/*- * Copyright (c) 1983, 1988, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #if 0 #ifndef lint static char sccsid[] = "From: @(#)route.c 8.6 (Berkeley) 4/28/95"; #endif /* not lint */ #endif #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "netstat.h" #define kget(p, d) (kread((u_long)(p), (char *)&(d), sizeof (d))) /* * Definitions for showing gateway flags. */ struct bits { u_long b_mask; char b_val; } bits[] = { { RTF_UP, 'U' }, { RTF_GATEWAY, 'G' }, { RTF_HOST, 'H' }, { RTF_REJECT, 'R' }, { RTF_DYNAMIC, 'D' }, { RTF_MODIFIED, 'M' }, { RTF_DONE, 'd' }, /* Completed -- for routing messages only */ { RTF_XRESOLVE, 'X' }, { RTF_STATIC, 'S' }, { RTF_PROTO1, '1' }, { RTF_PROTO2, '2' }, { RTF_PRCLONING,'c' }, { RTF_PROTO3, '3' }, { RTF_BLACKHOLE,'B' }, { RTF_BROADCAST,'b' }, #ifdef RTF_LLINFO { RTF_LLINFO, 'L' }, #endif #ifdef RTF_WASCLONED { RTF_WASCLONED,'W' }, #endif #ifdef RTF_CLONING { RTF_CLONING, 'C' }, #endif { 0 , 0 } }; /* * kvm(3) bindings for every needed symbol */ static struct nlist rl[] = { #define N_RTSTAT 0 { .n_name = "_rtstat" }, #define N_RTREE 1 { .n_name = "_rt_tables"}, #define N_RTTRASH 2 { .n_name = "_rttrash" }, { .n_name = NULL }, }; typedef union { long dummy; /* Helps align structure. */ struct sockaddr u_sa; u_short u_data[128]; } sa_u; static sa_u pt_u; struct ifmap_entry { char ifname[IFNAMSIZ]; }; static struct ifmap_entry *ifmap; static int ifmap_size; int do_rtent = 0; struct rtentry rtentry; struct radix_node rnode; struct radix_mask rmask; int NewTree = 1; struct timespec uptime; static struct sockaddr *kgetsa(struct sockaddr *); static void size_cols(int ef, struct radix_node *rn); static void size_cols_tree(struct radix_node *rn); static void size_cols_rtentry(struct rtentry *rt); static void p_rtnode_kvm(void); static void p_rtable_sysctl(int, int); static void p_rtable_kvm(int, int ); static void p_rtree_kvm(struct radix_node *); static void p_rtentry_sysctl(struct rt_msghdr *); static void p_sockaddr(struct sockaddr *, struct sockaddr *, int, int); static const char *fmt_sockaddr(struct sockaddr *sa, struct sockaddr *mask, int flags); static void p_flags(int, const char *); static const char *fmt_flags(int f); static void p_rtentry_kvm(struct rtentry *); static void domask(char *, in_addr_t, u_long); /* * Print routing tables. */ void routepr(int fibnum, int af) { size_t intsize; int numfibs; intsize = sizeof(int); if (fibnum == -1 && sysctlbyname("net.my_fibnum", &fibnum, &intsize, NULL, 0) == -1) fibnum = 0; if (sysctlbyname("net.fibs", &numfibs, &intsize, NULL, 0) == -1) numfibs = 1; if (fibnum < 0 || fibnum > numfibs - 1) errx(EX_USAGE, "%d: invalid fib", fibnum); /* * Since kernel & userland use different timebase * (time_uptime vs time_second) and we are reading kernel memory * directly we should do rt_rmx.rmx_expire --> expire_time conversion. */ if (clock_gettime(CLOCK_UPTIME, &uptime) < 0) err(EX_OSERR, "clock_gettime() failed"); printf("Routing