/*- * Copyright (c) 2006 Bernd Walter. All rights reserved. * Copyright (c) 2006 M. Warner Losh. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Portions of this software may have been developed with reference to * the SD Simplified Specification. The following disclaimer may apply: * * The following conditions apply to the release of the simplified * specification ("Simplified Specification") by the SD Card Association and * the SD Group. The Simplified Specification is a subset of the complete SD * Specification which is owned by the SD Card Association and the SD * Group. This Simplified Specification is provided on a non-confidential * basis subject to the disclaimers below. Any implementation of the * Simplified Specification may require a license from the SD Card * Association, SD Group, SD-3C LLC or other third parties. * * Disclaimers: * * The information contained in the Simplified Specification is presented only * as a standard specification for SD Cards and SD Host/Ancillary products and * is provided "AS-IS" without any representations or warranties of any * kind. No responsibility is assumed by the SD Group, SD-3C LLC or the SD * Card Association for any damages, any infringements of patents or other * right of the SD Group, SD-3C LLC, the SD Card Association or any third * parties, which may result from its use. No license is granted by * implication, estoppel or otherwise under any patent or other rights of the * SD Group, SD-3C LLC, the SD Card Association or any third party. Nothing * herein shall be construed as an obligation by the SD Group, the SD-3C LLC * or the SD Card Association to disclose or distribute any technical * information, know-how or other confidential information to any third party. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include "mmcbr_if.h" #include "mmcbus_if.h" struct mmc_softc { device_t dev; struct mtx sc_mtx; struct intr_config_hook config_intrhook; device_t owner; uint32_t last_rca; }; /* * Per-card data */ struct mmc_ivars { uint32_t raw_cid[4]; /* Raw bits of the CID */ uint32_t raw_csd[4]; /* Raw bits of the CSD */ uint32_t raw_scr[2]; /* Raw bits of the SCR */ uint8_t raw_ext_csd[512]; /* Raw bits of the EXT_CSD */ uint16_t rca; enum mmc_card_mode mode; struct mmc_cid cid; /* cid decoded */ struct mmc_csd csd; /* csd decoded */ struct mmc_scr scr; /* scr decoded */ u_char read_only; /* True when the device is read-only */ u_char bus_width; /* Bus width to use */ u_char timing; /* Bus timing support */ u_char high_cap; /* High Capacity card */ uint32_t tran_speed; /* Max speed in normal mode */ uint32_t hs_tran_speed; /* Max speed in high speed mode */ }; #define CMD_RETRIES 3 /* bus entry points */ static int mmc_probe(device_t dev); static int mmc_attach(device_t dev); static int mmc_detach(device_t dev); #define MMC_LOCK(_sc) mtx_lock(&(_sc)->sc_mtx) #define MMC_UNLOCK(_sc) mtx_unlock(&(_sc)->sc_mtx) #define MMC_LOCK_INIT(_sc) \ mtx_init(&_sc->sc_mtx, device_get_nameunit(_sc->dev), \ "mmc", MTX_DEF) #define MMC_LOCK_DESTROY(_sc) mtx_destroy(&_sc->sc_mtx); #define MMC_ASSERT_LOCKED(_sc) mtx_assert(&_sc->sc_mtx, MA_OWNED); #define MMC_ASSERT_UNLOCKED(_sc) mtx_assert(&_sc->sc_mtx, MA_NOTOWNED); static void mmc_delayed_attach(void *); static void mmc_power_down(struct mmc_softc *sc); static int mmc_wait_for_cmd(struct mmc_softc *sc, struct mmc_command *cmd, int retries); static int mmc_wait_for_command(struct mmc_softc *sc, uint32_t opcode, uint32_t arg, uint32_t flags, uint32_t *resp, int retries); static int mmc_select_card(struct mmc_softc *sc, uint16_t rca); static int mmc_set_bus_width(struct mmc_softc *sc, uint16_t rca, int width); static int mmc_app_send_scr(struct mmc_softc *sc, uint16_t rca, uint32_t *rawscr); static void mmc_app_decode_scr(uint32_t *raw_scr, struct mmc_scr *scr); static int mmc_send_ext_csd(struct mmc_softc *sc, uint8_t *rawextcsd); static void mmc_ms_delay(int