *ring; uint32_t nr_hwcur; uint32_t nr_hwtail; /* * Copies of values in user rings, so we do not need to look * at the ring (which could be modified). These are set in the * *sync_prologue()/finalize() routines. */ uint32_t rhead; uint32_t rcur; uint32_t rtail; uint32_t nr_kflags; /* private driver flags */ #define NKR_PENDINTR 0x1 // Pending interrupt. uint32_t nkr_num_slots; /* * On a NIC reset, the NIC ring indexes may be reset but the * indexes in the netmap rings remain the same. nkr_hwofs * keeps track of the offset between the two. */ int32_t nkr_hwofs; uint16_t nkr_slot_flags; /* initial value for flags */ /* last_reclaim is opaque marker to help reduce the frequency * of operations such as reclaiming tx buffers. A possible use * is set it to ticks and do the reclaim only once per tick. */ uint64_t last_reclaim; NM_SELINFO_T si; /* poll/select wait queue */ NM_LOCK_T q_lock; /* protects kring and ring. */ NM_ATOMIC_T nr_busy; /* prevent concurrent syscalls */ struct netmap_adapter *na; /* The folloiwing fields are for VALE switch support */ struct nm_bdg_fwd *nkr_ft; uint32_t *nkr_leases; #define NR_NOSLOT ((uint32_t)~0) /* used in nkr_*lease* */ uint32_t nkr_hwlease; uint32_t nkr_lease_idx; volatile int nkr_stopped; // XXX what for ? /* support for adapters without native netmap support. * On tx rings we preallocate an array of tx buffers * (same size as the netmap ring), on rx rings we * store incoming packets in a queue. * XXX who writes to the rx queue ? */ struct mbuf **tx_pool; // u_int nr_ntc; /* Emulation of a next-to-clean RX ring pointer. */ struct mbq rx_queue; /* intercepted rx mbufs. */ uint32_t ring_id; /* debugging */ char name[64]; /* diagnostic */ } __attribute__((__aligned__(64))); /* return the next index, with wraparound */ static inline uint32_t nm_next(uint32_t i, uint32_t lim) { return unlikely (i == lim) ? 0 : i + 1; } /* return the previous index, with wraparound */ static inline uint32_t nm_prev(uint32_t i, uint32_t lim) { return unlikely (i == 0) ? lim : i - 1; } /* * * Here is the layout for the Rx and Tx rings. RxRING TxRING +-----------------+ +-----------------+ | | | | |XXX free slot XXX| |XXX free slot XXX| +-----------------+ +-----------------+ head->| owned by user |<-hwcur | not sent to nic |<-hwcur | | | yet | +-----------------+ | | cur->| available to | | | | user, not read | +-----------------+ | yet | cur->| (being | | | | prepared) | | | | | +-----------------+ + ------ + tail->| |<-hwtail | |<-hwlease | (being | ... | | ... | prepared) | ... | | ... +-----------------+ ... | | ... | |<-hwlease +-----------------+ | | tail->| |<-hwtail | | | | | | | | | | | | +-----------------+ +-----------------+ * The cur/tail (user view) and hwcur/hwtail (kernel view) * are used in the normal operation of the card. * * When a ring is the output of a switch port (Rx ring for * a VALE port, Tx ring for the host stack or NIC), slots * are reserved in blocks through 'hwlease' which points * to the next unused slot. * On an Rx ring, hwlease is always after hwtail, * and completions cause hwtail to advance. * On a Tx ring, hwlease is always between cur and hwtail, * and completions cause cur to advance. * * nm_kr_space() returns the maximum number of slots that * can be assigned. * nm_kr_lease() reserves the required number of buffers, * advances nkr_hwlease and also returns an entry in * a circular array where completions should be reported. */ enum txrx { NR_RX = 0, NR_TX = 1 }; /* * The "struct