tables"); if (fibnum) printf(" (fib: %d)", fibnum); printf("\n"); if (Aflag == 0 && live != 0 && NewTree) p_rtable_sysctl(fibnum, af); else p_rtable_kvm(fibnum, af); } /* * Print address family header before a section of the routing table. */ void pr_family(int af1) { const char *afname; switch (af1) { case AF_INET: afname = "Internet"; break; #ifdef INET6 case AF_INET6: afname = "Internet6"; break; #endif /*INET6*/ case AF_IPX: afname = "IPX"; break; case AF_ISO: afname = "ISO"; break; case AF_APPLETALK: afname = "AppleTalk"; break; case AF_CCITT: afname = "X.25"; break; case AF_NETGRAPH: afname = "Netgraph"; break; default: afname = NULL; break; } if (afname) printf("\n%s:\n", afname); else printf("\nProtocol Family %d:\n", af1); } /* column widths; each followed by one space */ #ifndef INET6 #define WID_DST_DEFAULT(af) 18 /* width of destination column */ #define WID_GW_DEFAULT(af) 18 /* width of gateway column */ #define WID_IF_DEFAULT(af) (Wflag ? 8 : 6) /* width of netif column */ #else #define WID_DST_DEFAULT(af) \ ((af) == AF_INET6 ? (numeric_addr ? 33: 18) : 18) #define WID_GW_DEFAULT(af) \ ((af) == AF_INET6 ? (numeric_addr ? 29 : 18) : 18) #define WID_IF_DEFAULT(af) ((af) == AF_INET6 ? 8 : (Wflag ? 8 : 6)) #endif /*INET6*/ static int wid_dst; static int wid_gw; static int wid_flags; static int wid_refs; static int wid_use; static int wid_mtu; static int wid_if; static int wid_expire; static void size_cols(int ef, struct radix_node *rn) { wid_dst = WID_DST_DEFAULT(ef); wid_gw = WID_GW_DEFAULT(ef); wid_flags = 6; wid_refs = 6; wid_use = 8; wid_mtu = 6; wid_if = WID_IF_DEFAULT(ef); wid_expire = 6; if (Wflag && rn != NULL) size_cols_tree(rn); } static void size_cols_tree(struct radix_node *rn) { again: if (kget(rn, rnode) != 0) return; if (!(rnode.rn_flags & RNF_ACTIVE)) return; if (rnode.rn_bit < 0) { if ((rnode.rn_flags & RNF_ROOT) == 0) { if (kget(rn, rtentry) != 0) return; size_cols_rtentry(&rtentry); } if ((rn = rnode.rn_dupedkey)) goto again; } else { rn = rnode.rn_right; size_cols_tree(rnode.rn_left); size_cols_tree(rn); } } static void size_cols_rtentry(struct rtentry *rt) { static struct ifnet ifnet, *lastif; static char buffer[100]; const char *bp; struct sockaddr *sa; sa_u addr, mask; int len; bzero(&addr, sizeof(addr)); if ((sa = kgetsa(rt_key(rt)))) bcopy(sa, &addr, sa->sa_len); bzero(&mask, sizeof(mask)); if (rt_mask(rt) && (sa = kgetsa(rt_mask(rt)))) bcopy(sa, &mask, sa->sa_len); bp = fmt_sockaddr(&addr.u_sa, &mask.u_sa, rt->rt_flags); len = strlen(bp); wid_dst = MAX(len, wid_dst); bp = fmt_sockaddr(kgetsa(rt->rt_gateway), NULL, RTF_HOST); len = strlen(bp); wid_gw = MAX(len, wid_gw); bp = fmt_flags(rt->rt_flags); len = strlen(bp); wid_flags = MAX(len, wid_flags); if (addr.u_sa.sa_family == AF_INET || Wflag) { len = snprintf(buffer, sizeof(buffer), "%d", rt->rt_refcnt); wid_refs = MAX(len, wid_refs); len = snprintf(buffer, sizeof(buffer), "%lu", rt->rt_use); wid_use = MAX(len, wid_use); if (Wflag && rt->rt_rmx.rmx_mtu != 0) { len = snprintf(buffer, sizeof(buffer), "%lu", rt->rt_rmx.rmx_mtu); wid_mtu = MAX(len, wid_mtu); } } if (rt->rt_ifp) { if (rt->rt_ifp != lastif) { if (kget(rt->rt_ifp, ifnet) == 0) len = strlen(ifnet.if_xname); else len = strlen("---"); lastif = rt->rt_ifp; wid_if = MAX(len, wid_if); } if (rt->rt_rmx.rmx_expire) { time_t expire_time; if ((expire_time = rt->rt_rmx.rmx_expire - uptime.tv_sec) > 0) { len = snprintf(buffer, sizeof(buffer), "%d", (int)expire_time); wid_expire = MAX(len, wid_expire); } } } } /* * Print header for routing table columns. */ void pr_rthdr(int af1) { if (Aflag) printf("%-8.8s ","Address"); if (Wflag) { printf("%-*.*s %-*.*s %-*.*s %*.*s %*.*s %*s\n", wid_dst, wid_dst, "Destination", wid_gw, wid_gw, "Gateway", wid_flags, wid_flags, "Flags", wid_mtu, wid_mtu, "Mtu", wid_if, wid_if, "Netif", wid_expire, "Expire"); } else { printf("%-*.*s %-*.*s %-*.*s %*.*s %*s\n", wid_dst, wid_dst, "Destination", wid_gw, wid_gw, "Gateway", wid_flags, wid_flags, "Flags", wid_if, wid_if, "Netif", wid_expire, "Expire"); } } static struct sockaddr * kgetsa(struct sockaddr *dst) { if (kget(dst, pt_u.u_sa) != 0) return (NULL); if (pt_u.u_sa.sa_len > sizeof (pt_u.u_sa)) kread((u_long)dst, (char *)pt_u.u_data, pt_u.u_sa.sa_len); return (&pt_u.u_sa); } /* * Print kernel routing tables for given fib * using debugging kvm(3) interface. */ static void p_rtable_kvm(int fibnum, int af) { struct radix_node_head **rnhp, *rnh, head; struct radix_node_head **rt_tables; u_long rtree; int fam, af_size; kresolve_list(rl); if ((rtree = rl[N_RTREE].n_value) == 0) { printf("rt_tables: symbol not in namelist\n"); return; } af_size = (AF_MAX + 1) * sizeof(struct radix_node_head *); rt_tables = calloc(1, af_size); if (rt_tables == NULL) err(EX_OSERR, "memory allocation failed"); if (kread((u_long)(rtree), (char *)(rt_tables) + fibnum * af_size, af_size) != 0) return; for (fam = 0; fam <= AF_MAX; fam++) { int tmpfib; switch (fam) { case AF_INET6: case AF_INET: tmpfib = fibnum; break; default: tmpfib = 0; } rnhp = (struct radix_node_head **)*rt_tables; /* Calculate the in-kernel address. */ rnhp += tmpfib * (AF_MAX + 1) + fam; /* Read the in kernel rhn pointer. */ if (kget(rnhp, rnh) != 0) continue; if (rnh == NULL) continue; /* Read the rnh data. */ if (kget(rnh, head) != 0) continue; if (fam == AF_UNSPEC) { if (Aflag && af == 0) { printf("Netmasks:\n"); p_rtree_kvm(head.rnh_treetop); } } else if (af == AF_UNSPEC || af == fam) { size_cols(fam, head.rnh_treetop); pr_family(fam); do_rtent = 1; pr_rthdr(fam); p_rtree_kvm(head.rnh_treetop); } } } /* * Print given kernel radix tree using * debugging kvm(3) interface. */ static void p_rtree_kvm(struct radix_node *rn) { again: if (kget(rn, rnode) != 0) return; if (!