/*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1988, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include "opt_sctp.h" #ifndef INET #error "IPDIVERT requires INET" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #include #include #endif #ifdef SCTP #include #endif #include /* * Divert sockets */ /* * Allocate enough space to hold a full IP packet */ #define DIVSNDQ (65536 + 100) #define DIVRCVQ (65536 + 100) /* * Divert sockets work in conjunction with ipfw or other packet filters, * see the divert(4) manpage for features. * Packets are selected by the packet filter and tagged with an * MTAG_IPFW_RULE tag carrying the 'divert port' number (as set by * the packet filter) and information on the matching filter rule for * subsequent reinjection. The divert_port is used to put the packet * on the corresponding divert socket, while the rule number is passed * up (at least partially) as the sin_port in the struct sockaddr. * * Packets written to the divert socket carry in sin_addr a * destination address, and in sin_port the number of the filter rule * after which to continue processing. * If the destination address is INADDR_ANY, the packet is treated as * as outgoing and sent to ip_output(); otherwise it is treated as * incoming and sent to ip_input(). * Further, sin_zero carries some information on the interface, * which can be used in the reinject -- see comments in the code. * * On reinjection, processing in ip_input() and ip_output() * will be exactly the same as for the original packet, except that * packet filter processing will start at the rule number after the one * written in the sin_port (ipfw does not allow a rule #0, so sin_port=0 * will apply the entire ruleset to the packet). */ /* Internal variables. */ static VNET_DEFINE(struct inpcbhead, divcb); static VNET_DEFINE(struct inpcbinfo, divcbinfo); #define V_divcb VNET(divcb) #define V_divcbinfo VNET(divcbinfo) static u_long div_sendspace = DIVSNDQ; /* XXX sysctl ? */ static u_long div_recvspace = DIVRCVQ; /* XXX sysctl ? */ static eventhandler_tag ip_divert_event_tag; /* * Initialize divert connection block queue. */ static void div_zone_change(void *tag) { uma_zone_set_max(V_divcbinfo.ipi_zone, maxsockets); } static int div_inpcb_init(void *mem, int size, int flags) { struct inpcb *inp = mem; INP_LOCK_INIT(inp, "inp", "divinp"); return (0); } static void div_init(void) { /* * XXX We don't use the hash list for divert IP, but it's easier to * allocate one-entry hash lists than it is to check all over the * place for hashbase == NULL. */ in_pcbinfo_init(&V_divcbinfo, "div", &V_divcb, 1, 1, "divcb", div_inpcb_init, IPI_HASHFIELDS_NONE); } static void div_destroy(void *unused __unused) { in_pcbinfo_destroy(&V_divcbinfo); } VNET_SYSUNINIT(divert, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, div_destroy, NULL); /* * IPPROTO_DIVERT is not in the real IP protocol number space; this * function should never be called. Just in case, drop any packets. */ static int div_input(struct mbuf **mp, int *offp, int proto) { struct mbuf *m = *mp; KMOD_IPSTAT_INC(ips_noproto); m_freem(m); return (IPPROTO_DONE); } /* * Divert a packet by passing it up to the divert socket at port 'port'. * * Setup generic address and protocol structures for div_input routine, * then pass them along with mbuf chain. */ static void divert_packet(struct mbuf *m, int incoming) { struct ip *ip; struct inpcb *inp; struct socket *sa; u_int16_t nport; struct sockaddr_in divsrc; struct m_tag *mtag; mtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL); if (mtag == NULL) { m_freem(m); return; } /* Assure header */ if (m->m_len < sizeof(struct ip) && (m = m_pullup(m, sizeof(struct ip))) == NULL) return; ip = mtod(m, struct ip *); /* Delayed