netmap_adapter" extends the "struct adapter" * (or equivalent) device descriptor. * It contains all base fields needed to support netmap operation. * There are in fact different types of netmap adapters * (native, generic, VALE switch...) so a netmap_adapter is * just the first field in the derived type. */ struct netmap_adapter { /* * On linux we do not have a good way to tell if an interface * is netmap-capable. So we always use the following trick: * NA(ifp) points here, and the first entry (which hopefully * always exists and is at least 32 bits) contains a magic * value which we can use to detect that the interface is good. */ uint32_t magic; uint32_t na_flags; /* enabled, and other flags */ #define NAF_SKIP_INTR 1 /* use the regular interrupt handler. * useful during initialization */ #define NAF_SW_ONLY 2 /* forward packets only to sw adapter */ #define NAF_BDG_MAYSLEEP 4 /* the bridge is allowed to sleep when * forwarding packets coming from this * interface */ #define NAF_MEM_OWNER 8 /* the adapter is responsible for the * deallocation of the memory allocator */ #define NAF_NATIVE_ON 16 /* the adapter is native and the attached * interface is in netmap mode */ #define NAF_NETMAP_ON 32 /* netmap is active (either native or * emulated. Where possible (e.g. FreeBSD) * IFCAP_NETMAP also mirrors this flag. */ int active_fds; /* number of user-space descriptors using this interface, which is equal to the number of struct netmap_if objs in the mapped region. */ u_int num_rx_rings; /* number of adapter receive rings */ u_int num_tx_rings; /* number of adapter transmit rings */ u_int num_tx_desc; /* number of descriptor in each queue */ u_int num_rx_desc; /* tx_rings and rx_rings are private but allocated * as a contiguous chunk of memory. Each array has * N+1 entries, for the adapter queues and for the host queue. */ struct netmap_kring *tx_rings; /* array of TX rings. */ struct netmap_kring *rx_rings; /* array of RX rings. */ void *tailroom; /* space below the rings array */ /* (used for leases) */ NM_SELINFO_T tx_si, rx_si; /* global wait queues */ /* copy of if_qflush and if_transmit pointers, to intercept * packets from the network stack when netmap is active. */ int (*if_transmit)(struct ifnet *, struct mbuf *); /* copy of if_input for netmap_send_up() */ void (*if_input)(struct ifnet *, struct mbuf *); /* references to the ifnet and device routines, used by * the generic netmap functions. */ struct ifnet *ifp; /* adapter is ifp->if_softc */ /*---- callbacks for this netmap adapter -----*/ /* * nm_dtor() is the cleanup routine called when destroying * the adapter. * * nm_register() is called on NIOCREGIF and close() to enter * or exit netmap mode on the NIC * * nm_txsync() pushes packets to the underlying hw/switch * * nm_rxsync() collects packets from the underlying hw/switch * * nm_config() returns configuration information from the OS * * nm_krings_create() XXX * * nm_krings_delete() XXX * * nm_notify() is used to act after data have become available. * For hw devices this is typically a selwakeup(), * but for NIC/host ports attached to a switch (or vice-versa) * we also need to invoke the 'txsync' code downstream. */ /* private cleanup */ void (*nm_dtor)(struct netmap_adapter *); int (*nm_register)(struct netmap_adapter *, int onoff); int (*nm_txsync)(struct netmap_adapter *, u_int ring, int flags); int (*nm_rxsync)(struct netmap_adapter *, u_int ring, int flags); #define NAF_FORCE_READ 1 #define NAF_FORCE_RECLAIM 2 /* return configuration