/* * Copyright (c) 2001 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Matt Thomas of Allegro Networks, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (C) 1995, 1996 Wolfgang Solfrank. * Copyright (C) 1995, 1996 TooLs GmbH. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by TooLs GmbH. * 4. The name of TooLs GmbH may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $ */ /* * Copyright (C) 2001 Benno Rice. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef lint static const char rcsid[] = "$FreeBSD$"; #endif /* not lint */ /* * Manages physical address maps. * * In addition to hardware address maps, this module is called upon to * provide software-use-only maps which may or may not be stored in the * same form as hardware maps. These pseudo-maps are used to store * intermediate results from copy operations to and from address spaces. * * Since the information managed by this module is also stored by the * logical address mapping module, this module may throw away valid virtual * to physical mappings at almost any time. However, invalidations of * mappings must be done as requested. * * In order to cope with hardware architectures which make virtual to * physical map invalidates expensive, this module may delay invalidate * reduced protection operations until such time as they are actually * necessary. This module is given full information as to which processors * are currently using which maps, and to when physical maps must be made * correct. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define PMAP_DEBUG #define TODO panic("%s: not implemented", __func__); #define PMAP_LOCK(pm) #define PMAP_UNLOCK(pm) #define TLBIE(va) __asm __volatile("tlbie %0" :: "r"(va)) #define TLBSYNC() __asm __volatile("tlbsync"); #define SYNC() __asm __volatile("sync"); #define EIEIO() __asm __volatile("eieio"); #define VSID_MAKE(sr, hash) ((sr) | (((hash) & 0xfffff) << 4)) #define VSID_TO_SR(vsid) ((vsid) & 0xf) #define VSID_TO_HASH(vsid) (((vsid) >> 4) & 0xfffff) #define PVO_PTEGIDX_MASK 0x0007 /* which PTEG slot */ #define PVO_PTEGIDX_VALID 0x0008 /* slot is valid */ #define PVO_WIRED 0x0010 /* PVO entry is wired */ #define PVO_MANAGED 0x0020 /* PVO entry is managed */ #define PVO_EXECUTABLE 0x0040 /* PVO entry is executable */ #define PVO_BOOTSTRAP 0x0080 /* PVO entry allocated during bootstrap */ #define PVO_VADDR(pvo) ((pvo)->pvo_vaddr & ~ADDR_POFF) #define PVO_ISEXECUTABLE(pvo) ((pvo)->pvo_vaddr & PVO_EXECUTABLE) #define PVO_PTEGIDX_GET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK) #define PVO_PTEGIDX_ISSET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID) #define PVO_PTEGIDX_CLR(pvo) \ ((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK))) #define PVO_PTEGIDX_SET(pvo, i) \ ((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID)) #define PMAP_PVO_CHECK(pvo) struct ofw_map { vm_offset_t om_va; vm_size_t om_len; vm_offset_t om_pa; u_int om_mode; }; int pmap_bootstrapped = 0; /* * Virtual and physical address of message buffer. */ struct msgbuf *msgbufp; vm_offset_t msgbuf_phys; /* * Physical addresses of first and last available physical page. */ vm_offset_t avail_start; vm_offset_t avail_end; /* * Map of physical memory regions. */ vm_offset_t phys_avail[128]; u_int phys_avail_count; static struct mem_region *regions; static struct mem_region *pregions; int regions_sz, pregions_sz; static struct ofw_map *translations; /* * First and last available kernel virtual addresses. */ vm_offset_t virtual_avail; vm_offset_t virtual_end; vm_offset_t kernel_vm_end; /* * Kernel pmap. */ struct pmap kernel_pmap_store; extern struct pmap ofw_pmap; /* * PTEG data. */ static struct pteg *pmap_pteg_table; u_int pmap_pteg_count; u_int pmap_pteg_mask; /* * PVO data. */ struct pvo_head *pmap_pvo_table; /* pvo entries by pteg index */ struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged); /* list of unmanaged pages */ struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged); /* list of unmanaged pages */ uma_zone_t