/*- * Copyright (c) 1998 Robert Nordier * All rights reserved. * * Redistribution and use in source and binary forms are freely * permitted provided that the above copyright notice and this * paragraph and the following disclaimer are duplicated in all * such forms. * * This software is provided "AS IS" and without any express or * implied warranties, including, without limitation, the implied * warranties of merchantability and fitness for a particular * purpose. */ #include __FBSDID("$FreeBSD$"); #include #include #include #ifdef GPT #include #endif #include #include #include #include #include #include #include #include #include #include "lib.h" #include "rbx.h" #include "drv.h" #include "util.h" #include "cons.h" /* Hint to loader that we came from ZFS */ #define KARGS_FLAGS_ZFS 0x4 #define PATH_DOTCONFIG "/boot.config" #define PATH_CONFIG "/boot/config" #define PATH_BOOT3 "/boot/zfsloader" #define PATH_KERNEL "/boot/kernel/kernel" #define ARGS 0x900 #define NOPT 14 #define NDEV 3 #define BIOS_NUMDRIVES 0x475 #define DRV_HARD 0x80 #define DRV_MASK 0x7f #define TYPE_AD 0 #define TYPE_DA 1 #define TYPE_MAXHARD TYPE_DA #define TYPE_FD 2 #define MAXBDDEV 31 extern uint32_t _end; #ifdef GPT static const uuid_t freebsd_zfs_uuid = GPT_ENT_TYPE_FREEBSD_ZFS; #endif static const char optstr[NOPT] = "DhaCcdgmnpqrsv"; /* Also 'P', 'S' */ static const unsigned char flags[NOPT] = { RBX_DUAL, RBX_SERIAL, RBX_ASKNAME, RBX_CDROM, RBX_CONFIG, RBX_KDB, RBX_GDB, RBX_MUTE, RBX_NOINTR, RBX_PAUSE, RBX_QUIET, RBX_DFLTROOT, RBX_SINGLE, RBX_VERBOSE }; uint32_t opts; static const char *const dev_nm[NDEV] = {"ad", "da", "fd"}; static const unsigned char dev_maj[NDEV] = {30, 4, 2}; static char cmd[512]; static char cmddup[512]; static char kname[1024]; static int comspeed = SIOSPD; static struct bootinfo bootinfo; static uint32_t bootdev; vm_offset_t high_heap_base; uint32_t bios_basemem, bios_extmem, high_heap_size; static struct bios_smap smap; /* * The minimum amount of memory to reserve in bios_extmem for the heap. */ #define HEAP_MIN (3 * 1024 * 1024) static char *heap_next; static char *heap_end; /* Buffers that must not span a 64k boundary. */ #define READ_BUF_SIZE 8192 struct dmadat { char rdbuf[READ_BUF_SIZE]; /* for reading large things */ char secbuf[READ_BUF_SIZE]; /* for MBR/disklabel */ }; static struct dmadat *dmadat; void exit(int); static void load(void); static int parse(void); static void bios_getmem(void); static void * malloc(size_t n) { char *p = heap_next; if (p + n > heap_end) { printf("malloc failure\n"); for (;;) ; return 0; } heap_next += n; return p; } static char * strdup(const char *s) { char *p = malloc(strlen(s) + 1); strcpy(p, s); return p; } #include "zfsimpl.c" /* * Read from a dnode (which must be from a ZPL filesystem). */ static int zfs_read(spa_t *spa, const dnode_phys_t *dnode, off_t *offp, void *start, size_t size) { const znode_phys_t *zp = (const znode_phys_t *) dnode->dn_bonus; size_t n; int rc; n = size; if (*offp + n > zp->zp_size) n = zp->zp_size - *offp; rc = dnode_read(spa, dnode, *offp, start, n); if (rc) return (-1); *offp += n; return (n); } /* * Current