ms) { DELAY(1000 * ms); /* XXX BAD */ } static int mmc_probe(device_t dev) { device_set_desc(dev, "MMC/SD bus"); return (0); } static int mmc_attach(device_t dev) { struct mmc_softc *sc; sc = device_get_softc(dev); sc->dev = dev; MMC_LOCK_INIT(sc); /* We'll probe and attach our children later, but before / mount */ sc->config_intrhook.ich_func = mmc_delayed_attach; sc->config_intrhook.ich_arg = sc; if (config_intrhook_establish(&sc->config_intrhook) != 0) device_printf(dev, "config_intrhook_establish failed\n"); return (0); } static int mmc_detach(device_t dev) { struct mmc_softc *sc = device_get_softc(dev); device_t *kids; int i, nkid; /* kill children [ph33r]. -sorbo */ if (device_get_children(sc->dev, &kids, &nkid) != 0) return (0); for (i = 0; i < nkid; i++) { device_t kid = kids[i]; void *ivar = device_get_ivars(kid); device_detach(kid); device_delete_child(sc->dev, kid); free(ivar, M_DEVBUF); } free(kids, M_TEMP); mmc_power_down(sc); MMC_LOCK_DESTROY(sc); return (0); } static int mmc_acquire_bus(device_t busdev, device_t dev) { struct mmc_softc *sc; struct mmc_ivars *ivar; int err; int rca; err = MMCBR_ACQUIRE_HOST(device_get_parent(busdev), busdev); if (err) return (err); sc = device_get_softc(busdev); MMC_LOCK(sc); if (sc->owner) panic("mmc: host bridge didn't seralize us."); sc->owner = dev; MMC_UNLOCK(sc); if (busdev != dev) { /* * Keep track of the last rca that we've selected. If * we're asked to do it again, don't. We never * unselect unless the bus code itself wants the mmc * bus, and constantly reselecting causes problems. */ rca = mmc_get_rca(dev); if (sc->last_rca != rca) { mmc_select_card(sc, rca); sc->last_rca = rca; /* Prepare bus width for the new card. */ ivar = device_get_ivars(dev); device_printf(busdev, "setting bus width to %d bits\n", (ivar->bus_width == bus_width_4)?4: (ivar->bus_width == bus_width_8)?8:1); mmc_set_bus_width(sc, rca, ivar->bus_width); mmcbr_set_bus_width(busdev, ivar->bus_width); mmcbr_update_ios(busdev); } } else { /* * If there's a card selected, stand down. */ if (sc->last_rca != 0) { mmc_select_card(sc, 0); sc->last_rca = 0; } } return (0); } static int mmc_release_bus(device_t busdev, device_t dev) { struct mmc_softc *sc; int err; sc = device_get_softc(busdev); MMC_LOCK(sc); if (!sc->owner) panic("mmc: releasing unowned bus."); if (sc->owner != dev) panic("mmc: you don't own the bus. game over."); MMC_UNLOCK(sc); err = MMCBR_RELEASE_HOST(device_get_parent(busdev), busdev); if (err) return (err); MMC_LOCK(sc); sc->owner = NULL; MMC_UNLOCK(sc); return (0); } static void mmc_rescan_cards(struct mmc_softc *sc) { /* XXX: Look at the children and see if they respond to status */ } static uint32_t mmc_select_vdd(struct mmc_softc *sc, uint32_t ocr) { return (ocr & MMC_OCR_VOLTAGE); } static int mmc_highest_voltage(uint32_t ocr) { int i; for (i = 30; i >= 0; i--) if (ocr & (1 << i)) return (i); return (-1); } static void mmc_wakeup(struct mmc_request *req) { struct mmc_softc *sc; /* printf("Wakeup for req %p done_data %p\n", req, req->done_data); */ sc = (struct mmc_softc *)req->done_data; MMC_LOCK(sc); req->flags |= MMC_REQ_DONE; wakeup(req); MMC_UNLOCK(sc); } static int mmc_wait_for_req(struct mmc_softc *sc, struct mmc_request *req) { int err; req->done = mmc_wakeup; req->done_data = sc; /* printf("Submitting request %p sc %p\n", req, sc); */ MMCBR_REQUEST(device_get_parent(sc->dev), sc->dev, req); MMC_LOCK(sc); do { err = msleep(req, &sc->sc_mtx, PZERO | PCATCH, "mmcreq", hz / 10); } while (!