checksums are currently not compatible with divert. */ if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { in_delayed_cksum(m); m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; } #ifdef SCTP if (m->m_pkthdr.csum_flags & CSUM_SCTP) { sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); m->m_pkthdr.csum_flags &= ~CSUM_SCTP; } #endif bzero(&divsrc, sizeof(divsrc)); divsrc.sin_len = sizeof(divsrc); divsrc.sin_family = AF_INET; /* record matching rule, in host format */ divsrc.sin_port = ((struct ipfw_rule_ref *)(mtag+1))->rulenum; /* * Record receive interface address, if any. * But only for incoming packets. */ if (incoming) { struct ifaddr *ifa; struct ifnet *ifp; /* Sanity check */ M_ASSERTPKTHDR(m); /* Find IP address for receive interface */ ifp = m->m_pkthdr.rcvif; if_addr_rlock(ifp); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_INET) continue; divsrc.sin_addr = ((struct sockaddr_in *) ifa->ifa_addr)->sin_addr; break; } if_addr_runlock(ifp); } /* * Record the incoming interface name whenever we have one. */ if (m->m_pkthdr.rcvif) { /* * Hide the actual interface name in there in the * sin_zero array. XXX This needs to be moved to a * different sockaddr type for divert, e.g. * sockaddr_div with multiple fields like * sockaddr_dl. Presently we have only 7 bytes * but that will do for now as most interfaces * are 4 or less + 2 or less bytes for unit. * There is probably a faster way of doing this, * possibly taking it from the sockaddr_dl on the iface. * This solves the problem of a P2P link and a LAN interface * having the same address, which can result in the wrong * interface being assigned to the packet when fed back * into the divert socket. Theoretically if the daemon saves * and re-uses the sockaddr_in as suggested in the man pages, * this iface name will come along for the ride. * (see div_output for the other half of this.) */ strlcpy(divsrc.sin_zero, m->m_pkthdr.rcvif->if_xname, sizeof(divsrc.sin_zero)); } /* Put packet on socket queue, if any */ sa = NULL; nport = htons((u_int16_t)(((struct ipfw_rule_ref *)(mtag+1))->info)); INP_INFO_RLOCK(&V_divcbinfo); LIST_FOREACH(inp, &V_divcb, inp_list) { /* XXX why does only one socket match? */ if (inp->inp_lport == nport) { INP_RLOCK(inp); sa = inp->inp_socket; SOCKBUF_LOCK(&sa->so_rcv); if (sbappendaddr_locked(&sa->so_rcv, (struct sockaddr *)&divsrc, m, (struct mbuf *)0) == 0) { SOCKBUF_UNLOCK(&sa->so_rcv); sa = NULL; /* force mbuf reclaim below */ } else sorwakeup_locked(sa); INP_RUNLOCK(inp); break; } } INP_INFO_RUNLOCK(&V_divcbinfo); if (sa == NULL) { m_freem(m); KMOD_IPSTAT_INC(ips_noproto); KMOD_IPSTAT_DEC(ips_delivered); } } /* * Deliver packet back into the IP processing machinery. * * If no address specified, or address is 0.0.0.0, send to ip_output(); * otherwise, send to ip_input() and mark as having been received on * the interface with that address. */ static int div_output(struct socket *so, struct mbuf *m, struct sockaddr_in *sin, struct mbuf *control) { struct ip *const ip = mtod(m, struct ip *); struct m_tag *mtag; struct ipfw_rule_ref *dt; int error = 0; /* * An mbuf may hasn't come from userland, but we pretend * that it has. */ m->m_pkthdr.rcvif = NULL; m->m_nextpkt = NULL; M_SETFIB(m, so->so_fibnum); if (control) m_freem(control); /* XXX */ mtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL); if (mtag == NULL) { /* this should be normal */ mtag = m_tag_alloc(MTAG_IPFW_RULE, 0, sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); if (mtag == NULL) { error = ENOBUFS; goto cantsend; } m_tag_prepend(m, mtag); } dt = (struct ipfw_rule_ref *)(mtag+1); /* Loopback avoidance and state recovery */ if (sin) { int i; /* set the starting point. We provide a non-zero slot, * but a