information */ int (*nm_config)(struct netmap_adapter *, u_int *txr, u_int *txd, u_int *rxr, u_int *rxd); int (*nm_krings_create)(struct netmap_adapter *); void (*nm_krings_delete)(struct netmap_adapter *); int (*nm_notify)(struct netmap_adapter *, u_int ring, enum txrx, int flags); #define NAF_GLOBAL_NOTIFY 4 #define NAF_DISABLE_NOTIFY 8 /* standard refcount to control the lifetime of the adapter * (it should be equal to the lifetime of the corresponding ifp) */ int na_refcount; /* memory allocator (opaque) * We also cache a pointer to the lut_entry for translating * buffer addresses, and the total number of buffers. */ struct netmap_mem_d *nm_mem; struct lut_entry *na_lut; uint32_t na_lut_objtotal; /* max buffer index */ /* used internally. If non-null, the interface cannot be bound * from userspace */ void *na_private; }; /* * If the NIC is owned by the kernel * (i.e., bridge), neither another bridge nor user can use it; * if the NIC is owned by a user, only users can share it. * Evaluation must be done under NMG_LOCK(). */ #define NETMAP_OWNED_BY_KERN(na) (na->na_private) #define NETMAP_OWNED_BY_ANY(na) \ (NETMAP_OWNED_BY_KERN(na) || (na->active_fds > 0)) /* * derived netmap adapters for various types of ports */ struct netmap_vp_adapter { /* VALE software port */ struct netmap_adapter up; /* * Bridge support: * * bdg_port is the port number used in the bridge; * na_bdg points to the bridge this NA is attached to. */ int bdg_port; struct nm_bridge *na_bdg; int retry; u_int offset; /* Offset of ethernet header for each packet. */ }; struct netmap_hw_adapter { /* physical device */ struct netmap_adapter up; struct net_device_ops nm_ndo; // XXX linux only }; struct netmap_generic_adapter { /* emulated device */ struct netmap_hw_adapter up; /* Pointer to a previously used netmap adapter. */ struct netmap_adapter *prev; /* generic netmap adapters support: * a net_device_ops struct overrides ndo_select_queue(), * save_if_input saves the if_input hook (FreeBSD), * mit_timer and mit_pending implement rx interrupt mitigation, */ struct net_device_ops generic_ndo; void (*save_if_input)(struct ifnet *, struct mbuf *); struct hrtimer mit_timer; int mit_pending; #ifdef linux netdev_tx_t (*save_start_xmit)(struct mbuf *, struct ifnet *); #endif }; #ifdef WITH_VALE /* * Bridge wrapper for non VALE ports attached to a VALE switch. * * The real device must already have its own netmap adapter (hwna). * The bridge wrapper and the hwna adapter share the same set of * netmap rings and buffers, but they have two separate sets of * krings descriptors, with tx/rx meanings swapped: * * netmap * bwrap krings rings krings hwna * +------+ +------+ +-----+ +------+ +------+ * |tx_rings->| |\ /| |----| |<-tx_rings| * | | +------+ \ / +-----+ +------+ | | * | | X | | * | | / \ | | * | | +------+/ \+-----+ +------+ | | * |rx_rings->| | | |----| |<-rx_rings| * | | +------+ +-----+ +------+ | | * +------+ +------+ * * - packets coming from the bridge go to the brwap rx rings, * which are also the hwna tx rings. The bwrap notify callback * will then complete the hwna tx (see netmap_bwrap_notify). * * - packets coming from the outside go to the hwna rx rings, * which are also the bwrap tx rings. The (overwritten) hwna * notify method will then complete the bridge tx * (see netmap_bwrap_intr_notify). * * The bridge wrapper may optionally connect the hwna 'host' rings * to the bridge. This is done by using a second port in the * bridge and connecting it to the 