/*- * Copyright (c) 2012-2013 Thomas Skibo * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * A network interface driver for Cadence GEM Gigabit Ethernet * interface such as the one used in Xilinx Zynq-7000 SoC. * * Reference: Zynq-7000 All Programmable SoC Technical Reference Manual. * (v1.4) November 16, 2012. Xilinx doc UG585. GEM is covered in Ch. 16 * and register definitions are in appendix B.18. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #endif #include #include #include #include #include #include #include #include #include "miibus_if.h" #define IF_CGEM_NAME "cgem" #define CGEM_NUM_RX_DESCS 256 /* size of receive descriptor ring */ #define CGEM_NUM_TX_DESCS 256 /* size of transmit descriptor ring */ #define MAX_DESC_RING_SIZE (MAX(CGEM_NUM_RX_DESCS*sizeof(struct cgem_rx_desc),\ CGEM_NUM_TX_DESCS*sizeof(struct cgem_tx_desc))) /* Default for sysctl rxbufs. Must be < CGEM_NUM_RX_DESCS of course. */ #define DEFAULT_NUM_RX_BUFS 64 /* number of receive bufs to queue. */ #define TX_MAX_DMA_SEGS 4 /* maximum segs in a tx mbuf dma */ #define CGEM_CKSUM_ASSIST (CSUM_IP | CSUM_TCP | CSUM_UDP | \ CSUM_TCP_IPV6 | CSUM_UDP_IPV6) struct cgem_softc { struct ifnet *ifp; struct mtx sc_mtx; device_t dev; device_t miibus; int if_old_flags; struct resource *mem_res; struct resource *irq_res; void *intrhand; struct callout tick_ch; uint32_t net_ctl_shadow; u_char eaddr[6]; bus_dma_tag_t desc_dma_tag; bus_dma_tag_t mbuf_dma_tag; /* receive descriptor ring */ struct cgem_rx_desc *rxring; bus_addr_t rxring_physaddr; struct mbuf *rxring_m[CGEM_NUM_RX_DESCS]; bus_dmamap_t rxring_m_dmamap[CGEM_NUM_RX_DESCS]; int rxring_hd_ptr; /* where to put rcv bufs */ int rxring_tl_ptr; /* where to get receives */ int rxring_queued; /* how many rcv bufs queued */ bus_dmamap_t rxring_dma_map; int rxbufs; /* tunable number rcv bufs */ int rxoverruns; /* rx ring overruns */ /* transmit descriptor ring */ struct cgem_tx_desc *txring; bus_addr_t txring_physaddr; struct mbuf *txring_m[CGEM_NUM_TX_DESCS]; bus_dmamap_t txring_m_dmamap[CGEM_NUM_TX_DESCS]; int txring_hd_ptr; /* where to put next xmits */ int txring_tl_ptr; /* next xmit mbuf to free */ int txring_queued; /* num xmits segs queued */ bus_dmamap_t txring_dma_map; }; #define RD4(sc, off) (bus_read_4((sc)->mem_res, (off))) #define WR4(sc, off, val) (bus_write_4((sc)->mem_res, (off), (val))) #define BARRIER(sc, off, len, flags) \ (bus_barrier((sc)->mem_res, (off), (len), (flags)) #define CGEM_LOCK(sc) mtx_lock(&(sc)->sc_mtx) #define CGEM_UNLOCK(sc) mtx_unlock(&(sc)->sc_mtx) #define CGEM_LOCK_INIT(sc) \ mtx_init(&(sc)->sc_mtx, device_get_nameunit((sc)->dev), \ MTX_NETWORK_LOCK, MTX_DEF) #define CGEM_LOCK_DESTROY(sc) mtx_destroy(&(sc)->sc_mtx) #define CGEM_ASSERT_LOCKED(sc) mtx_assert(&(sc)->sc_mtx, MA_OWNED) static devclass_t cgem_devclass; static int cgem_probe(device_t dev); static int cgem_attach(device_t dev); static int cgem_detach(device_t dev); static void cgem_tick(void *); static void cgem_intr(void *); static void cgem_get_mac(struct cgem_softc *sc, u_char eaddr[]) { int i; uint32_t rnd; /* See if boot loader gave us a MAC address already. */ for (i = 0; i < 4; i++) { uint32_t low = RD4(sc, CGEM_SPEC_ADDR_LOW(i)); uint32_t high = RD4(sc, CGEM_SPEC_ADDR_HI(i)) & 0xffff; if (low != 0 || high != 0) { eaddr[0] = low & 0xff; eaddr[1] = (low >> 8) & 0xff; eaddr[2] = (low >> 16) & 0xff; eaddr[3] = (low >> 24) & 0xff; eaddr[4] = high & 0xff; eaddr[5] = (high >> 8) & 0xff; break; } } /* No MAC from boot loader? Assign a random one. */ if (i == 4) { rnd = arc4random(); eaddr[0] = 'b'; eaddr[1] = 's'; eaddr[2] = 'd'; eaddr[3] = (rnd >> 16) & 0xff; eaddr[4] = (rnd >> 8) & 0xff; eaddr[5] = rnd & 0xff; device_printf(sc->dev, "no mac address found, assigning " "random: %02x:%02x:%02x:%02x:%02x:%02x\n", eaddr[0], eaddr[1], eaddr[2], eaddr[3], eaddr[4], eaddr[5]); WR4(sc, CGEM_SPEC_ADDR_LOW(0), (eaddr[3] << 24) | (eaddr[2] << 16) | (eaddr[1] << 8) | eaddr[0]); WR4(sc, CGEM_SPEC_ADDR_HI(0), (eaddr[5] << 8) | eaddr[4]); } } /* cgem_mac_hash(): map 48-bit address to a 6-bit hash. * The 6-bit hash corresponds to a bit in a 64-bit hash * register. Setting that bit in the hash register enables * reception of all frames with a destination address that hashes * to that 6-bit value. * * The hash function is described in sec. 16.2.3 in the Zynq-7000 Tech * Reference Manual. Bits 0-5 in the hash are the exclusive-or of * every sixth bit in the destination address. */ static int cgem_mac_hash(u_char eaddr[]) { int hash; int i, j; hash = 0; for (i = 0; i < 6; i++) for (j = i; j < 48; j += 6) if ((eaddr[j >> 3] & (1 << (j & 7))) != 0) hash ^= (1 << i); return hash; } /* After any change in rx flags or multi-cast addresses, set up * hash registers and net config register bits. */ static void cgem_rx_filter(struct cgem_softc *sc) { struct ifnet *ifp = sc->ifp; struct ifmultiaddr *ifma; int index; uint32_t hash_hi, hash_lo; uint32_t net_cfg; hash_hi = 0; hash_lo = 0; net_cfg = RD4(sc, CGEM_NET_CFG); net_cfg &= ~(CGEM_NET_CFG_MULTI_HASH_EN | CGEM_NET_CFG_NO_BCAST | CGEM_NET_CFG_COPY_ALL); if ((ifp->if_flags & IFF_PROMISC) != 0) net_cfg |= CGEM_NET_CFG_COPY_ALL; else { if ((ifp->if_flags & IFF_BROADCAST) == 0) net_cfg |= CGEM_NET_CFG_NO_BCAST; if ((ifp->if_flags & IFF_ALLMULTI) != 0) { hash_hi = 0xffffffff; hash_lo = 0xffffffff; } else { if_maddr_rlock(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; index = cgem_mac_hash( LLADDR((struct sockaddr_dl *) ifma->ifma_addr)); if (index > 31) hash_hi |= (1<<(index-32)); else hash_lo |= (1<txring = NULL; sc->rxring = NULL; /* Allocate non-cached DMA space for RX and TX descriptors. */ err = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MAX_DESC_RING_SIZE, 1, MAX_DESC_RING_SIZE, 0, busdma_lock_mutex, &sc->sc_mtx, &sc->desc_dma_tag); if (err) return (err); /* Set up a bus_dma_tag for mbufs. */ err = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, TX_MAX_DMA_SEGS, MCLBYTES, 0, busdma_lock_mutex, &sc->sc_mtx, &sc->mbuf_dma_tag); if (err) return (err); /* Allocate DMA memory in non-cacheable space. */ err = bus_dmamem_alloc(sc->desc_dma_tag, (void **)&sc->rxring, BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &sc->rxring_dma_map); if (err) return (err); /* Load descriptor DMA memory. */ err = bus_dmamap_load(sc->desc_dma_tag, sc->rxring_dma_map, (void *)sc->rxring, CGEM_NUM_RX_DESCS*sizeof(struct cgem_rx_desc), cgem_getaddr, &sc->rxring_physaddr, BUS_DMA_NOWAIT); if (err) return (err); /* Initialize RX descriptors. */ for (i = 0; i < CGEM_NUM_RX_DESCS; i++) { sc->rxring[i].addr = CGEM_RXDESC_OWN; sc->rxring[i].ctl = 0; sc->rxring_m[i] = NULL; err = bus_dmamap_create(sc->mbuf_dma_tag, 0, &sc->rxring_m_dmamap[i]); if (err) return (err); } sc->rxring[CGEM_NUM_RX_DESCS - 1].addr |= CGEM_RXDESC_WRAP; sc->rxring_hd_ptr = 0; sc->rxring_tl_ptr = 0; sc->rxring_queued = 0; /* Allocate DMA memory for TX descriptors in non-cacheable space. */ err = bus_dmamem_alloc(sc->desc_dma_tag, (void **)&sc->txring, BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &sc->txring_dma_map); if (err) return (err); /* Load TX descriptor DMA memory. */ err = bus_dmamap_load(sc->desc_dma_tag, sc->txring_dma_map, (void *)sc->txring, CGEM_NUM_TX_DESCS*sizeof(struct cgem_tx_desc), cgem_getaddr, &sc->txring_physaddr, BUS_DMA_NOWAIT); if (err) return (err); /* Initialize TX descriptor ring. */ for (i = 0; i < CGEM_NUM_TX_DESCS; i++) { sc->txring[i].addr = 0; sc->txring[i].ctl = CGEM_TXDESC_USED; sc->txring_m[i] = NULL; err = bus_dmamap_create(sc->mbuf_dma_tag, 0, &sc->txring_m_dmamap[i]); if (err) return (err); } sc->txring[CGEM_NUM_TX_DESCS - 1].ctl |= CGEM_TXDESC_WRAP; sc->txring_hd_ptr = 0; sc->txring_tl_ptr = 0; sc->txring_queued = 0; return (0); } /* Fill receive descriptor ring with mbufs. */ static void cgem_fill_rqueue(struct cgem_softc *sc) { struct mbuf *m = NULL; bus_dma_segment_t segs[TX_MAX_DMA_SEGS]; int nsegs; CGEM_ASSERT_LOCKED(sc); while (sc->rxring_queued < sc->rxbufs) { /* Get a cluster mbuf. */ m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (m == NULL) break; m->m_len = MCLBYTES; m->m_pkthdr.len = MCLBYTES; m->m_pkthdr.rcvif = sc->ifp; /* Load map and plug in physical address. */ if (bus_dmamap_load_mbuf_sg(sc->mbuf_dma_tag, sc->rxring_m_dmamap[sc->rxring_hd_ptr], m, segs, &nsegs, BUS_DMA_NOWAIT)) { /* XXX: warn? */ m_free(m); break; } sc->rxring_m[sc->rxring_hd_ptr] = m; /* Sync cache with receive buffer. */ bus_dmamap_sync(sc->mbuf_dma_tag, sc->rxring_m_dmamap[sc->rxring_hd_ptr], BUS_DMASYNC_PREREAD); /* Write rx descriptor and increment head pointer. */ sc->rxring[sc->rxring_hd_ptr].ctl = 0; if (sc->rxring_hd_ptr == CGEM_NUM_RX_DESCS - 1) { sc->rxring[sc->rxring_hd_ptr].addr = segs[0].ds_addr | CGEM_RXDESC_WRAP; sc->rxring_hd_ptr = 0; } else sc->rxring[sc->rxring_hd_ptr++].addr = segs[0].ds_addr; sc->rxring_queued++; } } /* Pull received packets off of receive descriptor ring. */ static void cgem_recv(struct cgem_softc *sc) { struct ifnet *ifp = sc->ifp; struct mbuf *m; uint32_t ctl; CGEM_ASSERT_LOCKED(sc); /* Pick up all packets in which the OWN bit is set. */ while (sc->rxring_queued > 0 && (sc->rxring[sc->rxring_tl_ptr].addr & CGEM_RXDESC_OWN) != 0) { ctl = sc->rxring[sc->rxring_tl_ptr].ctl; /* Grab filled mbuf. */ m = sc->rxring_m[sc->rxring_tl_ptr]; sc->rxring_m[sc->rxring_tl_ptr] = NULL; /* Sync cache with receive buffer. */ bus_dmamap_sync(sc->mbuf_dma_tag, sc->rxring_m_dmamap[sc->rxring_tl_ptr], BUS_DMASYNC_POSTREAD); /* Unload dmamap. */ bus_dmamap_unload(sc->mbuf_dma_tag, sc->rxring_m_dmamap[sc->rxring_tl_ptr]); /* Increment tail pointer. */ if (++sc->rxring_tl_ptr == CGEM_NUM_RX_DESCS) sc->rxring_tl_ptr = 0; sc->rxring_queued--; /* Check FCS and make sure entire packet landed in one mbuf * cluster (which is much bigger than the largest ethernet * packet). */ if ((ctl & CGEM_RXDESC_BAD_FCS) != 0 || (ctl & (CGEM_RXDESC_SOF | CGEM_RXDESC_EOF)) != (CGEM_RXDESC_SOF | CGEM_RXDESC_EOF)) { /* discard. */ m_free(m); ifp->if_ierrors++; continue; } /* Hand it off to upper layers. */ m->m_data += ETHER_ALIGN; m->m_len = (ctl & CGEM_RXDESC_LENGTH_MASK); m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len; /* Are we using hardware checksumming? Check the * status in the receive descriptor. */ if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) { /* TCP or UDP checks out, IP checks out too. */ if ((ctl & CGEM_RXDESC_CKSUM_STAT_MASK) == CGEM_RXDESC_CKSUM_STAT_TCP_GOOD || (ctl & CGEM_RXDESC_CKSUM_STAT_MASK) == CGEM_RXDESC_CKSUM_STAT_UDP_GOOD) { m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR; m->m_pkthdr.csum_data = 0xffff; } else if ((ctl & CGEM_RXDESC_CKSUM_STAT_MASK) == CGEM_RXDESC_CKSUM_STAT_IP_GOOD) { /* Only IP checks out. */ m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID; m->m_pkthdr.csum_data = 0xffff; } } ifp->if_ipackets++; CGEM_UNLOCK(sc); (*ifp->if_input)(ifp, m); CGEM_LOCK(sc); } } /* Find completed transmits and free their mbufs. */ static void cgem_clean_tx(struct cgem_softc *sc) { struct mbuf *m; uint32_t ctl; CGEM_ASSERT_LOCKED(sc); /* free up finished transmits. */ while (sc->txring_queued > 0 && ((ctl = sc->txring[sc->txring_tl_ptr].ctl) & CGEM_TXDESC_USED) != 0) { /* Sync cache. nop? */ bus_dmamap_sync(sc->mbuf_dma_tag, sc->txring_m_dmamap[sc->txring_tl_ptr], BUS_DMASYNC_POSTWRITE); /* Unload DMA map. */ bus_dmamap_unload(sc->mbuf_dma_tag, sc->txring_m_dmamap[sc->txring_tl_ptr]); /* Free up the mbuf. */ m = sc->txring_m[sc->txring_tl_ptr]; sc->txring_m[sc->txring_tl_ptr] = NULL; m_freem(m); /* Check the status. */ if ((ctl & CGEM_TXDESC_AHB_ERR) != 0) { /* Serious bus error. log to console. */ device_printf(sc->dev, "cgem_clean_tx: Whoa! " "AHB error, addr=0x%x\n", sc->txring[sc->txring_tl_ptr].addr); } else if ((ctl & (CGEM_TXDESC_RETRY_ERR | CGEM_TXDESC_LATE_COLL)) != 0) { sc->ifp->if_oerrors++; } else sc->ifp->if_opackets++; /* If the packet spanned more than one tx descriptor, * skip descriptors until we find the end so that only * start-of-frame descriptors are processed. */ while ((ctl & CGEM_TXDESC_LAST_BUF) == 0) { if ((ctl & CGEM_TXDESC_WRAP) != 0) sc->txring_tl_ptr = 0; else sc->txring_tl_ptr++; sc->txring_queued--; ctl = sc->txring[sc->txring_tl_ptr].ctl; sc->txring[sc->txring_tl_ptr].ctl = ctl | CGEM_TXDESC_USED; } /* Next descriptor. */ if ((ctl & CGEM_TXDESC_WRAP) != 0) sc->txring_tl_ptr = 0; else sc->txring_tl_ptr++; sc->txring_queued--; } } /* Start transmits. */ static void cgem_start_locked(struct ifnet *ifp) { struct cgem_softc *sc = (struct cgem_softc *) ifp->if_softc; struct mbuf *m; bus_dma_segment_t segs[TX_MAX_DMA_SEGS]; uint32_t ctl; int i, nsegs, wrap, err; CGEM_ASSERT_LOCKED(sc); if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) != 0) return; for (;;) { /* Check that there is room in the descriptor ring. */ if (sc->txring_queued >= CGEM_NUM_TX_DESCS - TX_MAX_DMA_SEGS - 1) { /* Try to make room. */ cgem_clean_tx(sc); /* Still no room? */ if (sc->txring_queued >= CGEM_NUM_TX_DESCS - TX_MAX_DMA_SEGS - 1) { ifp->if_drv_flags |= IFF_DRV_OACTIVE; break; } } /* Grab next transmit packet. */ IFQ_DRV_DEQUEUE(&ifp->if_snd, m); if (m == NULL) break; /* Load DMA map. */ err = bus_dmamap_load_mbuf_sg(sc->mbuf_dma_tag, sc->txring_m_dmamap[sc->txring_hd_ptr], m, segs, &nsegs, BUS_DMA_NOWAIT); if (err == EFBIG) { /* Too many segments! defrag and try again. */ struct mbuf *m2 = m_defrag(m, M_NOWAIT); if (m2 == NULL) { m_freem(m); continue; } m = m2; err = bus_dmamap_load_mbuf_sg(sc->mbuf_dma_tag, sc->txring_m_dmamap[sc->txring_hd_ptr], m, segs, &nsegs, BUS_DMA_NOWAIT); } if (err) { /* Give up. */ m_freem(m); continue; } sc->txring_m[sc->txring_hd_ptr] = m; /* Sync tx buffer with cache. */ bus_dmamap_sync(sc->mbuf_dma_tag, sc->txring_m_dmamap[sc->txring_hd_ptr], BUS_DMASYNC_PREWRITE); /* Set wrap flag if next packet might run off end of ring. */ wrap = sc->txring_hd_ptr + nsegs + TX_MAX_DMA_SEGS >= CGEM_NUM_TX_DESCS; /* Fill in the TX descriptors back to front so that USED * bit in first descriptor is cleared last. */ for (i = nsegs - 1; i >= 0; i--) { /* Descriptor address. */ sc->txring[sc->txring_hd_ptr + i].addr = segs[i].ds_addr; /* Descriptor control word. */ ctl = segs[i].ds_len; if (i == nsegs - 1) { ctl |= CGEM_TXDESC_LAST_BUF; if (wrap) ctl |= CGEM_TXDESC_WRAP; } sc->txring[sc->txring_hd_ptr + i].ctl = ctl; if (i != 0) sc->txring_m[sc->txring_hd_ptr + i] = NULL; } if (wrap) sc->txring_hd_ptr = 0; else sc->txring_hd_ptr += nsegs; sc->txring_queued += nsegs; /* Kick the transmitter. */ WR4(sc, CGEM_NET_CTRL, sc->net_ctl_shadow | CGEM_NET_CTRL_START_TX); } } static void cgem_start(struct ifnet *ifp) { struct cgem_softc *sc = (struct cgem_softc *) ifp->if_softc; CGEM_LOCK(sc); cgem_start_locked(ifp); CGEM_UNLOCK(sc); } /* Respond to changes in media. */ static void cgem_media_update(struct cgem_softc *sc, int active) { uint32_t net_cfg; CGEM_ASSERT_LOCKED(sc); /* Update hardware to reflect phy status. */ net_cfg = RD4(sc, CGEM_NET_CFG); net_cfg &= ~(CGEM_NET_CFG_SPEED100 | CGEM_NET_CFG_GIGE_EN | CGEM_NET_CFG_FULL_DUPLEX); if (IFM_SUBTYPE(active) == IFM_1000_T) net_cfg |= (CGEM_NET_CFG_SPEED100 | CGEM_NET_CFG_GIGE_EN); else if (IFM_SUBTYPE(active) == IFM_100_TX) net_cfg |= CGEM_NET_CFG_SPEED100; if ((active & IFM_FDX) != 0) net_cfg |= CGEM_NET_CFG_FULL_DUPLEX; WR4(sc, CGEM_NET_CFG, net_cfg); } static void cgem_tick(void *arg) { struct cgem_softc *sc = (struct cgem_softc *)arg; struct mii_data *mii; int active; CGEM_ASSERT_LOCKED(sc); /* Poll the phy. */ if (sc->miibus != NULL) { mii = device_get_softc(sc->miibus); active = mii->mii_media_active; mii_tick(mii); if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == (IFM_ACTIVE | IFM_AVALID) && active != mii->mii_media_active) cgem_media_update(sc, mii->mii_media_active); } /* Next callout in one second. */ callout_reset(&sc->tick_ch, hz, cgem_tick, sc); } /* Interrupt handler. */ static void cgem_intr(void *arg) { struct cgem_softc *sc = (struct cgem_softc *)arg; uint32_t istatus; CGEM_LOCK(sc); if ((sc->ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { CGEM_UNLOCK(sc); return; } istatus = RD4(sc, CGEM_INTR_STAT); WR4(sc, CGEM_INTR_STAT, istatus & (CGEM_INTR_RX_COMPLETE | CGEM_INTR_TX_USED_READ | CGEM_INTR_RX_OVERRUN | CGEM_INTR_HRESP_NOT_OK)); /* Hresp not ok. Something very bad with DMA. Try to clear. */ if ((istatus & CGEM_INTR_HRESP_NOT_OK) != 0) { printf("cgem_intr: hresp not okay! rx_status=0x%x\n", RD4(sc, CGEM_RX_STAT)); WR4(sc, CGEM_RX_STAT, CGEM_RX_STAT_HRESP_NOT_OK); } /* Transmitter has idled. Free up any spent transmit buffers. */ if ((istatus & CGEM_INTR_TX_USED_READ) != 0) cgem_clean_tx(sc); /* Packets received or overflow. */ if ((istatus & (CGEM_INTR_RX_COMPLETE | CGEM_INTR_RX_OVERRUN)) != 0) { cgem_recv(sc); cgem_fill_rqueue(sc); if ((istatus & CGEM_INTR_RX_OVERRUN) != 0) { /* Clear rx status register. */ sc->rxoverruns++; WR4(sc, CGEM_RX_STAT, CGEM_RX_STAT_ALL); } } CGEM_UNLOCK(sc); } /* Reset hardware. */ static void cgem_reset(struct cgem_softc *sc) { CGEM_ASSERT_LOCKED(sc); WR4(sc, CGEM_NET_CTRL, 0); WR4(sc, CGEM_NET_CFG, 0); WR4(sc, CGEM_NET_CTRL, CGEM_NET_CTRL_CLR_STAT_REGS); WR4(sc, CGEM_TX_STAT, CGEM_TX_STAT_ALL); WR4(sc, CGEM_RX_STAT, CGEM_RX_STAT_ALL); WR4(sc, CGEM_INTR_DIS, CGEM_INTR_ALL); WR4(sc, CGEM_HASH_BOT, 0); WR4(sc, CGEM_HASH_TOP, 0); WR4(sc, CGEM_TX_QBAR, 0); /* manual says do this. */ WR4(sc, CGEM_RX_QBAR, 0); /* Get management port running even if interface is down. */ WR4(sc, CGEM_NET_CFG, CGEM_NET_CFG_DBUS_WIDTH_32 | CGEM_NET_CFG_MDC_CLK_DIV_64); sc->net_ctl_shadow = CGEM_NET_CTRL_MGMT_PORT_EN; WR4(sc, CGEM_NET_CTRL, sc->net_ctl_shadow); } /* Bring up the hardware. */ static void cgem_config(struct cgem_softc *sc) { uint32_t net_cfg; uint32_t dma_cfg; CGEM_ASSERT_LOCKED(sc); /* Program Net Config Register. */ net_cfg = CGEM_NET_CFG_DBUS_WIDTH_32 | CGEM_NET_CFG_MDC_CLK_DIV_64 | CGEM_NET_CFG_FCS_REMOVE | CGEM_NET_CFG_RX_BUF_OFFSET(ETHER_ALIGN) | CGEM_NET_CFG_GIGE_EN | CGEM_NET_CFG_FULL_DUPLEX | CGEM_NET_CFG_SPEED100; /* Enable receive checksum offloading? */ if ((sc->ifp->if_capenable & IFCAP_RXCSUM) != 0) net_cfg |= CGEM_NET_CFG_RX_CHKSUM_OFFLD_EN; WR4(sc, CGEM_NET_CFG, net_cfg); /* Program DMA Config Register. */ dma_cfg = CGEM_DMA_CFG_RX_BUF_SIZE(MCLBYTES) | CGEM_DMA_CFG_RX_PKTBUF_MEMSZ_SEL_8K | CGEM_DMA_CFG_TX_PKTBUF_MEMSZ_SEL | CGEM_DMA_CFG_AHB_FIXED_BURST_LEN_16; /* Enable transmit checksum offloading? */ if ((sc->ifp->if_capenable & IFCAP_TXCSUM) != 0) dma_cfg |= CGEM_DMA_CFG_CHKSUM_GEN_OFFLOAD_EN; WR4(sc, CGEM_DMA_CFG, dma_cfg); /* Write the rx and tx descriptor ring addresses to the QBAR regs. */ WR4(sc, CGEM_RX_QBAR, (uint32_t) sc->rxring_physaddr); WR4(sc, CGEM_TX_QBAR, (uint32_t) sc->txring_physaddr); /* Enable rx and tx. */ sc->net_ctl_shadow |= (CGEM_NET_CTRL_TX_EN | CGEM_NET_CTRL_RX_EN); WR4(sc, CGEM_NET_CTRL, sc->net_ctl_shadow); /* Set up interrupts. */ WR4(sc, CGEM_INTR_EN, CGEM_INTR_RX_COMPLETE | CGEM_INTR_TX_USED_READ | CGEM_INTR_RX_OVERRUN | CGEM_INTR_HRESP_NOT_OK); } /* Turn on interface and load up receive ring with buffers. */ static void cgem_init_locked(struct cgem_softc *sc) { struct mii_data *mii; CGEM_ASSERT_LOCKED(sc); if ((sc->ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) return; cgem_config(sc); cgem_fill_rqueue(sc); sc->ifp->if_drv_flags |= IFF_DRV_RUNNING; sc->ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; mii = device_get_softc(sc->miibus); mii_pollstat(mii); cgem_media_update(sc, mii->mii_media_active); cgem_start_locked(sc->ifp); callout_reset(&sc->tick_ch, hz, cgem_tick, sc); } static void cgem_init(void *arg) { struct cgem_softc *sc = (struct cgem_softc *)arg; CGEM_LOCK(sc); cgem_init_locked(sc); CGEM_UNLOCK(sc); } /* Turn off interface. Free up any buffers in transmit or receive queues. */ static void cgem_stop(struct cgem_softc *sc) { int i; CGEM_ASSERT_LOCKED(sc); callout_stop(&sc->tick_ch); /* Shut down hardware. */ cgem_reset(sc); /* Clear out transmit queue. */ for (i = 0; i < CGEM_NUM_TX_DESCS; i++) { sc->txring[i].ctl = CGEM_TXDESC_USED; sc->txring[i].addr = 0; if (sc->txring_m[i]) { bus_dmamap_unload(sc->mbuf_dma_tag, sc->txring_m_dmamap[i]); m_freem(sc->txring_m[i]); sc->txring_m[i] = NULL; } } sc->txring[CGEM_NUM_TX_DESCS - 1].ctl |= CGEM_TXDESC_WRAP; sc->txring_hd_ptr = 0; sc->txring_tl_ptr = 0; sc->txring_queued = 0; /* Clear out receive queue. */ for (i = 0; i < CGEM_NUM_RX_DESCS; i++) { sc->rxring[i].addr = CGEM_RXDESC_OWN; sc->rxring[i].ctl = 0; if (sc->rxring_m[i]) { /* Unload dmamap. */ bus_dmamap_unload(sc->mbuf_dma_tag, sc->rxring_m_dmamap[sc->rxring_tl_ptr]); m_freem(sc->rxring_m[i]); sc->rxring_m[i] = NULL; } } sc->rxring[CGEM_NUM_RX_DESCS - 1].addr |= CGEM_RXDESC_WRAP; sc->rxring_hd_ptr = 0; sc->rxring_tl_ptr = 0; sc->rxring_queued = 0; } static int cgem_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct cgem_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *)data; struct mii_data *mii; int error = 0, mask; switch (cmd) { case SIOCSIFFLAGS: CGEM_LOCK(sc); if ((ifp->if_flags & IFF_UP) != 0) { if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { if (((ifp->if_flags ^ sc->if_old_flags) & (IFF_PROMISC | IFF_ALLMULTI)) != 0) { cgem_rx_filter(sc); } } else { cgem_init_locked(sc); } } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { ifp->if_drv_flags &= ~IFF_DRV_RUNNING; cgem_stop(sc); } sc->if_old_flags = ifp->if_flags; CGEM_UNLOCK(sc); break; case SIOCADDMULTI: case SIOCDELMULTI: /* Set up multi-cast filters. */ if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { CGEM_LOCK(sc); cgem_rx_filter(sc); CGEM_UNLOCK(sc); } break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: mii = device_get_softc(sc->miibus); error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd); break; case SIOCSIFCAP: CGEM_LOCK(sc); mask = ifp->if_capenable ^ ifr->ifr_reqcap; if ((mask & IFCAP_TXCSUM) != 0) { if ((ifr->ifr_reqcap & IFCAP_TXCSUM) != 0) { /* Turn on TX checksumming. */ ifp->if_capenable |= (IFCAP_TXCSUM | IFCAP_TXCSUM_IPV6); ifp->if_hwassist |= CGEM_CKSUM_ASSIST; WR4(sc, CGEM_DMA_CFG, RD4(sc, CGEM_DMA_CFG) | CGEM_DMA_CFG_CHKSUM_GEN_OFFLOAD_EN); } else { /* Turn off TX checksumming. */ ifp->if_capenable &= ~(IFCAP_TXCSUM | IFCAP_TXCSUM_IPV6); ifp->if_hwassist &= ~CGEM_CKSUM_ASSIST; WR4(sc, CGEM_DMA_CFG, RD4(sc, CGEM_DMA_CFG) & ~CGEM_DMA_CFG_CHKSUM_GEN_OFFLOAD_EN); } } if ((mask & IFCAP_RXCSUM) != 0) { if ((ifr->ifr_reqcap & IFCAP_RXCSUM) != 0) { /* Turn on RX checksumming. */ ifp->if_capenable |= (IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6); WR4(sc, CGEM_NET_CFG, RD4(sc, CGEM_NET_CFG) | CGEM_NET_CFG_RX_CHKSUM_OFFLD_EN); } else { /* Turn off RX checksumming. */ ifp->if_capenable &= ~(IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6); WR4(sc, CGEM_NET_CFG, RD4(sc, CGEM_NET_CFG) & ~CGEM_NET_CFG_RX_CHKSUM_OFFLD_EN); } } CGEM_UNLOCK(sc); break; default: error = ether_ioctl(ifp, cmd, data); break; } return (error); } /* MII bus support routines. */ static void cgem_child_detached(device_t dev, device_t child) { struct cgem_softc *sc = device_get_softc(dev); if (child == sc->miibus) sc->miibus = NULL; } static int cgem_ifmedia_upd(struct ifnet *ifp) { struct cgem_softc *sc = (struct cgem_softc *) ifp->if_softc; struct mii_data *mii; mii = device_get_softc(sc->miibus); CGEM_LOCK(sc); mii_mediachg(mii); CGEM_UNLOCK(sc); return (0); } static void cgem_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct cgem_softc *sc = (struct cgem_softc *) ifp->if_softc; struct mii_data *mii; mii = device_get_softc(sc->miibus); CGEM_LOCK(sc); mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; CGEM_UNLOCK(sc); } static int cgem_miibus_readreg(device_t dev, int phy, int reg) { struct cgem_softc *sc = device_get_softc(dev); int tries, val; WR4(sc, CGEM_PHY_MAINT, CGEM_PHY_MAINT_CLAUSE_22 | CGEM_PHY_MAINT_MUST_10 | CGEM_PHY_MAINT_OP_READ | (phy << CGEM_PHY_MAINT_PHY_ADDR_SHIFT) | (reg << CGEM_PHY_MAINT_REG_ADDR_SHIFT)); /* Wait for completion. */ tries=0; while ((RD4(sc, CGEM_NET_STAT) & CGEM_NET_STAT_PHY_MGMT_IDLE) == 0) { DELAY(5); if (++tries > 200) { device_printf(dev, "phy read timeout: %d\n", reg); return (-1); } } val = RD4(sc, CGEM_PHY_MAINT) & CGEM_PHY_MAINT_DATA_MASK; return (val); } static int cgem_miibus_writereg(device_t dev, int phy, int reg, int data) { struct cgem_softc *sc = device_get_softc(dev); int tries; WR4(sc, CGEM_PHY_MAINT, CGEM_PHY_MAINT_CLAUSE_22 | CGEM_PHY_MAINT_MUST_10 | CGEM_PHY_MAINT_OP_WRITE | (phy << CGEM_PHY_MAINT_PHY_ADDR_SHIFT) | (reg << CGEM_PHY_MAINT_REG_ADDR_SHIFT) | (data & CGEM_PHY_MAINT_DATA_MASK)); /* Wait for completion. */ tries = 0; while ((RD4(sc, CGEM_NET_STAT) & CGEM_NET_STAT_PHY_MGMT_IDLE) == 0) { DELAY(5); if (++tries > 200) { device_printf(dev, "phy write timeout: %d\n", reg); return (-1); } } return (0); } static int cgem_probe(device_t dev) { if (!ofw_bus_is_compatible(dev, "cadence,gem")) return (ENXIO); device_set_desc(dev, "Cadence CGEM Gigabit Ethernet Interface"); return (0); } static int cgem_attach(device_t dev) { struct cgem_softc *sc = device_get_softc(dev); struct ifnet *ifp = NULL; int rid, err; u_char eaddr[ETHER_ADDR_LEN]; sc->dev = dev; CGEM_LOCK_INIT(sc); /* Get memory resource. */ rid = 0; sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (sc->mem_res == NULL) { device_printf(dev, "could not allocate memory resources.\n"); return (ENOMEM); } /* Get IRQ resource. */ rid = 0; sc->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE); if (sc->irq_res == NULL) { device_printf(dev, "could not allocate interrupt resource.\n"); cgem_detach(dev); return (ENOMEM); } ifp = sc->ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { device_printf(dev, "could not allocate ifnet structure\n"); cgem_detach(dev); return (ENOMEM); } CGEM_LOCK(sc); /* Reset hardware. */ cgem_reset(sc); /* Attach phy to mii bus. */ err = mii_attach(dev, &sc->miibus, ifp, cgem_ifmedia_upd, cgem_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0); if (err) { CGEM_UNLOCK(sc); device_printf(dev, "attaching PHYs failed\n"); cgem_detach(dev); return (err); } /* Set up TX and RX descriptor area. */ err = cgem_setup_descs(sc); if (err) { CGEM_UNLOCK(sc); device_printf(dev, "could not set up dma mem for descs.