ZFS pool */ spa_t *spa; /* * A wrapper for dskread that doesn't have to worry about whether the * buffer pointer crosses a 64k boundary. */ static int vdev_read(vdev_t *vdev, void *priv, off_t off, void *buf, size_t bytes) { char *p; daddr_t lba; unsigned int nb; struct dsk *dsk = (struct dsk *) priv; if ((off & (DEV_BSIZE - 1)) || (bytes & (DEV_BSIZE - 1))) return -1; p = buf; lba = off / DEV_BSIZE; lba += dsk->start; while (bytes > 0) { nb = bytes / DEV_BSIZE; if (nb > READ_BUF_SIZE / DEV_BSIZE) nb = READ_BUF_SIZE / DEV_BSIZE; if (drvread(dsk, dmadat->rdbuf, lba, nb)) return -1; memcpy(p, dmadat->rdbuf, nb * DEV_BSIZE); p += nb * DEV_BSIZE; lba += nb; bytes -= nb * DEV_BSIZE; } return 0; } static int xfsread(const dnode_phys_t *dnode, off_t *offp, void *buf, size_t nbyte) { if ((size_t)zfs_read(spa, dnode, offp, buf, nbyte) != nbyte) { printf("Invalid %s\n", "format"); return -1; } return 0; } static void bios_getmem(void) { uint64_t size; /* Parse system memory map */ v86.ebx = 0; do { v86.ctl = V86_FLAGS; v86.addr = 0x15; /* int 0x15 function 0xe820*/ v86.eax = 0xe820; v86.ecx = sizeof(struct bios_smap); v86.edx = SMAP_SIG; v86.es = VTOPSEG(&smap); v86.edi = VTOPOFF(&smap); v86int(); if ((v86.efl & 1) || (v86.eax != SMAP_SIG)) break; /* look for a low-memory segment that's large enough */ if ((smap.type == SMAP_TYPE_MEMORY) && (smap.base == 0) && (smap.length >= (512 * 1024))) bios_basemem = smap.length; /* look for the first segment in 'extended' memory */ if ((smap.type == SMAP_TYPE_MEMORY) && (smap.base == 0x100000)) { bios_extmem = smap.length; } /* * Look for the largest segment in 'extended' memory beyond * 1MB but below 4GB. */ if ((smap.type == SMAP_TYPE_MEMORY) && (smap.base > 0x100000) && (smap.base < 0x100000000ull)) { size = smap.length; /* * If this segment crosses the 4GB boundary, truncate it. */ if (smap.base + size > 0x100000000ull) size = 0x100000000ull - smap.base; if (size > high_heap_size) { high_heap_size = size; high_heap_base = smap.base; } } } while (v86.ebx != 0); /* Fall back to the old compatibility function for base memory */ if (bios_basemem == 0) { v86.ctl = 0; v86.addr = 0x12; /* int 0x12 */ v86int(); bios_basemem = (v86.eax & 0xffff) * 1024; } /* Fall back through several compatibility functions for extended memory */ if (bios_extmem == 0) { v86.ctl = V86_FLAGS; v86.addr = 0x15; /* int 0x15 function 0xe801*/ v86.eax = 0xe801; v86int(); if (!(v86.efl & 1)) { bios_extmem = ((v86.ecx & 0xffff) + ((v86.edx & 0xffff) * 64)) * 1024; } } if (bios_extmem == 0) { v86.ctl = 0; v86.addr = 0x15; /* int 0x15 function 0x88*/ v86.eax = 0x8800; v86int(); bios_extmem = (v86.eax & 0xffff) * 1024; } /* * If we have extended memory and did not find a suitable heap * region in the SMAP, use the last 3MB of 'extended' memory as a * high heap candidate. */ if (bios_extmem >= HEAP_MIN && high_heap_size < HEAP_MIN) { high_heap_size = HEAP_MIN; high_heap_base = bios_extmem + 0x100000 - HEAP_MIN; } } /* * Try to detect a device supported by the legacy int13 BIOS */ static int int13probe(int drive) { v86.ctl = V86_FLAGS; v86.addr = 0x13; v86.eax = 0x800; v86.edx = drive; v86int(); if (!