'host' netmap_vp_adapter * contained in the netmap_bwrap_adapter. The brwap host adapter * cross-links the hwna host rings in the same way as shown above. * * - packets coming from the bridge and directed to the host stack * are handled by the bwrap host notify callback * (see netmap_bwrap_host_notify) * * - packets coming from the host stack are still handled by the * overwritten hwna notify callback (netmap_bwrap_intr_notify), * but are diverted to the host adapter depending on the ring number. * */ struct netmap_bwrap_adapter { struct netmap_vp_adapter up; struct netmap_vp_adapter host; /* for host rings */ struct netmap_adapter *hwna; /* the underlying device */ /* backup of the hwna notify callback */ int (*save_notify)(struct netmap_adapter *, u_int ring, enum txrx, int flags); /* * When we attach a physical interface to the bridge, we * allow the controlling process to terminate, so we need * a place to store the netmap_priv_d data structure. * This is only done when physical interfaces * are attached to a bridge. */ struct netmap_priv_d *na_kpriv; }; #endif /* WITH_VALE */ /* return slots reserved to rx clients; used in drivers */ static inline uint32_t nm_kr_rxspace(struct netmap_kring *k) { int space = k->nr_hwtail - k->nr_hwcur; if (space < 0) space += k->nkr_num_slots; ND("preserving %d rx slots %d -> %d", space, k->nr_hwcur, k->nr_hwtail); return space; } /* True if no space in the tx ring. only valid after txsync_prologue */ static inline int nm_kr_txempty(struct netmap_kring *kring) { return kring->rcur == kring->nr_hwtail; } /* * protect against multiple threads using the same ring. * also check that the ring has not been stopped. * We only care for 0 or !=0 as a return code. */ #define NM_KR_BUSY 1 #define NM_KR_STOPPED 2 static __inline void nm_kr_put(struct netmap_kring *kr) { NM_ATOMIC_CLEAR(&kr->nr_busy); } static __inline int nm_kr_tryget(struct netmap_kring *kr) { /* check a first time without taking the lock * to avoid starvation for nm_kr_get() */ if (unlikely(kr->nkr_stopped)) { ND("ring %p stopped (%d)", kr, kr->nkr_stopped); return NM_KR_STOPPED; } if (unlikely(NM_ATOMIC_TEST_AND_SET(&kr->nr_busy))) return NM_KR_BUSY; /* check a second time with lock held */ if (unlikely(kr->nkr_stopped)) { ND("ring %p stopped (%d)", kr, kr->nkr_stopped); nm_kr_put(kr); return NM_KR_STOPPED; } return 0; } /* * The following functions are used by individual drivers to * support netmap operation. * * netmap_attach() initializes a struct netmap_adapter, allocating the * struct netmap_ring's and the struct selinfo. * * netmap_detach() frees the memory allocated by netmap_attach(). * * netmap_transmit() replaces the if_transmit routine of the interface, * and is used to intercept packets coming from the stack. * * netmap_load_map/netmap_reload_map are helper routines to set/reset * the dmamap for a packet buffer * * netmap_reset() is a helper routine to be called in the driver * when reinitializing a ring. */ int netmap_attach(struct netmap_adapter *); int netmap_attach_common(struct netmap_adapter *); void netmap_detach_common(struct netmap_adapter *na); void netmap_detach(struct ifnet *); int netmap_transmit(struct ifnet *, struct mbuf *); struct netmap_slot *netmap_reset(struct netmap_adapter *na, enum txrx tx, u_int n, u_int new_cur); int netmap_ring_reinit(struct netmap_kring *); /* default functions to handle rx/tx interrupts */ int netmap_rx_irq(struct ifnet *, u_int, u_int *); #define netmap_tx_irq(_n, _q) netmap_rx_irq(_n, _q, NULL) void