non_matching chain_id to skip that info and use * the rulenum/rule_id. */ dt->slot = 1; /* dummy, chain_id is invalid */ dt->chain_id = 0; dt->rulenum = sin->sin_port+1; /* host format ? */ dt->rule_id = 0; /* * Find receive interface with the given name, stuffed * (if it exists) in the sin_zero[] field. * The name is user supplied data so don't trust its size * or that it is zero terminated. */ for (i = 0; i < sizeof(sin->sin_zero) && sin->sin_zero[i]; i++) ; if ( i > 0 && i < sizeof(sin->sin_zero)) m->m_pkthdr.rcvif = ifunit(sin->sin_zero); } /* Reinject packet into the system as incoming or outgoing */ if (!sin || sin->sin_addr.s_addr == 0) { struct mbuf *options = NULL; struct inpcb *inp; dt->info |= IPFW_IS_DIVERT | IPFW_INFO_OUT; inp = sotoinpcb(so); INP_RLOCK(inp); switch (ip->ip_v) { case IPVERSION: /* * Don't allow both user specified and setsockopt * options, and don't allow packet length sizes that * will crash. */ if ((((ip->ip_hl << 2) != sizeof(struct ip)) && inp->inp_options != NULL) || ((u_short)ntohs(ip->ip_len) > m->m_pkthdr.len)) { error = EINVAL; INP_RUNLOCK(inp); goto cantsend; } break; #ifdef INET6 case IPV6_VERSION >> 4: { struct ip6_hdr *const ip6 = mtod(m, struct ip6_hdr *); /* Don't allow packet length sizes that will crash */ if (((u_short)ntohs(ip6->ip6_plen) > m->m_pkthdr.len)) { error = EINVAL; INP_RUNLOCK(inp); goto cantsend; } break; } #endif default: error = EINVAL; INP_RUNLOCK(inp); goto cantsend; } /* Send packet to output processing */ KMOD_IPSTAT_INC(ips_rawout); /* XXX */ #ifdef MAC mac_inpcb_create_mbuf(inp, m); #endif /* * Get ready to inject the packet into ip_output(). * Just in case socket options were specified on the * divert socket, we duplicate them. This is done * to avoid having to hold the PCB locks over the call * to ip_output(), as doing this results in a number of * lock ordering complexities. * * Note that we set the multicast options argument for * ip_output() to NULL since it should be invariant that * they are not present. */ KASSERT(inp->inp_moptions == NULL, ("multicast options set on a divert socket")); /* * XXXCSJP: It is unclear to me whether or not it makes * sense for divert sockets to have options. However, * for now we will duplicate them with the INP locks * held so we can use them in ip_output() without * requring a reference to the pcb. */ if (inp->inp_options != NULL) { options = m_dup(inp->inp_options, M_NOWAIT); if (options == NULL) { INP_RUNLOCK(inp); error = ENOBUFS; goto cantsend; } } INP_RUNLOCK(inp); switch (ip->ip_v) { case IPVERSION: error = ip_output(m, options, NULL, ((so->so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0) | IP_ALLOWBROADCAST | IP_RAWOUTPUT, NULL, NULL); break; #ifdef INET6 case IPV6_VERSION >> 4: error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL); break; #endif } if (options != NULL) m_freem(options); } else { dt->info |= IPFW_IS_DIVERT | IPFW_INFO_IN; if (m->m_pkthdr.rcvif == NULL) { /* * No luck with the name, check by IP address. * Clear the port and the ifname to make sure * there are no distractions for ifa_ifwithaddr. */ struct ifaddr *ifa; bzero(sin->sin_zero, sizeof(sin->sin_zero)); sin->sin_port = 0; NET_EPOCH_ENTER(); ifa = ifa_ifwithaddr((struct sockaddr *) sin); if (ifa == NULL) { error = EADDRNOTAVAIL; NET_EPOCH_EXIT(); goto cantsend; } m->m_pkthdr.rcvif = ifa->ifa_ifp; NET_EPOCH_EXIT(); } #ifdef MAC mac_socket_create_mbuf(so, m); #endif /* Send packet to input processing via netisr */ switch (ip->ip_v) { case IPVERSION: /* * Restore M_BCAST flag when destination address is * broadcast. It is expected by ip_tryforward(). */ if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) m->m_flags |= M_MCAST; else if (in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) m->m_flags |= M_BCAST; netisr_queue_src(NETISR_IP, (uintptr_t)so, m); break; #ifdef INET6 case IPV6_VERSION >> 4: netisr_queue_src(NETISR_IPV6, (uintptr_t)so, m); break; #endif default: error = EINVAL; goto cantsend; } } return (error); cantsend: m_freem(m); return (error); } static int div_attach(struct socket *so, int proto, struct thread *td) { struct inpcb *inp; int error; inp = sotoinpcb(so); KASSERT(inp == NULL, ("div_attach: inp != NULL")); if (td != NULL) { error = priv_check(td, PRIV_NETINET_DIVERT); if (error) return (error); } error = soreserve(so, div_sendspace, div_recvspace); if (error) return error; INP_INFO_WLOCK(&V_divcbinfo); error = in_pcballoc(so, &V_divcbinfo); if (error) { INP_INFO_WUNLOCK(&V_divcbinfo); return error; } inp = (struct inpcb *)so->so_pcb; INP_INFO_WUNLOCK(&V_divcbinfo); inp->inp_ip_p = proto; inp->inp_vflag |= INP_IPV4; inp->inp_flags |= INP_HDRINCL; INP_WUNLOCK(inp); return 0; } static void div_detach(struct socket *so) { struct inpcb *inp; inp = sotoinpcb(so); KASSERT(inp != NULL, ("div_detach: inp == NULL")); INP_INFO_WLOCK(&V_divcbinfo); INP_WLOCK(inp); /* XXX defer destruction to epoch_call */ in_pcbdetach(inp); in_pcbfree(inp); INP_INFO_WUNLOCK(&V_divcbinfo); } static int div_bind(struct socket *so, struct sockaddr *nam, struct thread *td) { struct inpcb *inp; int error; inp = sotoinpcb(so); KASSERT(inp != NULL, ("div_bind: inp == NULL")); /* in_pcbbind assumes that nam is a sockaddr_in * and in_pcbbind requires a valid address. Since divert * sockets don't we need to make sure the address is * filled in properly. * XXX -- divert should not be abusing in_pcbind * and should probably have its own family. */ if (nam->sa_family != AF_INET) return EAFNOSUPPORT; ((struct sockaddr_in *)nam)->sin_addr.s_addr = INADDR_ANY; INP_INFO_WLOCK(&V_divcbinfo); INP_WLOCK(inp); INP_HASH_WLOCK(&V_divcbinfo); error = in_pcbbind(inp, nam, td->td_ucred); INP_HASH_WUNLOCK(&V_divcbinfo); INP_WUNLOCK(inp); INP_INFO_WUNLOCK(&V_divcbinfo); return error; } static int div_shutdown(struct socket *so) { struct inpcb *inp; inp = sotoinpcb(so); KASSERT(inp != NULL, ("div_shutdown: inp == NULL")); INP_WLOCK(inp); socantsendmore(so); INP_WUNLOCK(inp); return 0; } static int div_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, struct mbuf *control, struct thread *td) { /* Packet must have a header (but that's about it) */ if (m->m_len < sizeof (struct ip) && (m = m_pullup(m, sizeof (struct ip))) == NULL) { KMOD_IPSTAT_INC(ips_toosmall); m_freem(m); return EINVAL; } /* Send packet */ return div_output(so, m, (struct sockaddr_in *)nam, control); } static void div_ctlinput(int cmd, struct sockaddr *sa, void *vip) { struct in_addr faddr; faddr = ((struct sockaddr_in *)sa)->sin_addr; if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY) return; if (PRC_IS_REDIRECT(cmd)) return; } static int div_pcblist(SYSCTL_HANDLER_ARGS) { int error, i, n; struct in_pcblist *il; struct inpcb *inp, **inp_list; inp_gen_t gencnt; struct xinpgen xig; /* * The process of preparing the TCB list is too time-consuming and * resource-intensive to repeat twice on every request. */ if (req->oldptr == 0) { n = V_divcbinfo.ipi_count; n += imax(n / 8, 10); req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb); return 0; } if (req->newptr != 0) return EPERM; /* * OK, now we're committed to doing something. */ INP_INFO_RLOCK(&V_divcbinfo); gencnt = V_divcbinfo.ipi_gencnt; n = V_divcbinfo.ipi_count; INP_INFO_RUNLOCK(&V_divcbinfo); error = sysctl_wire_old_buffer(req, 2 * sizeof(xig) + n*sizeof(struct xinpcb)); if (error != 0) return (error); xig.xig_len = sizeof xig; xig.xig_count = n; xig.xig_gen = gencnt; xig.xig_sogen = so_gencnt; error = SYSCTL_OUT(req, &xig, sizeof xig); if (error) return