(rnode.rn_flags & RNF_ACTIVE)) return; if (rnode.rn_bit < 0) { if (Aflag) printf("%-8.8lx ", (u_long)rn); if (rnode.rn_flags & RNF_ROOT) { if (Aflag) printf("(root node)%s", rnode.rn_dupedkey ? " =>\n" : "\n"); } else if (do_rtent) { if (kget(rn, rtentry) == 0) { p_rtentry_kvm(&rtentry); if (Aflag) p_rtnode_kvm(); } } else { p_sockaddr(kgetsa((struct sockaddr *)rnode.rn_key), NULL, 0, 44); putchar('\n'); } if ((rn = rnode.rn_dupedkey)) goto again; } else { if (Aflag && do_rtent) { printf("%-8.8lx ", (u_long)rn); p_rtnode_kvm(); } rn = rnode.rn_right; p_rtree_kvm(rnode.rn_left); p_rtree_kvm(rn); } } char nbuf[20]; static void p_rtnode_kvm(void) { struct radix_mask *rm = rnode.rn_mklist; if (rnode.rn_bit < 0) { if (rnode.rn_mask) { printf("\t mask "); p_sockaddr(kgetsa((struct sockaddr *)rnode.rn_mask), NULL, 0, -1); } else if (rm == 0) return; } else { sprintf(nbuf, "(%d)", rnode.rn_bit); printf("%6.6s %8.8lx : %8.8lx", nbuf, (u_long)rnode.rn_left, (u_long)rnode.rn_right); } while (rm) { if (kget(rm, rmask) != 0) break; sprintf(nbuf, " %d refs, ", rmask.rm_refs); printf(" mk = %8.8lx {(%d),%s", (u_long)rm, -1 - rmask.rm_bit, rmask.rm_refs ? nbuf : " "); if (rmask.rm_flags & RNF_NORMAL) { struct radix_node rnode_aux; printf(" , "); if (kget(rmask.rm_leaf, rnode_aux) == 0) p_sockaddr(kgetsa((struct sockaddr *)rnode_aux.rn_mask), NULL, 0, -1); else p_sockaddr(NULL, NULL, 0, -1); } else p_sockaddr(kgetsa((struct sockaddr *)rmask.rm_mask), NULL, 0, -1); putchar('}'); if ((rm = rmask.rm_mklist)) printf(" ->"); } putchar('\n'); } static void p_rtable_sysctl(int fibnum, int af) { size_t needed; int mib[7]; char *buf, *next, *lim; struct rt_msghdr *rtm; struct sockaddr *sa; int fam = 0, ifindex = 0, size; struct ifaddrs *ifap, *ifa; struct sockaddr_dl *sdl; /* * Retrieve interface list at first * since we need #ifindex -> if_xname match */ if (getifaddrs(&ifap) != 0) err(EX_OSERR, "getifaddrs"); for (ifa = ifap; ifa; ifa = ifa->ifa_next) { if (ifa->ifa_addr->sa_family != AF_LINK) continue; sdl = (struct sockaddr_dl *)ifa->ifa_addr; ifindex = sdl->sdl_index; if (ifindex >= ifmap_size) { size = roundup(ifindex + 1, 32) * sizeof(struct ifmap_entry); if ((ifmap = realloc(ifmap, size)) == NULL) errx(2, "realloc(%d) failed", size); memset(&ifmap[ifmap_size], 0, size - ifmap_size * sizeof(struct ifmap_entry)); ifmap_size = roundup(ifindex + 1, 32); } if (*ifmap[ifindex].ifname != '\0') continue; strlcpy(ifmap[ifindex].ifname, ifa->ifa_name, IFNAMSIZ); } freeifaddrs(ifap); mib[0] = CTL_NET; mib[1] = PF_ROUTE; mib[2] = 0; mib[3] = af; mib[4] = NET_RT_DUMP; mib[5] = 0; mib[6] = fibnum; if (sysctl(mib, 7, NULL, &needed, NULL, 0) < 0) { err(1, "sysctl: net.route.0.%d.dump.%d estimate", af, fibnum); } if ((buf = malloc(needed)) == 0) { errx(2, "malloc(%lu)", (unsigned long)needed); } if (sysctl(mib, 6, buf, &needed, NULL, 0) < 0) { err(1, "sysctl: net.route.0.%d.dump.