netmap_common_irq(struct ifnet *, u_int, u_int *work_done); void netmap_disable_all_rings(struct ifnet *); void netmap_enable_all_rings(struct ifnet *); void netmap_disable_ring(struct netmap_kring *kr); /* set/clear native flags and if_transmit/netdev_ops */ static inline void nm_set_native_flags(struct netmap_adapter *na) { struct ifnet *ifp = na->ifp; na->na_flags |= (NAF_NATIVE_ON | NAF_NETMAP_ON); #ifdef IFCAP_NETMAP /* or FreeBSD ? */ ifp->if_capenable |= IFCAP_NETMAP; #endif #ifdef __FreeBSD__ na->if_transmit = ifp->if_transmit; ifp->if_transmit = netmap_transmit; #else na->if_transmit = (void *)ifp->netdev_ops; ifp->netdev_ops = &((struct netmap_hw_adapter *)na)->nm_ndo; #endif } static inline void nm_clear_native_flags(struct netmap_adapter *na) { struct ifnet *ifp = na->ifp; #ifdef __FreeBSD__ ifp->if_transmit = na->if_transmit; #else ifp->netdev_ops = (void *)na->if_transmit; #endif na->na_flags &= ~(NAF_NATIVE_ON | NAF_NETMAP_ON); #ifdef IFCAP_NETMAP /* or FreeBSD ? */ ifp->if_capenable &= ~IFCAP_NETMAP; #endif } /* * validates parameters in the ring/kring, returns a value for head * If any error, returns ring_size to force a reinit. */ uint32_t nm_txsync_prologue(struct netmap_kring *); /* * validates parameters in the ring/kring, returns a value for head, * and the 'reserved' value in the argument. * If any error, returns ring_size lim to force a reinit. */ uint32_t nm_rxsync_prologue(struct netmap_kring *); /* * update kring and ring at the end of txsync. */ static inline void nm_txsync_finalize(struct netmap_kring *kring) { /* update ring head/tail to what the kernel knows */ kring->ring->tail = kring->rtail = kring->nr_hwtail; kring->ring->head = kring->rhead = kring->nr_hwcur; /* note, head/rhead/hwcur might be behind cur/rcur * if no carrier */ ND(5, "%s now hwcur %d hwtail %d head %d cur %d tail %d", kring->name, kring->nr_hwcur, kring->nr_hwtail, kring->rhead, kring->rcur, kring->rtail); } /* * update kring and ring at the end of rxsync */ static inline void nm_rxsync_finalize(struct netmap_kring *kring) { /* tell userspace that there might be new packets */ //struct netmap_ring *ring = kring->ring; ND("head %d cur %d tail %d -> %d", ring->head, ring->cur, ring->tail, kring->nr_hwtail); kring->ring->tail = kring->rtail = kring->nr_hwtail; /* make a copy of the state for next round */ kring->rhead = kring->ring->head; kring->rcur = kring->ring->cur; } /* check/fix address and len in tx rings */ #if 1 /* debug version */ #define NM_CHECK_ADDR_LEN(_a, _l) do { \ if (_a == netmap_buffer_base || _l > NETMAP_BUF_SIZE) { \ RD(5, "bad addr/len ring %d slot %d idx %d len %d", \ ring_nr, nm_i, slot->buf_idx, len); \ if (_l > NETMAP_BUF_SIZE) \ _l = NETMAP_BUF_SIZE; \ } } while (0) #else /* no debug version */ #define NM_CHECK_ADDR_LEN(_a, _l) do { \ if (_l > NETMAP_BUF_SIZE) \ _l = NETMAP_BUF_SIZE; \ } while (0) #endif /*---------------------------------------------------------------*/ /* * Support routines to be used with the VALE switch */ int netmap_update_config(struct netmap_adapter *na); int netmap_krings_create(struct netmap_adapter *na, u_int ntx, u_int nrx, u_int tailroom); void netmap_krings_delete(struct netmap_adapter *na); int netmap_rxsync_from_host(struct netmap_adapter *na, struct thread *td, void *pwait); struct netmap_if * netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na, uint16_t ringid, int *err); u_int nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg); int netmap_get_na(struct