\n"); cgem_detach(dev); return (ENOMEM); } /* Get a MAC address. */ cgem_get_mac(sc, eaddr); /* Start ticks. */ callout_init_mtx(&sc->tick_ch, &sc->sc_mtx, 0); /* Set up ifnet structure. */ ifp->if_softc = sc; if_initname(ifp, IF_CGEM_NAME, device_get_unit(dev)); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_start = cgem_start; ifp->if_ioctl = cgem_ioctl; ifp->if_init = cgem_init; ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6; /* XXX: disable hw checksumming for now. */ ifp->if_hwassist = 0; ifp->if_capenable = ifp->if_capabilities & ~(IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6); IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN; IFQ_SET_READY(&ifp->if_snd); sc->if_old_flags = ifp->if_flags; sc->rxbufs = DEFAULT_NUM_RX_BUFS; ether_ifattach(ifp, eaddr); err = bus_setup_intr(dev, sc->irq_res, INTR_TYPE_NET | INTR_MPSAFE | INTR_EXCL, NULL, cgem_intr, sc, &sc->intrhand); if (err) { CGEM_UNLOCK(sc); device_printf(dev, "could not set interrupt handler.\n"); ether_ifdetach(ifp); cgem_detach(dev); return (err); } SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "rxbufs", CTLFLAG_RW, &sc->rxbufs, 0, "Number receive buffers to provide"); SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "_rxoverruns", CTLFLAG_RD, &sc->rxoverruns, 0, "Receive ring overrun events"); CGEM_UNLOCK(sc); return (0); } static int cgem_detach(device_t dev) { struct cgem_softc *sc = device_get_softc(dev); int i; if (sc == NULL) return (ENODEV); if (device_is_attached(dev)) { CGEM_LOCK(sc); cgem_stop(sc); CGEM_UNLOCK(sc); callout_drain(&sc->tick_ch); sc->ifp->if_flags &= ~IFF_UP; ether_ifdetach(sc->ifp); } if (sc->miibus != NULL) { device_delete_child(dev, sc->miibus); sc->miibus = NULL; } /* Release resrouces. */ if (sc->mem_res != NULL) { bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(sc->mem_res), sc->mem_res); sc->mem_res = NULL; } if (sc->irq_res != NULL) { if (sc->intrhand) bus_teardown_intr(dev, sc->irq_res, sc->intrhand); bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq_res), sc->irq_res); sc->irq_res = NULL; } /* Release DMA resources. */ if (sc->rxring != NULL) { if (sc->rxring_physaddr != 0) { bus_dmamap_unload(sc->desc_dma_tag, sc->rxring_dma_map); sc->rxring_physaddr = 0; } bus_dmamem_free(sc->desc_dma_tag, sc->rxring, sc->rxring_dma_map); sc->rxring = NULL; for (i = 0; i < CGEM_NUM_RX_DESCS; i++) if (sc->rxring_m_dmamap[i] != NULL) { bus_dmamap_destroy(sc->mbuf_dma_tag, sc->rxring_m_dmamap[i]); sc->rxring_m_dmamap[i] = NULL; } } if (sc->txring != NULL) { if (sc->txring_physaddr != 0) { bus_dmamap_unload(sc->desc_dma_tag, sc->txring_dma_map); sc->txring_physaddr = 0; } bus_dmamem_free(sc->desc_dma_tag, sc->txring, sc->txring_dma_map); sc->txring = NULL; for (i = 0; i < CGEM_NUM_TX_DESCS; i++) if (sc->txring_m_dmamap[i] != NULL) { bus_dmamap_destroy(sc->mbuf_dma_tag, sc->txring_m_dmamap[i]); sc->txring_m_dmamap[i] = NULL; } } if (sc->desc_dma_tag != NULL) { bus_dma_tag_destroy(sc->desc_dma_tag); sc->desc_dma_tag = NULL; } if (sc->mbuf_dma_tag != NULL) { bus_dma_tag_destroy(sc->mbuf_dma_tag); sc->mbuf_dma_tag = NULL; } bus_generic_detach(dev); CGEM_LOCK_DESTROY(sc); return (0); } static device_method_t cgem_methods[] = { /* Device interface */ DEVMETHOD(device_probe, cgem_probe), DEVMETHOD(device_attach, cgem_attach), DEVMETHOD(device_detach, cgem_detach), /* Bus interface */ DEVMETHOD(bus_child_detached, cgem_child_detached), /* MII interface */ DEVMETHOD(miibus_readreg, cgem_miibus_readreg), DEVMETHOD(miibus_writereg, cgem_miibus_writereg), DEVMETHOD_END }; static driver_t cgem_driver = { "cgem", cgem_methods, sizeof(struct cgem_softc), }; DRIVER_MODULE(cgem, simplebus, cgem_driver, cgem_devclass, NULL, NULL); DRIVER_MODULE(miibus, cgem, miibus_driver, miibus_devclass, NULL, NULL); MODULE_DEPEND(cgem, miibus, 1, 1, 1); MODULE_DEPEND(cgem, ether, 1, 1, 1);