%d", af, fibnum); } lim = buf + needed; for (next = buf; next < lim; next += rtm->rtm_msglen) { rtm = (struct rt_msghdr *)next; /* * Peek inside header to determine AF */ sa = (struct sockaddr *)(rtm + 1); if (fam != sa->sa_family) { fam = sa->sa_family; size_cols(fam, NULL); pr_family(fam); pr_rthdr(fam); } p_rtentry_sysctl(rtm); } } static void p_rtentry_sysctl(struct rt_msghdr *rtm) { struct sockaddr *sa = (struct sockaddr *)(rtm + 1); char buffer[128]; char prettyname[128]; sa_u addr, mask, gw; unsigned int l; #define GETSA(_s, _f) { \ bzero(&(_s), sizeof(_s)); \ if (rtm->rtm_addrs & _f) { \ l = roundup(sa->sa_len, sizeof(long)); \ memcpy(&(_s), sa, (l > sizeof(_s)) ? sizeof(_s) : l); \ sa = (struct sockaddr *)((char *)sa + l); \ } \ } GETSA(addr, RTA_DST); GETSA(gw, RTA_GATEWAY); GETSA(mask, RTA_NETMASK); p_sockaddr(&addr.u_sa, &mask.u_sa, rtm->rtm_flags, wid_dst); p_sockaddr(&gw.u_sa, NULL, RTF_HOST, wid_gw); snprintf(buffer, sizeof(buffer), "%%-%d.%ds ", wid_flags, wid_flags); p_flags(rtm->rtm_flags, buffer); if (Wflag) { if (rtm->rtm_rmx.rmx_mtu != 0) printf("%*lu ", wid_mtu, rtm->rtm_rmx.rmx_mtu); else printf("%*s ", wid_mtu, ""); } memset(prettyname, 0, sizeof(prettyname)); if (rtm->rtm_index < ifmap_size) { strlcpy(prettyname, ifmap[rtm->rtm_index].ifname, sizeof(prettyname)); if (*prettyname == '\0') strlcpy(prettyname, "---", sizeof(prettyname)); } printf("%*.*s", wid_if, wid_if, prettyname); if (rtm->rtm_rmx.rmx_expire) { time_t expire_time; if ((expire_time = rtm->rtm_rmx.rmx_expire - uptime.tv_sec) > 0) printf(" %*d", wid_expire, (int)expire_time); } putchar('\n'); } static void p_sockaddr(struct sockaddr *sa, struct sockaddr *mask, int flags, int width) { const char *cp; cp = fmt_sockaddr(sa, mask, flags); if (width < 0 ) printf("%s ", cp); else { if (numeric_addr) printf("%-*s ", width, cp); else printf("%-*.*s ", width, width, cp); } } static const char * fmt_sockaddr(struct sockaddr *sa, struct sockaddr *mask, int flags) { static char workbuf[128]; const char *cp; if (sa == NULL) return ("null"); switch(sa->sa_family) { case AF_INET: { struct sockaddr_in *sockin = (struct sockaddr_in *)sa; if ((sockin->sin_addr.s_addr == INADDR_ANY) && mask && ntohl(((struct sockaddr_in *)mask)->sin_addr.s_addr) ==0L) cp = "default" ; else if (flags & RTF_HOST) cp = routename(sockin->sin_addr.s_addr); else if (mask) cp = netname(sockin->sin_addr.s_addr, ((struct sockaddr_in *)mask)->sin_addr.s_addr); else cp = netname(sockin->sin_addr.s_addr, INADDR_ANY); break; } #ifdef INET6 case AF_INET6: { struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)sa; /* * The sa6->sin6_scope_id must be filled here because * this sockaddr is extracted from kmem(4) directly * and has KAME-specific embedded scope id in * sa6->sin6_addr.s6_addr[2]. */ in6_fillscopeid(sa6); if (flags & RTF_HOST) cp = routename6(sa6); else if (mask) cp = netname6(sa6, &((struct sockaddr_in6 *)mask)->sin6_addr); else { cp = netname6(sa6, NULL); } break; } #endif /*INET6*/ case AF_IPX: { struct ipx_addr work = ((struct sockaddr_ipx *)sa)->sipx_addr; if (ipx_nullnet(satoipx_addr(work))) cp = "default"; else cp = ipx_print(sa); break; } case AF_APPLETALK: { if (!