nmreq *nmr, struct netmap_adapter **na, int create); int netmap_get_hw_na(struct ifnet *ifp, struct netmap_adapter **na); #ifdef WITH_VALE /* * The following bridge-related functions are used by other * kernel modules. * * VALE only supports unicast or broadcast. The lookup * function can return 0 .. NM_BDG_MAXPORTS-1 for regular ports, * NM_BDG_MAXPORTS for broadcast, NM_BDG_MAXPORTS+1 for unknown. * XXX in practice "unknown" might be handled same as broadcast. */ typedef u_int (*bdg_lookup_fn_t)(char *buf, u_int len, uint8_t *ring_nr, struct netmap_vp_adapter *); u_int netmap_bdg_learning(char *, u_int, uint8_t *, struct netmap_vp_adapter *); #define NM_BDG_MAXPORTS 254 /* up to 254 */ #define NM_BDG_BROADCAST NM_BDG_MAXPORTS #define NM_BDG_NOPORT (NM_BDG_MAXPORTS+1) #define NM_NAME "vale" /* prefix for bridge port name */ /* these are redefined in case of no VALE support */ int netmap_get_bdg_na(struct nmreq *nmr, struct netmap_adapter **na, int create); void netmap_init_bridges(void); int netmap_bdg_ctl(struct nmreq *nmr, bdg_lookup_fn_t func); #else /* !WITH_VALE */ #define netmap_get_bdg_na(_1, _2, _3) 0 #define netmap_init_bridges(_1) #define netmap_bdg_ctl(_1, _2) EINVAL #endif /* !WITH_VALE */ /* Various prototypes */ int netmap_poll(struct cdev *dev, int events, struct thread *td); int netmap_init(void); void netmap_fini(void); int netmap_get_memory(struct netmap_priv_d* p); void netmap_dtor(void *data); int netmap_dtor_locked(struct netmap_priv_d *priv); int netmap_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td); /* netmap_adapter creation/destruction */ #define NM_IFPNAME(ifp) ((ifp) ? (ifp)->if_xname : "zombie") // #define NM_DEBUG_PUTGET 1 #ifdef NM_DEBUG_PUTGET #define NM_DBG(f) __##f void __netmap_adapter_get(struct netmap_adapter *na); #define netmap_adapter_get(na) \ do { \ struct netmap_adapter *__na = na; \ D("getting %p:%s (%d)", __na, NM_IFPNAME(__na->ifp), __na->na_refcount); \ __netmap_adapter_get(__na); \ } while (0) int __netmap_adapter_put(struct netmap_adapter *na); #define netmap_adapter_put(na) \ do { \ struct netmap_adapter *__na = na; \ D("putting %p:%s (%d)", __na, NM_IFPNAME(__na->ifp), __na->na_refcount); \ __netmap_adapter_put(__na); \ } while (0) #else /* !NM_DEBUG_PUTGET */ #define NM_DBG(f) f void netmap_adapter_get(struct netmap_adapter *na); int netmap_adapter_put(struct netmap_adapter *na); #endif /* !NM_DEBUG_PUTGET */ /* * module variables */ extern u_int netmap_buf_size; #define NETMAP_BUF_SIZE netmap_buf_size // XXX remove extern int netmap_mitigate; // XXX not really used extern int netmap_no_pendintr; extern u_int netmap_total_buffers; // global allocator extern char *netmap_buffer_base; // global allocator extern int netmap_verbose; // XXX debugging enum { /* verbose flags */ NM_VERB_ON = 1, /* generic verbose */ NM_VERB_HOST = 0x2, /* verbose host stack */ NM_VERB_RXSYNC = 0x10, /* verbose on rxsync/txsync */ NM_VERB_TXSYNC = 0x20, NM_VERB_RXINTR = 0x100, /* verbose on rx/tx intr (driver) */ NM_VERB_TXINTR = 0x200, NM_VERB_NIC_RXSYNC = 0x1000, /* verbose on rx/tx intr (driver) */ NM_VERB_NIC_TXSYNC = 0x2000, }; extern int netmap_txsync_retry; extern int netmap_generic_mit; extern int netmap_generic_ringsize; /* * NA returns a pointer to the struct netmap adapter from the ifp, * WNA is used to write it. */ #ifndef WNA #define WNA(_ifp) (_ifp)->if_pspare[0] #endif #define NA(_ifp) ((struct netmap_adapter *)WNA(_ifp)) /* * Macros to determine if an interface is netmap capable or