(req->flags & MMC_REQ_DONE) && err == EAGAIN); /* printf("Request %p done with error %d\n", req, err); */ MMC_UNLOCK(sc); return (err); } static int mmc_wait_for_request(device_t brdev, device_t reqdev, struct mmc_request *req) { struct mmc_softc *sc = device_get_softc(brdev); return (mmc_wait_for_req(sc, req)); } static int mmc_wait_for_cmd(struct mmc_softc *sc, struct mmc_command *cmd, int retries) { struct mmc_request mreq; memset(&mreq, 0, sizeof(mreq)); memset(cmd->resp, 0, sizeof(cmd->resp)); cmd->retries = retries; mreq.cmd = cmd; /* printf("CMD: %x ARG %x\n", cmd->opcode, cmd->arg); */ mmc_wait_for_req(sc, &mreq); return (cmd->error); } static int mmc_wait_for_app_cmd(struct mmc_softc *sc, uint32_t rca, struct mmc_command *cmd, int retries) { struct mmc_command appcmd; int err = MMC_ERR_NONE, i; for (i = 0; i <= retries; i++) { appcmd.opcode = MMC_APP_CMD; appcmd.arg = rca << 16; appcmd.flags = MMC_RSP_R1 | MMC_CMD_AC; appcmd.data = NULL; mmc_wait_for_cmd(sc, &appcmd, 0); err = appcmd.error; if (err != MMC_ERR_NONE) continue; if (!(appcmd.resp[0] & R1_APP_CMD)) return MMC_ERR_FAILED; mmc_wait_for_cmd(sc, cmd, 0); err = cmd->error; if (err == MMC_ERR_NONE) break; } return (err); } static int mmc_wait_for_command(struct mmc_softc *sc, uint32_t opcode, uint32_t arg, uint32_t flags, uint32_t *resp, int retries) { struct mmc_command cmd; int err; memset(&cmd, 0, sizeof(cmd)); cmd.opcode = opcode; cmd.arg = arg; cmd.flags = flags; cmd.data = NULL; err = mmc_wait_for_cmd(sc, &cmd, retries); if (err) return (err); if (cmd.error) return (cmd.error); if (resp) { if (flags & MMC_RSP_136) memcpy(resp, cmd.resp, 4 * sizeof(uint32_t)); else *resp = cmd.resp[0]; } return (0); } static void mmc_idle_cards(struct mmc_softc *sc) { device_t dev; struct mmc_command cmd; dev = sc->dev; mmcbr_set_chip_select(dev, cs_high); mmcbr_update_ios(dev); mmc_ms_delay(1); memset(&cmd, 0, sizeof(cmd)); cmd.opcode = MMC_GO_IDLE_STATE; cmd.arg = 0; cmd.flags = MMC_RSP_NONE | MMC_CMD_BC; cmd.data = NULL; mmc_wait_for_cmd(sc, &cmd, 0); mmc_ms_delay(1); mmcbr_set_chip_select(dev, cs_dontcare); mmcbr_update_ios(dev); mmc_ms_delay(1); } static int mmc_send_app_op_cond(struct mmc_softc *sc, uint32_t ocr, uint32_t *rocr) { struct mmc_command cmd; int err = MMC_ERR_NONE, i; memset(&cmd, 0, sizeof(cmd)); cmd.opcode = ACMD_SD_SEND_OP_COND; cmd.arg = ocr; cmd.flags = MMC_RSP_R3 | MMC_CMD_BCR; cmd.data = NULL; for (i = 0; i < 100; i++) { err = mmc_wait_for_app_cmd(sc, 0, &cmd, CMD_RETRIES); if (err != MMC_ERR_NONE) break; if ((cmd.resp[0] & MMC_OCR_CARD_BUSY) || ocr == 0) break; err = MMC_ERR_TIMEOUT; mmc_ms_delay(10); } if (rocr && err == MMC_ERR_NONE) *rocr = cmd.resp[0]; return (err); } static int mmc_send_op_cond(struct mmc_softc *sc, uint32_t ocr, uint32_t *rocr) { struct mmc_command cmd; int err = MMC_ERR_NONE, i; memset(&cmd, 0, sizeof(cmd)); cmd.opcode = MMC_SEND_OP_COND; cmd.arg = ocr; cmd.flags = MMC_RSP_R3 | MMC_CMD_BCR; cmd.data = NULL; for (i = 0; i < 100; i++) { err = mmc_wait_for_cmd(sc, &cmd, CMD_RETRIES); if (err != MMC_ERR_NONE) break; if ((cmd.resp[0] & MMC_OCR_CARD_BUSY) || ocr == 0) break; err = MMC_ERR_TIMEOUT; mmc_ms_delay(10); } if (rocr && err == MMC_ERR_NONE) *rocr = cmd.resp[0]; return (err); } static int mmc_send_if_cond(struct mmc_softc *sc, uint8_t vhs) { struct mmc_command cmd; int err; memset(&cmd, 0, sizeof(cmd)); cmd.opcode = SD_SEND_IF_COND; cmd.arg = (vhs << 8) + 0xAA; cmd.flags = MMC_RSP_R7 | MMC_CMD_BCR; cmd.data = NULL; err = mmc_wait_for_cmd(sc, &cmd, CMD_RETRIES); return (err); } static void mmc_power_up(struct mmc_softc *sc) { device_t dev; dev = sc->dev; mmcbr_set_vdd(dev, mmc_highest_voltage(mmcbr_get_host_ocr(dev))); mmcbr_set_bus_mode(dev, opendrain); mmcbr_set_chip_select(dev, cs_dontcare); mmcbr_set_bus_width(dev, bus_width_1); mmcbr_set_power_mode(dev, power_up); mmcbr_set_clock(dev, 0); mmcbr_update_ios(dev); mmc_ms_delay(1); mmcbr_set_clock(dev, mmcbr_get_f_min(sc->dev)); mmcbr_set_timing(dev, bus_timing_normal); mmcbr_set_power_mode(dev, power_on); mmcbr_update_ios(dev); mmc_ms_delay(2); } static void mmc_power_down(struct mmc_softc *sc) { device_t dev = sc->dev; mmcbr_set_bus_mode(dev, opendrain); mmcbr_set_chip_select(dev, cs_dontcare); mmcbr_set_bus_width(dev, bus_width_1); mmcbr_set_power_mode(dev, power_off); mmcbr_set_clock(dev, 