(flags & RTF_HOST) && mask) cp = atalk_print2(sa,mask,9); else cp = atalk_print(sa,11); break; } case AF_NETGRAPH: { strlcpy(workbuf, ((struct sockaddr_ng *)sa)->sg_data, sizeof(workbuf)); cp = workbuf; break; } case AF_LINK: { struct sockaddr_dl *sdl = (struct sockaddr_dl *)sa; if (sdl->sdl_nlen == 0 && sdl->sdl_alen == 0 && sdl->sdl_slen == 0) { (void) sprintf(workbuf, "link#%d", sdl->sdl_index); cp = workbuf; } else switch (sdl->sdl_type) { case IFT_ETHER: case IFT_L2VLAN: case IFT_BRIDGE: if (sdl->sdl_alen == ETHER_ADDR_LEN) { cp = ether_ntoa((struct ether_addr *) (sdl->sdl_data + sdl->sdl_nlen)); break; } /* FALLTHROUGH */ default: cp = link_ntoa(sdl); break; } break; } default: { u_char *s = (u_char *)sa->sa_data, *slim; char *cq, *cqlim; cq = workbuf; slim = sa->sa_len + (u_char *) sa; cqlim = cq + sizeof(workbuf) - 6; cq += sprintf(cq, "(%d)", sa->sa_family); while (s < slim && cq < cqlim) { cq += sprintf(cq, " %02x", *s++); if (s < slim) cq += sprintf(cq, "%02x", *s++); } cp = workbuf; } } return (cp); } static void p_flags(int f, const char *format) { printf(format, fmt_flags(f)); } static const char * fmt_flags(int f) { static char name[33]; char *flags; struct bits *p = bits; for (flags = name; p->b_mask; p++) if (p->b_mask & f) *flags++ = p->b_val; *flags = '\0'; return (name); } static void p_rtentry_kvm(struct rtentry *rt) { static struct ifnet ifnet, *lastif; static char buffer[128]; static char prettyname[128]; struct sockaddr *sa; sa_u addr, mask; bzero(&addr, sizeof(addr)); if ((sa = kgetsa(rt_key(rt)))) bcopy(sa, &addr, sa->sa_len); bzero(&mask, sizeof(mask)); if (rt_mask(rt) && (sa = kgetsa(rt_mask(rt)))) bcopy(sa, &mask, sa->sa_len); p_sockaddr(&addr.u_sa, &mask.u_sa, rt->rt_flags, wid_dst); p_sockaddr(kgetsa(rt->rt_gateway), NULL, RTF_HOST, wid_gw); snprintf(buffer, sizeof(buffer), "%%-%d.%ds ", wid_flags, wid_flags); p_flags(rt->rt_flags, buffer); if (addr.u_sa.sa_family == AF_INET || Wflag) { #if 0 printf("%*d %*lu ", wid_refs, rt->rt_refcnt, wid_use, rt->rt_use); #endif if (Wflag) { if (rt->rt_rmx.rmx_mtu != 0) printf("%*lu ", wid_mtu, rt->rt_rmx.rmx_mtu); else printf("%*s ", wid_mtu, ""); } } if (rt->rt_ifp) { if (rt->rt_ifp != lastif) { if (kget(rt->rt_ifp, ifnet) == 0) strlcpy(prettyname, ifnet.if_xname, sizeof(prettyname)); else strlcpy(prettyname, "---", sizeof(prettyname)); lastif = rt->rt_ifp; } printf("%*.*s", wid_if, wid_if, prettyname); if (rt->rt_rmx.rmx_expire) { time_t expire_time; if ((expire_time = rt->rt_rmx.rmx_expire - uptime.tv_sec) > 0) printf(" %*d", wid_expire, (int)expire_time); } if (rt->rt_nodes[0].rn_dupedkey) printf(" =>"); } putchar('\n'); } char * routename(in_addr_t in) { char *cp; static char line[MAXHOSTNAMELEN]; struct hostent *hp; cp = 0; if (!numeric_addr) { hp = gethostbyaddr(&in, sizeof (struct in_addr), AF_INET); if (hp) { cp = hp->h_name; trimdomain(cp, strlen(cp)); } } if (cp) { strlcpy(line, cp, sizeof(line)); } else { #define C(x) ((x) & 0xff) in = ntohl(in); sprintf(line, "%u.