netmap enabled. * See the magic field in struct netmap_adapter. */ #ifdef __FreeBSD__ /* * on FreeBSD just use if_capabilities and if_capenable. */ #define NETMAP_CAPABLE(ifp) (NA(ifp) && \ (ifp)->if_capabilities & IFCAP_NETMAP ) #define NETMAP_SET_CAPABLE(ifp) \ (ifp)->if_capabilities |= IFCAP_NETMAP #else /* linux */ /* * on linux: * we check if NA(ifp) is set and its first element has a related * magic value. The capenable is within the struct netmap_adapter. */ #define NETMAP_MAGIC 0x52697a7a #define NETMAP_CAPABLE(ifp) (NA(ifp) && \ ((uint32_t)(uintptr_t)NA(ifp) ^ NA(ifp)->magic) == NETMAP_MAGIC ) #define NETMAP_SET_CAPABLE(ifp) \ NA(ifp)->magic = ((uint32_t)(uintptr_t)NA(ifp)) ^ NETMAP_MAGIC #endif /* linux */ #ifdef __FreeBSD__ /* Callback invoked by the dma machinery after a successful dmamap_load */ static void netmap_dmamap_cb(__unused void *arg, __unused bus_dma_segment_t * segs, __unused int nseg, __unused int error) { } /* bus_dmamap_load wrapper: call aforementioned function if map != NULL. * XXX can we do it without a callback ? */ static inline void netmap_load_map(bus_dma_tag_t tag, bus_dmamap_t map, void *buf) { if (map) bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE, netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT); } /* update the map when a buffer changes. */ static inline void netmap_reload_map(bus_dma_tag_t tag, bus_dmamap_t map, void *buf) { if (map) { bus_dmamap_unload(tag, map); bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE, netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT); } } #else /* linux */ /* * XXX How do we redefine these functions: * * on linux we need * dma_map_single(&pdev->dev, virt_addr, len, direction) * dma_unmap_single(&adapter->pdev->dev, phys_addr, len, direction * The len can be implicit (on netmap it is NETMAP_BUF_SIZE) * unfortunately the direction is not, so we need to change * something to have a cross API */ #define netmap_load_map(_t, _m, _b) #define netmap_reload_map(_t, _m, _b) #if 0 struct e1000_buffer *buffer_info = &tx_ring->buffer_info[l]; /* set time_stamp *before* dma to help avoid a possible race */ buffer_info->time_stamp = jiffies; buffer_info->mapped_as_page = false; buffer_info->length = len; //buffer_info->next_to_watch = l; /* reload dma map */ dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, NETMAP_BUF_SIZE, DMA_TO_DEVICE); buffer_info->dma = dma_map_single(&adapter->pdev->dev, addr, NETMAP_BUF_SIZE, DMA_TO_DEVICE); if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) { D("dma mapping error"); /* goto dma_error; See e1000_put_txbuf() */ /* XXX reset */ } tx_desc->buffer_addr = htole64(buffer_info->dma); //XXX #endif /* * The bus_dmamap_sync() can be one of wmb() or rmb() depending on direction. */ #define bus_dmamap_sync(_a, _b, _c) #endif /* linux */ /* * functions to map NIC to KRING indexes (n2k) and vice versa (k2n) */ static inline int netmap_idx_n2k(struct netmap_kring *kr, int idx) { int n = kr->nkr_num_slots; idx += kr->nkr_hwofs; if (idx < 0) return idx + n; else if (idx < n) return idx; else return idx - n; } static inline int netmap_idx_k2n(struct netmap_kring *kr, int idx) { int n = kr->nkr_num_slots; idx -= kr->nkr_hwofs; if (idx < 0) return idx + n; else if (idx < n) return idx; else return idx - n; } /* Entries of the look-up table. */ struct lut_entry { void *vaddr; /* virtual address. */ vm_paddr_t paddr; /* physical address. */ }; struct netmap_obj_pool; extern struct lut_entry *netmap_buffer_lut; #define