(v86.efl & 0x1) && /* carry clear */ ((v86.edx & 0xff) != (drive & DRV_MASK))) { /* unit # OK */ if ((v86.ecx & 0x3f) == 0) { /* absurd sector size */ return(0); /* skip device */ } return (1); } return(0); } /* * We call this when we find a ZFS vdev - ZFS consumes the dsk * structure so we must make a new one. */ static struct dsk * copy_dsk(struct dsk *dsk) { struct dsk *newdsk; newdsk = malloc(sizeof(struct dsk)); *newdsk = *dsk; return (newdsk); } static void probe_drive(struct dsk *dsk, spa_t **spap) { #ifdef GPT struct gpt_hdr hdr; struct gpt_ent *ent; daddr_t slba, elba; unsigned part, entries_per_sec; #endif struct dos_partition *dp; char *sec; unsigned i; /* * If we find a vdev on the whole disk, stop here. Otherwise dig * out the MBR and probe each slice in turn for a vdev. */ if (vdev_probe(vdev_read, dsk, spap) == 0) return; sec = dmadat->secbuf; dsk->start = 0; #ifdef GPT /* * First check for GPT. */ if (drvread(dsk, sec, 1, 1)) { return; } memcpy(&hdr, sec, sizeof(hdr)); if (memcmp(hdr.hdr_sig, GPT_HDR_SIG, sizeof(hdr.hdr_sig)) != 0 || hdr.hdr_lba_self != 1 || hdr.hdr_revision < 0x00010000 || hdr.hdr_entsz < sizeof(*ent) || DEV_BSIZE % hdr.hdr_entsz != 0) { goto trymbr; } /* * Probe all GPT partitions for the presense of ZFS pools. We * return the spa_t for the first we find (if requested). This * will have the effect of booting from the first pool on the * disk. */ entries_per_sec = DEV_BSIZE / hdr.hdr_entsz; slba = hdr.hdr_lba_table; elba = slba + hdr.hdr_entries / entries_per_sec; while (slba < elba) { dsk->start = 0; if (drvread(dsk, sec, slba, 1)) return; for (part = 0; part < entries_per_sec; part++) { ent = (struct gpt_ent *)(sec + part * hdr.hdr_entsz); if (memcmp(&ent->ent_type, &freebsd_zfs_uuid, sizeof(uuid_t)) == 0) { dsk->start = ent->ent_lba_start; if (vdev_probe(vdev_read, dsk, spap) == 0) { /* * We record the first pool we find (we will try * to boot from that one). */ spap = NULL; /* * This slice had a vdev. We need a new dsk * structure now since the vdev now owns this one. */ dsk = copy_dsk(dsk); } } } slba++; } return; trymbr: #endif if (drvread(dsk, sec, DOSBBSECTOR, 1)) return; dp = (void *)(sec + DOSPARTOFF); for (i = 0; i < NDOSPART; i++) { if (!dp[i].dp_typ) continue; dsk->start = dp[i].dp_start; if (vdev_probe(vdev_read, dsk, spap) == 0) { /* * We record the first pool we find (we will try to boot * from that one. */ spap = 0; /* * This slice had a vdev. We need a new dsk structure now * since the vdev now owns this one. */ dsk = copy_dsk(dsk); } } } int main(void) { int autoboot, i; dnode_phys_t dn; off_t off; struct dsk *dsk; dmadat = (void *)(roundup2(__base + (int32_t)&_end, 0x10000) - __base); bios_getmem(); if (high_heap_size > 0) { heap_end = PTOV(high_heap_base + high_heap_size); heap_next = PTOV(high_heap_base); } else { heap_next = (char *) dmadat + sizeof(*dmadat); heap_end = (char *) PTOV(bios_basemem); } dsk = malloc(sizeof(struct dsk)); dsk->drive = *(uint8_t *)PTOV(ARGS); dsk->type = dsk->drive & DRV_HARD ? TYPE_AD : TYPE_FD; dsk->unit = dsk->drive & DRV_MASK; dsk->slice = *(uint8_t *)PTOV(ARGS + 1) + 