error; il = malloc(sizeof(struct in_pcblist) + n * sizeof(struct inpcb *), M_TEMP, M_WAITOK|M_ZERO_INVARIANTS); inp_list = il->il_inp_list; INP_INFO_RLOCK(&V_divcbinfo); for (inp = LIST_FIRST(V_divcbinfo.ipi_listhead), i = 0; inp && i < n; inp = LIST_NEXT(inp, inp_list)) { INP_WLOCK(inp); if (inp->inp_gencnt <= gencnt && cr_canseeinpcb(req->td->td_ucred, inp) == 0) { in_pcbref(inp); inp_list[i++] = inp; } INP_WUNLOCK(inp); } INP_INFO_RUNLOCK(&V_divcbinfo); n = i; error = 0; for (i = 0; i < n; i++) { inp = inp_list[i]; INP_RLOCK(inp); if (inp->inp_gencnt <= gencnt) { struct xinpcb xi; in_pcbtoxinpcb(inp, &xi); INP_RUNLOCK(inp); error = SYSCTL_OUT(req, &xi, sizeof xi); } else INP_RUNLOCK(inp); } il->il_count = n; il->il_pcbinfo = &V_divcbinfo; epoch_call(net_epoch_preempt, &il->il_epoch_ctx, in_pcblist_rele_rlocked); if (!error) { /* * Give the user an updated idea of our state. * If the generation differs from what we told * her before, she knows that something happened * while we were processing this request, and it * might be necessary to retry. */ INP_INFO_RLOCK(&V_divcbinfo); xig.xig_gen = V_divcbinfo.ipi_gencnt; xig.xig_sogen = so_gencnt; xig.xig_count = V_divcbinfo.ipi_count; INP_INFO_RUNLOCK(&V_divcbinfo); error = SYSCTL_OUT(req, &xig, sizeof xig); } return error; } #ifdef SYSCTL_NODE static SYSCTL_NODE(_net_inet, IPPROTO_DIVERT, divert, CTLFLAG_RW, 0, "IPDIVERT"); SYSCTL_PROC(_net_inet_divert, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0, div_pcblist, "S,xinpcb", "List of active divert sockets"); #endif struct pr_usrreqs div_usrreqs = { .pru_attach = div_attach, .pru_bind = div_bind, .pru_control = in_control, .pru_detach = div_detach, .pru_peeraddr = in_getpeeraddr, .pru_send = div_send, .pru_shutdown = div_shutdown, .pru_sockaddr = in_getsockaddr, .pru_sosetlabel = in_pcbsosetlabel }; struct protosw div_protosw = { .pr_type = SOCK_RAW, .pr_protocol = IPPROTO_DIVERT, .pr_flags = PR_ATOMIC|PR_ADDR, .pr_input = div_input, .pr_ctlinput = div_ctlinput, .pr_ctloutput = ip_ctloutput, .pr_init = div_init, .pr_usrreqs = &div_usrreqs }; static int div_modevent(module_t mod, int type, void *unused) { int err = 0; switch (type) { case MOD_LOAD: /* * Protocol will be initialized by pf_proto_register(). * We don't have to register ip_protox because we are not * a true IP protocol that goes over the wire. */ err = pf_proto_register(PF_INET, &div_protosw); if (err != 0) return (err); ip_divert_ptr = divert_packet; ip_divert_event_tag = EVENTHANDLER_REGISTER(maxsockets_change, div_zone_change, NULL, EVENTHANDLER_PRI_ANY); break; case MOD_QUIESCE: /* * IPDIVERT may normally not be unloaded because of the * potential race conditions. Tell kldunload we can't be * unloaded unless the unload is forced. */ err = EPERM; break; case MOD_UNLOAD: /* * Forced unload. * * Module ipdivert can only be unloaded if no sockets are * connected. Maybe this can be changed later to forcefully * disconnect any open sockets. * * XXXRW: Note that there is a slight race here, as a new * socket open request could be spinning on the lock and then * we destroy the lock. */ INP_INFO_WLOCK(&V_divcbinfo); if (V_divcbinfo.ipi_count != 0) { err = EBUSY; INP_INFO_WUNLOCK(&V_divcbinfo); break; } ip_divert_ptr = NULL; /* XXX defer to epoch_call ? */ err = pf_proto_unregister(PF_INET, IPPROTO_DIVERT, SOCK_RAW); INP_INFO_WUNLOCK(&V_divcbinfo); #ifndef VIMAGE div_destroy(NULL); #endif EVENTHANDLER_DEREGISTER(maxsockets_change, ip_divert_event_tag); break; default: err = EOPNOTSUPP; break; } return err; } static moduledata_t ipdivertmod = { "ipdivert", div_modevent, 0 }; DECLARE_MODULE(ipdivert, ipdivertmod, SI_SUB_PROTO_FIREWALL, SI_ORDER_ANY); MODULE_DEPEND(ipdivert, ipfw, 3, 3, 3); MODULE_VERSION(ipdivert, 1);