/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2011, Lawrence Livermore National Security, LLC. */ #include #include #include #include #include static struct inode * zpl_inode_alloc(struct super_block *sb) { struct inode *ip; VERIFY3S(zfs_inode_alloc(sb, &ip), ==, 0); ip->i_version = 1; return (ip); } static void zpl_inode_destroy(struct inode *ip) { ASSERT(atomic_read(&ip->i_count) == 0); zfs_inode_destroy(ip); } /* * Called from __mark_inode_dirty() to reflect that something in the * inode has changed. We use it to ensure the znode system attributes * are always strictly update to date with respect to the inode. */ #ifdef HAVE_DIRTY_INODE_WITH_FLAGS static void zpl_dirty_inode(struct inode *ip, int flags) { zfs_dirty_inode(ip, flags); } #else static void zpl_dirty_inode(struct inode *ip) { zfs_dirty_inode(ip, 0); } #endif /* HAVE_DIRTY_INODE_WITH_FLAGS */ /* * When ->drop_inode() is called its return value indicates if the * inode should be evicted from the inode cache. If the inode is * unhashed and has no links the default policy is to evict it * immediately. * * Prior to 2.6.36 this eviction was accomplished by the vfs calling * ->delete_inode(). It was ->delete_inode()'s responsibility to * truncate the inode pages and call clear_inode(). The call to * clear_inode() synchronously invalidates all the buffers and * calls ->clear_inode(). It was ->clear_inode()'s responsibility * to cleanup and filesystem specific data before freeing the inode. * * This elaborate mechanism was replaced by ->evict_inode() which * does the job of both ->delete_inode() and ->clear_inode(). It * will be called exactly once, and when it returns the inode must * be in a state where it can simply be freed.i * * The ->evict_inode() callback must minimally truncate the inode pages, * and call clear_inode(). For 2.6.35 and later kernels this will * simply update the inode state, with the sync occurring before the * truncate in evict(). For earlier kernels clear_inode() maps to * end_writeback() which is responsible for completing all outstanding * write back. In either case, once this is done it is safe to cleanup * any remaining inode specific data via zfs_inactive(). * remaining filesystem specific data. */ #ifdef HAVE_EVICT_INODE static void zpl_evict_inode(struct inode *ip) { truncate_setsize(ip, 0); clear_inode(ip); zfs_inactive(ip); } #else static void zpl_clear_inode(struct inode *ip) { zfs_inactive(ip); } static void zpl_inode_delete(struct inode *ip) { truncate_setsize(ip, 0); clear_inode(ip); } #endif /* HAVE_EVICT_INODE */ static void zpl_put_super(struct super_block *sb) { int error; error = -zfs_umount(sb); ASSERT3S(error, <=, 0); } static int zpl_sync_fs(struct super_block *sb, int wait) { cred_t *cr = CRED(); int error; crhold(cr); error = -zfs_sync(sb, wait, cr); crfree(cr); ASSERT3S(error, <=, 0); return (error); } static int zpl_statfs(struct dentry *dentry, struct kstatfs *statp) { int error; error = -zfs_statvfs(dentry, statp); ASSERT3S(error, <=, 0); return (error); } static int zpl_remount_fs(struct super_block *sb, int *flags, char *data) { int error; error = -zfs_remount(sb, flags, data); ASSERT3S(error, <=, 0); return (error); } static void zpl_umount_begin(struct super_block *sb) { zfs_sb_t *zsb = sb->s_fs_info; int count; /* * Best effort to unmount snapshots in .zfs/snapshot/. Normally this * isn't required because snapshots have the MNT_SHRINKABLE flag set. */ if (zsb->z_ctldir) (void) zfsctl_unmount_snapshots(zsb, MNT_FORCE, &count); } /* * ZFS specific features must be explicitly handled here, the VFS will * automatically handled the following generic functionality. * * MNT_NOSUID, * MNT_NODEV, * MNT_NOEXEC, * MNT_NOATIME, * MNT_NODIRATIME, * MNT_READONLY, * MNT_STRICTATIME, * MS_SYNCHRONOUS, * MS_DIRSYNC, * MS_MANDLOCK. */ static int __zpl_show_options(struct seq_file *seq, zfs_sb_t *zsb) { seq_printf(seq, ",%s", zsb->z_flags & ZSB_XATTR ? "xattr" : "noxattr"); #ifdef CONFIG_FS_POSIX_ACL switch (zsb->z_acl_type) { case ZFS_ACLTYPE_POSIXACL: seq_puts(seq, ",posixacl"); break; default: seq_puts(seq, ",noacl"); break; } #endif /* CONFIG_FS_POSIX_ACL */ return (0); } #ifdef HAVE_SHOW_OPTIONS_WITH_DENTRY static int zpl_show_options(struct seq_file *seq, struct dentry *root) { return __zpl_show_options(seq, root->d_sb->s_fs_info); } #else static int zpl_show_options(struct seq_file *seq, struct vfsmount *vfsp) { return __zpl_show_options(seq, vfsp->mnt_sb->s_fs_info); } #endif /* HAVE_SHOW_OPTIONS_WITH_DENTRY */ static int zpl_fill_super(struct super_block *sb, void *data, int silent) { int error; error = -zfs_domount(sb, data, silent); ASSERT3S(error, <=, 0); return (error); } #ifdef HAVE_MOUNT_NODEV static struct dentry * zpl_mount(struct file_system_type *fs_type, int flags, const char *osname, void *data) { zpl_mount_data_t zmd = { osname, data }; return mount_nodev(fs_type, flags, &zmd, zpl_fill_super); } #else static int zpl_get_sb(struct file_system_type *fs_type, int flags, const char *osname, void *data, struct vfsmount *mnt) { zpl_mount_data_t zmd = { osname, data }; return get_sb_nodev(fs_type, flags, &zmd, zpl_fill_super, mnt); } #endif /* HAVE_MOUNT_NODEV */ static void zpl_kill_sb(struct super_block *sb) { zfs_preumount(sb); kill_anon_super(sb); #ifdef HAVE_S_INSTANCES_LIST_HEAD sb->s_instances.next = &(zpl_fs_type.fs_supers); #endif /* HAVE_S_INSTANCES_LIST_HEAD */ } #ifdef HAVE_SHRINK /* * Linux 3.1 - 3.x API * * The Linux 3.1 API introduced per-sb cache shrinkers to replace the * global ones. This allows us a mechanism to cleanly target a specific * zfs file system when the dnode and inode caches grow too large. * * In addition, the 3.0 kernel added the iterate_supers_type() helper * function which is used to safely walk all of the zfs file systems. */ static void zpl_prune_sb(struct super_block *sb, void *arg) { int objects = 0; int error; error = -zfs_sb_prune(sb, *(unsigned long *)arg, &objects); ASSERT3S(error, <=, 0); return; } void zpl_prune_sbs(int64_t bytes_to_scan, void *private) { unsigned long nr_to_scan = (bytes_to_scan / sizeof(znode_t)); iterate_supers_type(&zpl_fs_type, zpl_prune_sb, &nr_to_scan); kmem_reap(); } #else /* * Linux 2.6.x - 3.0 API * * These are best effort interfaces are provided by the SPL to induce * the Linux VM subsystem to reclaim a fraction of the both dnode and * inode caches. Ideally, we want to just target the zfs file systems * however our only option is to reclaim from them all. */ void zpl_prune_sbs(int64_t bytes_to_scan, void *private) { unsigned long nr_to_scan = (bytes_to_scan / sizeof(znode_t)); shrink_dcache_memory(nr_to_scan, GFP_KERNEL); shrink_icache_memory(nr_to_scan, GFP_KERNEL); kmem_reap(); } #endif /* HAVE_SHRINK */ #ifdef HAVE_NR_CACHED_OBJECTS static int zpl_nr_cached_objects(struct super_block *sb) { zfs_sb_t *zsb = sb->s_fs_info; int nr; mutex_enter(&zsb->z_znodes_lock); nr = zsb->z_nr_znodes; mutex_exit(&zsb->z_znodes_lock); return (nr); } #endif /* HAVE_NR_CACHED_OBJECTS */ #ifdef HAVE_FREE_CACHED_OBJECTS /* * Attempt to evict some meta data from the cache. The ARC operates in * terms of bytes while the Linux VFS uses objects. Now because this is * just a best effort eviction and the exact values aren't critical so we * extrapolate from an object count to a byte size using the znode_t size. */ static void zpl_free_cached_objects(struct super_block *sb, int nr_to_scan) { arc_adjust_meta(nr_to_scan * sizeof(znode_t), B_FALSE); } #endif /* HAVE_FREE_CACHED_OBJECTS */ const struct super_operations zpl_super_operations = { .alloc_inode = zpl_inode_alloc, .destroy_inode = zpl_inode_destroy, .dirty_inode = zpl_dirty_inode, .write_inode = NULL, .drop_inode = NULL, #ifdef HAVE_EVICT_INODE .evict_inode = zpl_evict_inode, #else .clear_inode = zpl_clear_inode, .delete_inode = zpl_inode_delete, #endif /* HAVE_EVICT_INODE */ .put_super = zpl_put_super, .sync_fs = zpl_sync_fs, .statfs = zpl_statfs, .remount_fs = zpl_remount_fs, .umount_begin = zpl_umount_begin, .show_options = zpl_show_options, .show_stats = NULL, #ifdef HAVE_NR_CACHED_OBJECTS .nr_cached_objects = zpl_nr_cached_objects, #endif /* HAVE_NR_CACHED_OBJECTS */ #ifdef HAVE_FREE_CACHED_OBJECTS .free_cached_objects = zpl_free_cached_objects, #endif /* HAVE_FREE_CACHED_OBJECTS */ }; struct file_system_type zpl_fs_type = { .owner = THIS_MODULE, .name = ZFS_DRIVER, #ifdef HAVE_MOUNT_NODEV .mount = zpl_mount, #else .get_sb = zpl_get_sb, #endif /* HAVE_MOUNT_NODEV */ .kill_sb = zpl_kill_sb, };