1; dsk->part = 0; dsk->start = 0; dsk->init = 0; bootinfo.bi_version = BOOTINFO_VERSION; bootinfo.bi_size = sizeof(bootinfo); bootinfo.bi_basemem = bios_basemem / 1024; bootinfo.bi_extmem = bios_extmem / 1024; bootinfo.bi_memsizes_valid++; bootinfo.bi_bios_dev = dsk->drive; bootdev = MAKEBOOTDEV(dev_maj[dsk->type], dsk->slice, dsk->unit, dsk->part), /* Process configuration file */ autoboot = 1; zfs_init(); /* * Probe the boot drive first - we will try to boot from whatever * pool we find on that drive. */ probe_drive(dsk, &spa); /* * Probe the rest of the drives that the bios knows about. This * will find any other available pools and it may fill in missing * vdevs for the boot pool. */ #ifndef VIRTUALBOX for (i = 0; i < *(unsigned char *)PTOV(BIOS_NUMDRIVES); i++) #else for (i = 0; i < MAXBDDEV; i++) #endif { if ((i | DRV_HARD) == *(uint8_t *)PTOV(ARGS)) continue; if (!int13probe(i | DRV_HARD)) break; dsk = malloc(sizeof(struct dsk)); dsk->drive = i | DRV_HARD; dsk->type = dsk->drive & TYPE_AD; dsk->unit = i; dsk->slice = 0; dsk->part = 0; dsk->start = 0; dsk->init = 0; probe_drive(dsk, NULL); } /* * If we didn't find a pool on the boot drive, default to the * first pool we found, if any. */ if (!spa) { spa = STAILQ_FIRST(&zfs_pools); if (!spa) { printf("%s: No ZFS pools located, can't boot\n", BOOTPROG); for (;;) ; } } zfs_mount_pool(spa); if (zfs_lookup(spa, PATH_CONFIG, &dn) == 0 || zfs_lookup(spa, PATH_DOTCONFIG, &dn) == 0) { off = 0; zfs_read(spa, &dn, &off, cmd, sizeof(cmd)); } if (*cmd) { /* * Note that parse() is destructive to cmd[] and we also want * to honor RBX_QUIET option that could be present in cmd[]. */ memcpy(cmddup, cmd, sizeof(cmd)); if (parse()) autoboot = 0; if (!OPT_CHECK(RBX_QUIET)) printf("%s: %s", PATH_CONFIG, cmddup); /* Do not process this command twice */ *cmd = 0; } /* * Try to exec stage 3 boot loader. If interrupted by a keypress, * or in case of failure, try to load a kernel directly instead. */ if (autoboot && !*kname) { memcpy(kname, PATH_BOOT3, sizeof(PATH_BOOT3)); if (!keyhit(3)) { load(); memcpy(kname, PATH_KERNEL, sizeof(PATH_KERNEL)); } } /* Present the user with the boot2 prompt. */ for (;;) { if (!autoboot || !OPT_CHECK(RBX_QUIET)) printf("\nFreeBSD/x86 boot\n" "Default: %s:%s\n" "boot: ", spa->spa_name, kname); if (ioctrl & IO_SERIAL) sio_flush(); if (!autoboot || keyhit(5)) getstr(cmd, sizeof(cmd)); else if (!autoboot || !OPT_CHECK(RBX_QUIET)) putchar('\n'); autoboot = 0; if (parse()) putchar('\a'); else load(); } } /* XXX - Needed for btxld to link the boot2 binary; do not remove. */ void exit(int x) { } static void load(void) { union { struct exec ex; Elf32_Ehdr eh; } hdr; static Elf32_Phdr ep[2]; static Elf32_Shdr es[2]; caddr_t p; dnode_phys_t dn; off_t off; uint32_t addr, x; int fmt, i, j; if (zfs_lookup(spa, kname, &dn)) { return; } off = 0; if (xfsread(&dn, &off, &hdr, sizeof(hdr))) return; if (N_GETMAGIC(hdr.ex) == ZMAGIC) fmt = 0; else if (IS_ELF(hdr.eh)) fmt = 1; else { printf("Invalid %s\n", "format"); return; } if (fmt == 0) { addr = hdr.ex.a_entry & 0xffffff; p = PTOV(addr); off = PAGE_SIZE; if (xfsread(&dn, &off, p, hdr.ex.a_text)) return; p += roundup2(hdr.ex.a_text, PAGE_SIZE); if (xfsread(&dn, &off, p, hdr.ex.a_data)) return; p += hdr.ex.a_data + roundup2(hdr.ex.a_bss, PAGE_SIZE); bootinfo.bi_symtab = VTOP(p); memcpy(p, &hdr.ex.a_syms, sizeof(hdr.ex.a_syms)); p += sizeof(hdr.ex.a_syms); if (hdr.ex.a_syms) { if (xfsread(&dn, &off, p, hdr.ex.a_syms)) return; p += hdr.ex.a_syms; if (xfsread(&dn, &off, p, sizeof(int))) return; x = *(uint32_t *)p; p += sizeof(int); x -= sizeof(int); if (xfsread(&dn, &off, p, x)) return; p += x; } } else { off = hdr.eh.e_phoff; for (j = i = 0; i < hdr.eh.e_phnum && j < 2; i++) { if (xfsread(&dn, &off, ep + j, sizeof(ep[0]))) return; if (ep[j].p_type == PT_LOAD) j++; } for (i = 0; i < 2; i++) { p = PTOV(ep[i].p_paddr & 0xffffff); off = ep[i].p_offset; if (xfsread(&dn, &off, p, ep[i].p_filesz)) return; } p += roundup2(ep[1].p_memsz, PAGE_SIZE); bootinfo.bi_symtab = VTOP(p); if (hdr.eh.e_shnum == hdr.eh.e_shstrndx + 3) { off = hdr.eh.e_shoff + sizeof(es[0]) * (hdr.eh.e_shstrndx + 1); if (xfsread(&dn, &off, &es, sizeof(es))) return; for (i = 0; i < 2; i++) { memcpy(p, &es[i].sh_size, sizeof(es[i].sh_size)); p += sizeof(es[i].sh_size); off = es[i].sh_offset; if (xfsread(&dn, &off, p, es[i].sh_size)) return; p += es[i].sh_size; } } addr = hdr.eh.e_entry & 0xffffff; } bootinfo.bi_esymtab = VTOP(p); bootinfo.bi_kernelname = VTOP(kname); __exec((caddr_t)addr, RB_BOOTINFO | (opts & RBX_MASK), bootdev, KARGS_FLAGS_ZFS, (uint32_t) spa->spa_guid, (uint32_t) (spa->spa_guid >> 32), VTOP(&bootinfo)); } static int parse(void) { char *arg = cmd; char *ep, *p, *q; const char *cp; //unsigned int drv; int c, i, j; while ((c = *arg++)) { if (c == ' ' || c == '\t' || c == '\n') continue; for (p = arg; *p && *p != '\n' && *p != ' ' && *p != '\t'; p++); ep = p; if (*p) *p++ = 0; if (c == '-') { while ((c = *arg++)) { if (c == 'P') { if (*(uint8_t *)PTOV(0x496) & 0x10) { cp = "yes"; } else { opts |= OPT_SET(RBX_DUAL) | OPT_SET(RBX_SERIAL); cp = "no"; } printf("Keyboard: %s\n", cp); continue; } else if (c == 'S') { j = 0; while ((unsigned int)(i = *arg++ - '0') <= 9) j = j * 10 + i; if (j > 0 && i == -'0') { comspeed = j; break; } /* Fall through to error below ('S' not in optstr[]). */ } for (i = 0; c != optstr[i]; i++) if (i == NOPT - 1) return -1; opts ^= OPT_SET(flags[i]); } ioctrl = OPT_CHECK(RBX_DUAL) ? (IO_SERIAL|IO_KEYBOARD) : OPT_CHECK(RBX_SERIAL) ? IO_SERIAL : IO_KEYBOARD; if (ioctrl & IO_SERIAL) sio_init(115200 / comspeed); } if (c == '?') { dnode_phys_t dn; if (zfs_lookup(spa, arg, &dn) == 0) { zap_list(spa, &dn); } return -1; } else { arg--; /* * Report pool status if the comment is 'status'. Lets * hope no-one wants to load /status as a kernel. */ if (!strcmp(arg, "status")) { spa_all_status(); return -1; } /* * If there is a colon, switch pools. */ q = (char *) strchr(arg, ':'); if (q) { spa_t *newspa; *q++ = 0; newspa = spa_find_by_name(arg); if (newspa) { spa = newspa; zfs_mount_pool(spa); } else { printf("\nCan't find ZFS pool %s\n", arg); return -1; } arg = q; } if ((i = ep - arg)) { if ((size_t)i >= sizeof(kname)) return -1; memcpy(kname, arg, i + 1); } } arg = p; } return 0; }