0); mmcbr_set_timing(dev, bus_timing_normal); mmcbr_update_ios(dev); } static int mmc_select_card(struct mmc_softc *sc, uint16_t rca) { return (mmc_wait_for_command(sc, MMC_SELECT_CARD, ((uint32_t)rca) << 16, MMC_RSP_R1B | MMC_CMD_AC, NULL, CMD_RETRIES)); } static int mmc_switch(struct mmc_softc *sc, uint8_t set, uint8_t index, uint8_t value) { struct mmc_command cmd; int err; cmd.opcode = MMC_SWITCH_FUNC; cmd.arg = (MMC_SWITCH_FUNC_WR << 24) | (index << 16) | (value << 8) | set; cmd.flags = MMC_RSP_R1B | MMC_CMD_AC; cmd.data = NULL; err = mmc_wait_for_cmd(sc, &cmd, 0); return (err); } static int mmc_sd_switch(struct mmc_softc *sc, uint8_t mode, uint8_t grp, uint8_t value, uint8_t *res) { int err; struct mmc_command cmd; struct mmc_data data; memset(&cmd, 0, sizeof(struct mmc_command)); memset(&data, 0, sizeof(struct mmc_data)); memset(res, 0, 64); cmd.opcode = SD_SWITCH_FUNC; cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC; cmd.arg = mode << 31; cmd.arg |= 0x00FFFFFF; cmd.arg &= ~(0xF << (grp * 4)); cmd.arg |= value << (grp * 4); cmd.data = &data; data.data = res; data.len = 64; data.flags = MMC_DATA_READ; err = mmc_wait_for_cmd(sc, &cmd, CMD_RETRIES); return (err); } static int mmc_set_bus_width(struct mmc_softc *sc, uint16_t rca, int width) { int err; if (mmcbr_get_mode(sc->dev) == mode_sd) { struct mmc_command cmd; memset(&cmd, 0, sizeof(struct mmc_command)); cmd.opcode = ACMD_SET_BUS_WIDTH; cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; switch (width) { case bus_width_1: cmd.arg = SD_BUS_WIDTH_1; break; case bus_width_4: cmd.arg = SD_BUS_WIDTH_4; break; default: return (MMC_ERR_INVALID); } err = mmc_wait_for_app_cmd(sc, rca, &cmd, CMD_RETRIES); } else { uint8_t value; switch (width) { case bus_width_1: value = EXT_CSD_BUS_WIDTH_1; break; case bus_width_4: value = EXT_CSD_BUS_WIDTH_4; break; case bus_width_8: value = EXT_CSD_BUS_WIDTH_8; break; default: return (MMC_ERR_INVALID); } err = mmc_switch(sc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, value); } return (err); } static int mmc_set_timing(struct mmc_softc *sc, int timing) { int err; uint8_t value; switch (timing) { case bus_timing_normal: value = 0; break; case bus_timing_hs: value = 1; break; default: return (MMC_ERR_INVALID); } if (mmcbr_get_mode(sc->dev) == mode_sd) { u_char switch_res[64]; err = mmc_sd_switch(sc, 1, 0, value, switch_res); } else { err = mmc_switch(sc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, value); } return (err); } static int mmc_test_bus_width(struct mmc_softc *sc) { struct mmc_command cmd; struct mmc_data data; int err; uint8_t buf[8]; uint8_t p8[8] = { 0x55, 0xAA, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; uint8_t p8ok[8] = { 0xAA, 0x55, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; uint8_t p4[4] = { 0x5A, 0x00, 0x00, 0x00, }; uint8_t p4ok[4] = { 0xA5, 0x00, 0x00, 0x00, }; if (mmcbr_get_caps(sc->dev) & MMC_CAP_8_BIT_DATA) { mmcbr_set_bus_width(sc->dev, bus_width_8); mmcbr_update_ios(sc->dev); cmd.opcode = MMC_BUSTEST_W; cmd.arg = 0; cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC; cmd.data = &data; data.data = p8; data.len = 8; data.flags = MMC_DATA_WRITE; mmc_wait_for_cmd(sc, &cmd, 0); cmd.opcode = MMC_BUSTEST_R; cmd.arg = 0; cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC; cmd.data = &data; data.data = buf; data.len = 8; data.flags = MMC_DATA_READ; err = mmc_wait_for_cmd(sc, &cmd, 0); mmcbr_set_bus_width(sc->dev, bus_width_1); mmcbr_update_ios(sc->dev); if (err == MMC_ERR_NONE && memcmp(buf, p8ok, 8) == 0) return (bus_width_8); } if (mmcbr_get_caps(sc->dev) & MMC_CAP_4_BIT_DATA) { mmcbr_set_bus_width(sc->dev, bus_width_4); mmcbr_update_ios(sc->dev); cmd.opcode = MMC_BUSTEST_W; cmd.arg = 0; cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC; cmd.data = &data; data.data = p4; data.len = 4; data.flags = MMC_DATA_WRITE; mmc_wait_for_cmd(sc, &cmd, 0); cmd.opcode = MMC_BUSTEST_R; cmd.arg = 0; cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC; cmd.data = &data; data.data = buf; data.len = 4; data.flags = MMC_DATA_READ; err = mmc_wait_for_cmd(sc, &cmd, 0); mmcbr_set_bus_width(sc->dev, bus_width_1); mmcbr_update_ios(sc->dev); if (err == MMC_ERR_NONE && memcmp(buf, p4ok, 4) == 0) return (bus_width_4); } return (bus_width_1); } static uint32_t mmc_get_bits(uint32_t *bits, int start, int size) { const int i = 3 - (start / 32); const int shift = start & 31; uint32_t retval = bits[i] >> shift; if (size + shift > 32) retval |= bits[i - 1] << (32 - shift); return (retval & ((1 << size) - 1)); } static void mmc_decode_cid(int is_sd, uint32_t *raw_cid, struct mmc_cid *cid) { int i; memset(cid, 0, sizeof(*cid)); if (is_sd) { /* There's no version info, so we take it on faith */ cid->mid = mmc_get_bits(raw_cid, 120, 8); cid->oid = mmc_get_bits(raw_cid, 104, 16); for (i = 0; i < 5; i++) cid->pnm[i] = mmc_get_bits(raw_cid, 96 - i * 8, 8); cid->prv = mmc_get_bits(raw_cid, 56, 8); cid->psn = mmc_get_bits(raw_cid, 24, 32); cid->mdt_year = mmc_get_bits(raw_cid, 12, 8) + 2001; cid->mdt_month = mmc_get_bits(raw_cid, 8, 4); } else { cid->mid = mmc_get_bits(raw_cid, 120, 8); cid->oid = mmc_get_bits(raw_cid, 104, 8); for (i = 0; i < 6; i++) cid->pnm[i] = mmc_get_bits(raw_cid, 96 - i * 8, 8); cid->prv = mmc_get_bits(raw_cid, 48, 8); cid->psn = mmc_get_bits(raw_cid, 16, 32); cid->mdt_month = mmc_get_bits(raw_cid, 12, 4); cid->mdt_year = mmc_get_bits(raw_cid, 8, 4) + 1997; } } static const int exp[8] = { 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000 }; static const int mant[16] = { 10, 12, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80 }; static const int cur_min[8] = { 500, 1000, 5000, 10000, 25000, 35000, 60000, 100000 }; static const int cur_max[8] = { 1000, 5000, 10000, 25000, 35000, 45000, 800000, 200000 }; static void mmc_decode_csd(int is_sd, uint32_t *raw_csd, struct mmc_csd *csd) { int v; int m; int e; memset(csd, 0, sizeof(*csd)); if (is_sd) { csd->csd_structure = v = mmc_get_bits(raw_csd, 126, 2); if (v == 0) { m = mmc_get_bits(raw_csd, 115, 4); e = mmc_get_bits(raw_csd, 112, 3); csd->tacc = exp[e] * mant[m] + 9 / 10; csd->nsac = mmc_get_bits(raw_csd, 104, 8) * 100; m = mmc_get_bits(raw_csd, 99, 4); e = mmc_get_bits(raw_csd, 96, 3); csd->tran_speed = exp[e] * 10000 * mant[m]; csd->ccc = mmc_get_bits(raw_csd, 84, 12); csd->read_bl_len = 1 << mmc_get_bits(raw_csd, 80, 4); csd->read_bl_partial = mmc_get_bits(raw_csd, 79, 1); csd->write_blk_misalign = mmc_get_bits(raw_csd, 78, 1); csd->read_blk_misalign = mmc_get_bits(raw_csd, 77, 1); csd->dsr_imp = mmc_get_bits(raw_csd, 76, 1); csd->vdd_r_curr_min = cur_min[mmc_get_bits(raw_csd, 59, 3)]; csd->vdd_r_curr_max = cur_max[mmc_get_bits(raw_csd, 56, 3)]; csd->vdd_w_curr_min = cur_min[mmc_get_bits(raw_csd, 53, 3)]; csd->vdd_w_curr_max = cur_max[mmc_get_bits(raw_csd, 50, 3)]; m = mmc_get_bits(raw_csd, 62, 12); e = mmc_get_bits(raw_csd, 47, 3); csd->capacity = ((1 + m) << (e + 2)) * csd->read_bl_len; csd->erase_blk_en = mmc_get_bits(raw_csd, 46, 1); csd->sector_size = mmc_get_bits(raw_csd, 39, 7); csd->wp_grp_size = mmc_get_bits(raw_csd, 32, 7); csd->wp_grp_enable = mmc_get_bits(raw_csd, 31, 1); csd->r2w_factor = 1 << mmc_get_bits(raw_csd, 26, 3); csd->write_bl_len = 1 << mmc_get_bits(raw_csd, 22, 4); csd->write_bl_partial = mmc_get_bits(raw_csd, 21, 1); } else if (v == 1) { m = mmc_get_bits(raw_csd, 115, 4); e = mmc_get_bits(raw_csd, 112, 3); csd->tacc = exp[e] * mant[m] + 9 / 10; csd->nsac = mmc_get_bits(raw_csd, 104, 8) * 100; m = mmc_get_bits(raw_csd, 99, 4); e = mmc_get_bits(raw_csd, 96, 3); csd->tran_speed = exp[e] * 10000 * mant[m]; csd->ccc = mmc_get_bits(raw_csd, 84, 12); csd->read_bl_len = 1 << mmc_get_bits(raw_csd, 80, 4); csd->read_bl_partial = mmc_get_bits(raw_csd, 79, 1); csd->write_blk_misalign = mmc_get_bits(raw_csd, 78, 1); csd->read_blk_misalign = mmc_get_bits(raw_csd, 77, 1); csd->dsr_imp = mmc_get_bits(raw_csd, 76, 1); csd->capacity = ((uint64_t)mmc_get_bits(raw_csd, 48, 22) + 1) * 512 * 1024; csd->erase_blk_en = mmc_get_bits(raw_csd, 46, 1); csd->sector_size = mmc_get_bits(raw_csd, 39, 7); csd->wp_grp_size = mmc_get_bits(raw_csd, 32, 7); csd->wp_grp_enable = mmc_get_bits(raw_csd, 31, 1); csd->r2w_factor = 1 << mmc_get_bits(raw_csd, 26, 3); csd->write_bl_len = 1 << mmc_get_bits(raw_csd, 22, 4); csd->write_bl_partial = mmc_get_bits(raw_csd, 21, 1); } else panic("unknown SD CSD version"); } else { csd->csd_structure = mmc_get_bits(raw_csd, 126, 2); csd->spec_vers = mmc_get_bits(raw_csd, 122, 4); m = mmc_get_bits(raw_csd, 115, 4); e = mmc_get_bits(raw_csd, 112, 3); csd->tacc = exp[e] * mant[m] + 9 / 10; csd->nsac = mmc_get_bits(raw_csd, 104, 8) * 100; m = mmc_get_bits(raw_csd, 99, 4); e = mmc_get_bits(raw_csd, 96, 3); csd->tran_speed = exp[e] * 10000 * mant[m]; csd->ccc = mmc_get_bits(raw_csd, 84, 12); csd->read_bl_len = 1 << mmc_get_bits(raw_csd, 80, 4); csd->read_bl_partial = mmc_get_bits(raw_csd, 79, 1); csd->write_blk_misalign = mmc_get_bits(raw_csd, 78, 1); csd->read_blk_misalign = mmc_get_bits(raw_csd, 77, 1); csd->dsr_imp = mmc_get_bits(raw_csd, 76, 1); csd->vdd_r_curr_min = cur_min[mmc_get_bits(raw_csd, 59, 3)]; csd->vdd_r_curr_max = cur_max[mmc_get_bits(raw_csd, 56, 3)]; csd->vdd_w_curr_min = cur_min[mmc_get_bits(raw_csd, 53, 3)]; csd->vdd_w_curr_max = cur_max[mmc_get_bits(raw_csd, 50, 3)]; m = mmc_get_bits(raw_csd, 62, 12); e = mmc_get_bits(raw_csd, 47, 3); csd->capacity = ((1 + m) << (e + 2)) * csd->read_bl_len; // csd->erase_blk_en = mmc_get_bits(raw_csd, 46, 1); // csd->sector_size = mmc_get_bits(raw_csd, 39, 7); csd->wp_grp_size = mmc_get_bits(raw_csd, 32, 5); csd->wp_grp_enable = mmc_get_bits(raw_csd, 31, 1); csd->r2w_factor = 1 << mmc_get_bits(raw_csd, 26, 3); csd->write_bl_len = 1 << mmc_get_bits(raw_csd, 22, 4); csd->write_bl_partial = mmc_get_bits(raw_csd, 21, 1); } } static void mmc_app_decode_scr(uint32_t *raw_scr, struct mmc_scr *scr) { unsigned int scr_struct; uint32_t tmp[4]; tmp[3] = raw_scr[1]; tmp[2] = raw_scr[0]; memset(scr, 0, sizeof(*scr)); scr_struct = mmc_get_bits(tmp, 60, 4); if (scr_struct != 0) { printf("Unrecognised SCR structure version %d\n", scr_struct); return; } scr->sda_vsn = mmc_get_bits(tmp, 56, 4); scr->bus_widths = mmc_get_bits(tmp, 48, 4); } static int mmc_all_send_cid(struct mmc_softc *sc, uint32_t *rawcid) { struct mmc_command cmd; int err; cmd.opcode = MMC_ALL_SEND_CID; cmd.arg = 0; cmd.flags = MMC_RSP_R2 | MMC_CMD_BCR; cmd.data = NULL; err = mmc_wait_for_cmd(sc, &cmd, 0); memcpy(rawcid, cmd.resp, 4 * sizeof(uint32_t)); return (err); } static int mmc_send_csd(struct mmc_softc *sc, uint16_t rca, uint32_t *rawcid) { struct mmc_command cmd; int err; cmd.opcode = MMC_SEND_CSD; cmd.arg = rca << 16; cmd.flags = MMC_RSP_R2 | MMC_CMD_BCR; cmd.data = NULL; err = mmc_wait_for_cmd(sc, &cmd, 0); memcpy(rawcid, cmd.resp, 4 * sizeof(uint32_t)); return (err); } static int mmc_app_send_scr(struct mmc_softc *sc, uint16_t rca, uint32_t *rawscr) { int err; struct mmc_command cmd; struct mmc_data data; memset(&cmd, 0, sizeof(struct mmc_command)); memset(&data, 0, sizeof(struct mmc_data)); memset(rawscr, 0, 8); cmd.opcode = ACMD_SEND_SCR; cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC; cmd.arg = 0; cmd.data = &data; data.data = rawscr; data.len = 8; data.flags = MMC_DATA_READ; err = mmc_wait_for_app_cmd(sc, rca, &cmd, CMD_RETRIES); rawscr[0] = be32toh(rawscr[0]); rawscr[1] = be32toh(rawscr[1]); return (err); } static int mmc_send_ext_csd(struct mmc_softc *sc, uint8_t *rawextcsd) { int err; struct mmc_command cmd; struct mmc_data data; memset(&cmd, 0, sizeof(struct mmc_command)); memset(&data, 0, sizeof(struct mmc_data)); memset(rawextcsd, 0, 512); cmd.opcode = MMC_SEND_EXT_CSD; cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC; cmd.arg = 0; cmd.data = &data; data.data = rawextcsd; data.len = 512; data.flags = MMC_DATA_READ; err = mmc_wait_for_cmd(sc, &cmd, CMD_RETRIES); return (err); } static int mmc_set_relative_addr(struct mmc_softc *sc, uint16_t resp) { struct mmc_command cmd; int err; cmd.opcode = MMC_SET_RELATIVE_ADDR; cmd.arg = resp << 16; cmd.flags = MMC_RSP_R6 | MMC_CMD_BCR; cmd.data = NULL; err = mmc_wait_for_cmd(sc, &cmd, 0); return (err); } static int mmc_send_relative_addr(struct mmc_softc *sc, uint32_t *resp) { struct mmc_command cmd; int err; cmd.opcode = SD_SEND_RELATIVE_ADDR; cmd.arg = 0; cmd.flags = MMC_RSP_R6 | MMC_CMD_BCR; cmd.data = NULL; err = mmc_wait_for_cmd(sc, &cmd, 0); *resp = cmd.resp[0]; return (err); } static void mmc_discover_cards(struct mmc_softc *sc) { struct mmc_ivars *ivar; int err; uint32_t resp; device_t child; uint16_t rca = 2; u_char switch_res[64]; while (1) { ivar = malloc(sizeof(struct mmc_ivars), M_DEVBUF, M_WAITOK | M_ZERO); if (!ivar) return; err = mmc_all_send_cid(sc, ivar->raw_cid); if (err == MMC_ERR_TIMEOUT) break; if (err != MMC_ERR_NONE) { device_printf(sc->dev, "Error reading CID %d\n", err); break; } if (mmcbr_get_ro(sc->dev)) ivar->read_only = 1; ivar->bus_width = bus_width_1; ivar->mode = mmcbr_get_mode(sc->dev); if (ivar->mode == mode_sd) { mmc_decode_cid(1, ivar->raw_cid, &ivar->cid); mmc_send_relative_addr(sc, &resp); ivar->rca = resp >> 16; /* Get card CSD. */ mmc_send_csd(sc, ivar->rca, ivar->raw_csd); mmc_decode_csd(1, ivar->raw_csd, &ivar->csd); if (ivar->csd.csd_structure > 0) ivar->high_cap = 1; ivar->tran_speed = ivar->csd.tran_speed; /* Get card SCR. Card must be selected to fetch it. */ mmc_select_card(sc, ivar->rca); mmc_app_send_scr(sc, ivar->rca, ivar->raw_scr); mmc_app_decode_scr(ivar->raw_scr, &ivar->scr); /* Get card switch capabilities. */ if ((ivar->scr.sda_vsn >= 1) && (ivar->csd.ccc & (1<<10))) { mmc_sd_switch(sc, 0, 0, 0xF, switch_res); if (switch_res[13] & 2) { ivar->timing = bus_timing_hs; ivar->hs_tran_speed = 50000000; } } mmc_select_card(sc, 0); /* Find max supported bus width. */ if ((mmcbr_get_caps(sc->dev) & MMC_CAP_4_BIT_DATA) && (ivar->scr.bus_widths & SD_SCR_BUS_WIDTH_4)) ivar->bus_width = bus_width_4; /* Add device. */ child = device_add_child(sc->dev, NULL, -1); device_set_ivars(child, ivar); return; } mmc_decode_cid(0, ivar->raw_cid, &ivar->cid); ivar->rca = rca++; mmc_set_relative_addr(sc, ivar->rca); /* Get card CSD. */ mmc_send_csd(sc, ivar->rca, ivar->raw_csd); mmc_decode_csd(0, ivar->raw_csd, &ivar->csd); ivar->tran_speed = ivar->csd.tran_speed; /* Only MMC >= 4.x cards support EXT_CSD. */ if (ivar->csd.spec_vers >= 4) { /* Card must be selected to fetch EXT_CSD. */ mmc_select_card(sc, ivar->rca); mmc_send_ext_csd(sc, ivar->raw_ext_csd); /* Get card speed in high speed mode. */ ivar->timing = bus_timing_hs; if (((uint8_t *)(ivar->raw_ext_csd))[EXT_CSD_CARD_TYPE] & EXT_CSD_CARD_TYPE_52) ivar->hs_tran_speed = 52000000; else if (((uint8_t *)(ivar->raw_ext_csd))[EXT_CSD_CARD_TYPE] & EXT_CSD_CARD_TYPE_26) ivar->hs_tran_speed = 26000000; else ivar->hs_tran_speed = ivar->tran_speed; /* Find max supported bus width. */ ivar->bus_width = mmc_test_bus_width(sc); mmc_select_card(sc, 0); } else { ivar->bus_width = bus_width_1; ivar->timing = bus_timing_normal; } /* Add device. */ child = device_add_child(sc->dev, NULL, -1); device_set_ivars(child, ivar); } free(ivar, M_DEVBUF); } static void mmc_go_discovery(struct mmc_softc *sc) { uint32_t ocr; device_t dev; int err; dev = sc->dev; if (mmcbr_get_power_mode(dev) != power_on) { /* * First, try SD modes */ mmcbr_set_mode(dev, mode_sd); mmc_power_up(sc); mmcbr_set_bus_mode(dev, pushpull); mmc_idle_cards(sc); err = mmc_send_if_cond(sc, 1); if (mmc_send_app_op_cond(sc, err?0:MMC_OCR_CCS, &ocr) != MMC_ERR_NONE) { /* * Failed, try MMC */ mmcbr_set_mode(dev, mode_mmc); if (mmc_send_op_cond(sc, 0, &ocr) != MMC_ERR_NONE) return; /* Failed both, punt! XXX powerdown? */ } mmcbr_set_ocr(dev, mmc_select_vdd(sc, ocr)); if (mmcbr_get_ocr(dev) != 0) mmc_idle_cards(sc); } else { mmcbr_set_bus_mode(dev, opendrain); mmcbr_set_clock(dev, mmcbr_get_f_min(dev)); mmcbr_update_ios(dev); /* XXX recompute vdd based on new cards? */ } /* * Make sure that we have a mutually agreeable voltage to at least * one card on the bus. */ if (mmcbr_get_ocr(dev) == 0) return; /* * Reselect the cards after we've idled them above. */ if (mmcbr_get_mode(dev) == mode_sd) { err = mmc_send_if_cond(sc, 1); mmc_send_app_op_cond(sc, (err?0:MMC_OCR_CCS)|mmcbr_get_ocr(dev), NULL); } else mmc_send_op_cond(sc, mmcbr_get_ocr(dev), NULL); mmc_discover_cards(sc); mmcbr_set_bus_mode(dev, pushpull); mmcbr_update_ios(dev); bus_generic_attach(dev); /* mmc_update_children_sysctl(dev);*/ } static int mmc_calculate_clock(struct mmc_softc *sc) { int max_dtr, max_hs_dtr, max_timing; int nkid, i, f_min, f_max; device_t *kids; struct mmc_ivars *ivar; f_min = mmcbr_get_f_min(sc->dev); f_max = mmcbr_get_f_max(sc->dev); max_dtr = max_hs_dtr = f_max; if ((mmcbr_get_caps(sc->dev) & MMC_CAP_HSPEED)) max_timing = bus_timing_hs; else max_timing = bus_timing_normal; if (device_get_children(sc->dev, &kids, &nkid) != 0) panic("can't get children"); for (i = 0; i < nkid; i++) { ivar = device_get_ivars(kids[i]); if (ivar->timing < max_timing) max_timing = ivar->timing; if (ivar->tran_speed < max_dtr) max_dtr = ivar->tran_speed; if (ivar->hs_tran_speed < max_dtr) max_hs_dtr = ivar->hs_tran_speed; } for (i = 0; i < nkid; i++) { ivar = device_get_ivars(kids[i]); if (ivar->timing == bus_timing_normal) continue; mmc_select_card(sc, ivar->rca); mmc_set_timing(sc, max_timing); } mmc_select_card(sc, 0); free(kids, M_TEMP); if (max_timing == bus_timing_hs) max_dtr = max_hs_dtr; device_printf(sc->dev, "setting transfer rate to %d.%03dMHz%s\n", max_dtr / 1000000, (max_dtr / 1000) % 1000, (max_timing == bus_timing_hs)?" with high speed timing":""); mmcbr_set_timing(sc->dev, max_timing); mmcbr_set_clock(sc->dev, max_dtr); mmcbr_update_ios(sc->dev); return max_dtr; } static void mmc_scan(struct mmc_softc *sc) { device_t dev; dev = sc->dev; mmc_acquire_bus(dev, dev); if (mmcbr_get_power_mode(dev) == power_on) mmc_rescan_cards(sc); mmc_go_discovery(sc); mmc_calculate_clock(sc); mmc_release_bus(dev, dev); /* XXX probe/attach/detach children? */ } static int mmc_read_ivar(device_t bus, device_t child, int which, u_char *result) { struct mmc_ivars *ivar = device_get_ivars(child); switch (which) { default: return (EINVAL); case MMC_IVAR_DSR_IMP: *(int *)result = ivar->csd.dsr_imp; break; case MMC_IVAR_MEDIA_SIZE: *(off_t *)result = ivar->csd.capacity / MMC_SECTOR_SIZE; break; case MMC_IVAR_RCA: *(int *)result = ivar->rca; break; case MMC_IVAR_SECTOR_SIZE: *(int *)result = MMC_SECTOR_SIZE; break; case MMC_IVAR_TRAN_SPEED: *(int *)result = ivar->csd.tran_speed; break; case MMC_IVAR_READ_ONLY: *(int *)result = ivar->read_only; break; case MMC_IVAR_HIGH_CAP: *(int *)result = ivar->high_cap; break; } return (0); } static int mmc_write_ivar(device_t bus, device_t child, int which, uintptr_t value) { /* * None are writable ATM */ return (EINVAL); } static void mmc_delayed_attach(void *xsc) { struct mmc_softc *sc = xsc; mmc_scan(sc); config_intrhook_disestablish(&sc->config_intrhook); } static device_method_t mmc_methods[] = { /* device_if */ DEVMETHOD(device_probe, mmc_probe), DEVMETHOD(device_attach, mmc_attach), DEVMETHOD(device_detach, mmc_detach), /* Bus interface */ DEVMETHOD(bus_read_ivar, mmc_read_ivar), DEVMETHOD(bus_write_ivar, mmc_write_ivar), /* MMC Bus interface */ DEVMETHOD(mmcbus_wait_for_request, mmc_wait_for_request), DEVMETHOD(mmcbus_acquire_bus, mmc_acquire_bus), DEVMETHOD(mmcbus_release_bus, mmc_release_bus), {0, 0}, }; static driver_t mmc_driver = { "mmc", mmc_methods, sizeof(struct mmc_softc), }; static devclass_t mmc_devclass; DRIVER_MODULE(mmc, at91_mci, mmc_driver, mmc_devclass, 0, 0); DRIVER_MODULE(mmc, sdhci, mmc_driver, mmc_devclass, 0, 0);