NMB_VA(i) (netmap_buffer_lut[i].vaddr) #define NMB_PA(i) (netmap_buffer_lut[i].paddr) /* * NMB return the virtual address of a buffer (buffer 0 on bad index) * PNMB also fills the physical address */ static inline void * NMB(struct netmap_slot *slot) { uint32_t i = slot->buf_idx; return (unlikely(i >= netmap_total_buffers)) ? NMB_VA(0) : NMB_VA(i); } static inline void * PNMB(struct netmap_slot *slot, uint64_t *pp) { uint32_t i = slot->buf_idx; void *ret = (i >= netmap_total_buffers) ? NMB_VA(0) : NMB_VA(i); *pp = (i >= netmap_total_buffers) ? NMB_PA(0) : NMB_PA(i); return ret; } /* Generic version of NMB, which uses device-specific memory. */ static inline void * BDG_NMB(struct netmap_adapter *na, struct netmap_slot *slot) { struct lut_entry *lut = na->na_lut; uint32_t i = slot->buf_idx; return (unlikely(i >= na->na_lut_objtotal)) ? lut[0].vaddr : lut[i].vaddr; } void netmap_txsync_to_host(struct netmap_adapter *na); /* * Structure associated to each thread which registered an interface. * * The first 4 fields of this structure are written by NIOCREGIF and * read by poll() and NIOC?XSYNC. * * There is low contention among writers (a correct user program * should have none) and among writers and readers, so we use a * single global lock to protect the structure initialization; * since initialization involves the allocation of memory, * we reuse the memory allocator lock. * * Read access to the structure is lock free. Readers must check that * np_nifp is not NULL before using the other fields. * If np_nifp is NULL initialization has not been performed, * so they should return an error to userspace. * * The ref_done field is used to regulate access to the refcount in the * memory allocator. The refcount must be incremented at most once for * each open("/dev/netmap"). The increment is performed by the first * function that calls netmap_get_memory() (currently called by * mmap(), NIOCGINFO and NIOCREGIF). * If the refcount is incremented, it is then decremented when the * private structure is destroyed. */ struct netmap_priv_d { struct netmap_if * volatile np_nifp; /* netmap if descriptor. */ struct netmap_adapter *np_na; int np_ringid; /* from the ioctl */ u_int np_qfirst, np_qlast; /* range of rings to scan */ uint16_t np_txpoll; struct netmap_mem_d *np_mref; /* use with NMG_LOCK held */ /* np_refcount is only used on FreeBSD */ int np_refcount; /* use with NMG_LOCK held */ }; /* * generic netmap emulation for devices that do not have * native netmap support. */ int generic_netmap_attach(struct ifnet *ifp); int netmap_catch_rx(struct netmap_adapter *na, int intercept); void generic_rx_handler(struct ifnet *ifp, struct mbuf *m);; void netmap_catch_tx(struct netmap_generic_adapter *na, int enable); int generic_xmit_frame(struct ifnet *ifp, struct mbuf *m, void *addr, u_int len, u_int ring_nr); int generic_find_num_desc(struct ifnet *ifp, u_int *tx, u_int *rx); void generic_find_num_queues(struct ifnet *ifp, u_int *txq, u_int *rxq); /* * netmap_mitigation API. This is used by the generic adapter * to reduce the number of interrupt requests/selwakeup * to clients on incoming packets. */ void netmap_mitigation_init(struct netmap_generic_adapter *na); void netmap_mitigation_start(struct netmap_generic_adapter *na); void netmap_mitigation_restart(struct netmap_generic_adapter *na); int netmap_mitigation_active(struct netmap_generic_adapter *na); void netmap_mitigation_cleanup(struct netmap_generic_adapter *na); #endif /* _NET_NETMAP_KERN_H_ */