%u.%u.%u", C(in >> 24), C(in >> 16), C(in >> 8), C(in)); } return (line); } #define NSHIFT(m) ( \ (m) == IN_CLASSA_NET ? IN_CLASSA_NSHIFT : \ (m) == IN_CLASSB_NET ? IN_CLASSB_NSHIFT : \ (m) == IN_CLASSC_NET ? IN_CLASSC_NSHIFT : \ 0) static void domask(char *dst, in_addr_t addr __unused, u_long mask) { int b, i; if (mask == 0 || (!numeric_addr && NSHIFT(mask) != 0)) { *dst = '\0'; return; } i = 0; for (b = 0; b < 32; b++) if (mask & (1 << b)) { int bb; i = b; for (bb = b+1; bb < 32; bb++) if (!(mask & (1 << bb))) { i = -1; /* noncontig */ break; } break; } if (i == -1) sprintf(dst, "&0x%lx", mask); else sprintf(dst, "/%d", 32-i); } /* * Return the name of the network whose address is given. */ char * netname(in_addr_t in, in_addr_t mask) { char *cp = 0; static char line[MAXHOSTNAMELEN]; struct netent *np = 0; in_addr_t i; /* It is ok to supply host address. */ in &= mask; i = ntohl(in); if (!numeric_addr && i) { np = getnetbyaddr(i >> NSHIFT(ntohl(mask)), AF_INET); if (np != NULL) { cp = np->n_name; trimdomain(cp, strlen(cp)); } } if (cp != NULL) { strlcpy(line, cp, sizeof(line)); } else { inet_ntop(AF_INET, &in, line, sizeof(line) - 1); } domask(line + strlen(line), i, ntohl(mask)); return (line); } #undef NSHIFT #ifdef INET6 void in6_fillscopeid(struct sockaddr_in6 *sa6) { #if defined(__KAME__) /* * XXX: This is a special workaround for KAME kernels. * sin6_scope_id field of SA should be set in the future. */ if (IN6_IS_ADDR_LINKLOCAL(&sa6->sin6_addr) || IN6_IS_ADDR_MC_NODELOCAL(&sa6->sin6_addr) || IN6_IS_ADDR_MC_LINKLOCAL(&sa6->sin6_addr)) { /* XXX: override is ok? */ sa6->sin6_scope_id = ntohs(*(u_int16_t *)&sa6->sin6_addr.s6_addr[2]); sa6->sin6_addr.s6_addr[2] = sa6->sin6_addr.s6_addr[3] = 0; } #endif } const char * netname6(struct sockaddr_in6 *sa6, struct in6_addr *mask) { static char line[MAXHOSTNAMELEN]; u_char *p = (u_char *)mask; u_char *lim; int masklen, illegal = 0, flag = 0; if (mask) { for (masklen = 0, lim = p + 16; p < lim; p++) { switch (*p) { case 0xff: masklen += 8; break; case 0xfe: masklen += 7; break; case 0xfc: masklen += 6; break; case 0xf8: masklen += 5; break; case 0xf0: masklen += 4; break; case 0xe0: masklen += 3; break; case 0xc0: masklen += 2; break; case 0x80: masklen += 1; break; case 0x00: break; default: illegal ++; break; } } if (illegal) fprintf(stderr, "illegal prefixlen\n"); } else masklen = 128; if (masklen == 0 && IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr)) return("default"); if (numeric_addr) flag |= NI_NUMERICHOST; getnameinfo((struct sockaddr *)sa6, sa6->sin6_len, line, sizeof(line), NULL, 0, flag); if (numeric_addr) sprintf(&line[strlen(line)], "/%d", masklen); return line; } char * routename6(struct sockaddr_in6 *sa6) { static char line[MAXHOSTNAMELEN]; int flag = 0; /* use local variable for safety */ struct sockaddr_in6 sa6_local; sa6_local.sin6_family = AF_INET6; sa6_local.sin6_len = sizeof(sa6_local); sa6_local.sin6_addr = sa6->sin6_addr; sa6_local.sin6_scope_id = sa6->sin6_scope_id; if (numeric_addr) flag |= NI_NUMERICHOST; getnameinfo((struct sockaddr *)&sa6_local, sa6_local.sin6_len, line, sizeof(line), NULL, 0, flag); return line; } #endif /*INET6*/ /* * Print routing statistics */ void rt_stats(void) { struct rtstat rtstat; u_long rtsaddr, rttaddr; int rttrash; kresolve_list(rl); if ((rtsaddr = rl[N_RTSTAT].n_value) == 0) { printf("rtstat: symbol not in namelist\n"); return; } if ((rttaddr = rl[N_RTTRASH].n_value) == 0) { printf("rttrash: symbol not in namelist\n"); return; } kread(rtsaddr, (char *)&rtstat, sizeof (rtstat)); kread(rttaddr, (char *)&rttrash, sizeof (rttrash)); printf("routing:\n"); #define p(f, m) if (rtstat.f || sflag <= 1) \ printf(m, rtstat.f, plural(rtstat.f)) p(rts_badredirect, "\t%hu bad routing redirect%s\n"); p(rts_dynamic, "\t%hu dynamically created route%s\n"); p(rts_newgateway, "\t%hu new gateway%s due to redirects\n"); p(rts_unreach, "\t%hu destination%s found unreachable\n"); p(rts_wildcard, "\t%hu use%s of a wildcard route\n"); #undef p if (rttrash || sflag <= 1) printf("\t%u route%s not in table but not freed\n", rttrash, plural(rttrash)); } char * ipx_print(struct sockaddr *sa) { u_short port; struct servent *sp = 0; const char *net = "", *host = ""; char *p; u_char *q; struct ipx_addr work = ((struct sockaddr_ipx *)sa)->sipx_addr; static char mybuf[50]; char cport[10], chost[15], cnet[15]; port = ntohs(work.x_port); if (ipx_nullnet(work) && ipx_nullhost(work)) { if (port) { if (sp) sprintf(mybuf, "*.%s", sp->s_name); else sprintf(mybuf, "*.%x", port); } else sprintf(mybuf, "*.*"); return (mybuf); } if (ipx_wildnet(work)) net = "any"; else if (ipx_nullnet(work)) net = "*"; else { q = work.x_net.c_net; sprintf(cnet, "%02x%02x%02x%02x", q[0], q[1], q[2], q[3]); for (p = cnet; *p == '0' && p < cnet + 8; p++) continue; net = p; } if (ipx_wildhost(work)) host = "any"; else if (ipx_nullhost(work)) host = "*"; else { q = work.x_host.c_host; sprintf(chost, "%02x%02x%02x%02x%02x%02x", q[0], q[1], q[2], q[3], q[4], q[5]); for (p = chost; *p == '0' && p < chost + 12; p++) continue; host = p; } if (port) { if (strcmp(host, "*") == 0) host = ""; if (sp) snprintf(cport, sizeof(cport), "%s%s", *host ? "." : "", sp->s_name); else snprintf(cport, sizeof(cport), "%s%x", *host ? "." : "", port); } else *cport = 0; snprintf(mybuf, sizeof(mybuf), "%s.%s%s", net, host, cport); return(mybuf); } char * ipx_phost(struct sockaddr *sa) { struct sockaddr_ipx *sipx = (struct sockaddr_ipx *)sa; struct sockaddr_ipx work; static union ipx_net ipx_zeronet; char *p; work = *sipx; work.sipx_addr.x_port = 0; work.sipx_addr.x_net = ipx_zeronet; p = ipx_print((struct sockaddr *)&work); if (strncmp("*.", p, 2) == 0) p += 2; return(p); } void upHex(char *p0) { char *p = p0; for (; *p; p++) switch (*p) { case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': *p += ('A' - 'a'); break; } }