pmap_upvo_zone; /* zone for pvo entries for unmanaged pages */ uma_zone_t pmap_mpvo_zone; /* zone for pvo entries for managed pages */ struct vm_object pmap_upvo_zone_obj; struct vm_object pmap_mpvo_zone_obj; static vm_object_t pmap_pvo_obj; static u_int pmap_pvo_count; #define BPVO_POOL_SIZE 32768 static struct pvo_entry *pmap_bpvo_pool; static int pmap_bpvo_pool_index = 0; #define VSID_NBPW (sizeof(u_int32_t) * 8) static u_int pmap_vsid_bitmap[NPMAPS / VSID_NBPW]; static boolean_t pmap_initialized = FALSE; /* * Statistics. */ u_int pmap_pte_valid = 0; u_int pmap_pte_overflow = 0; u_int pmap_pte_replacements = 0; u_int pmap_pvo_entries = 0; u_int pmap_pvo_enter_calls = 0; u_int pmap_pvo_remove_calls = 0; u_int pmap_pte_spills = 0; SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_valid, CTLFLAG_RD, &pmap_pte_valid, 0, ""); SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_overflow, CTLFLAG_RD, &pmap_pte_overflow, 0, ""); SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_replacements, CTLFLAG_RD, &pmap_pte_replacements, 0, ""); SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_entries, CTLFLAG_RD, &pmap_pvo_entries, 0, ""); SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_enter_calls, CTLFLAG_RD, &pmap_pvo_enter_calls, 0, ""); SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_remove_calls, CTLFLAG_RD, &pmap_pvo_remove_calls, 0, ""); SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_spills, CTLFLAG_RD, &pmap_pte_spills, 0, ""); struct pvo_entry *pmap_pvo_zeropage; vm_offset_t pmap_rkva_start = VM_MIN_KERNEL_ADDRESS; u_int pmap_rkva_count = 4; /* * Allocate physical memory for use in pmap_bootstrap. */ static vm_offset_t pmap_bootstrap_alloc(vm_size_t, u_int); /* * PTE calls. */ static int pmap_pte_insert(u_int, struct pte *); /* * PVO calls. */ static int pmap_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *, vm_offset_t, vm_offset_t, u_int, int); static void pmap_pvo_remove(struct pvo_entry *, int); static struct pvo_entry *pmap_pvo_find_va(pmap_t, vm_offset_t, int *); static struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int); /* * Utility routines. */ static void * pmap_pvo_allocf(uma_zone_t, int, u_int8_t *, int); static struct pvo_entry *pmap_rkva_alloc(void); static void pmap_pa_map(struct pvo_entry *, vm_offset_t, struct pte *, int *); static void pmap_pa_unmap(struct pvo_entry *, struct pte *, int *); static void pmap_syncicache(vm_offset_t, vm_size_t); static boolean_t pmap_query_bit(vm_page_t, int); static boolean_t pmap_clear_bit(vm_page_t, int); static void tlbia(void); static __inline int va_to_sr(u_int *sr, vm_offset_t va) { return (sr[(uintptr_t)va >> ADDR_SR_SHFT]); } static __inline u_int va_to_pteg(u_int sr, vm_offset_t addr) { u_int hash; hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >> ADDR_PIDX_SHFT); return (hash & pmap_pteg_mask); } static __inline struct pvo_head * pa_to_pvoh(vm_offset_t pa, vm_page_t *pg_p) { struct vm_page *pg; pg = PHYS_TO_VM_PAGE(pa); if (pg_p != NULL) *pg_p = pg; if (pg == NULL) return (&pmap_pvo_unmanaged); return (&pg->md.mdpg_pvoh); } static __inline struct pvo_head * vm_page_to_pvoh(vm_page_t m) { return (&m->md.mdpg_pvoh); } static __inline void pmap_attr_clear(vm_page_t m, int ptebit) { m->md.mdpg_attrs &= ~ptebit; } static __inline int pmap_attr_fetch(vm_page_t m) { return (m->md.mdpg_attrs); } static __inline void pmap_attr_save(vm_page_t m, int ptebit) { m->md.mdpg_attrs |= ptebit; } static __inline int pmap_pte_compare(const struct pte *pt, const struct pte *pvo_pt) { if (pt->pte_hi == pvo_pt->pte_hi) return (1); return (0); } static __inline int pmap_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which) { return (pt->pte_hi & ~PTE_VALID) == (((sr & SR_VSID_MASK) << PTE_VSID_SHFT) | ((va >> ADDR_API_SHFT) & PTE_API) | which); } static __inline void pmap_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo) { /* * Construct a PTE. Default to IMB initially. Valid bit only gets * set when the real pte is set in memory. * * Note: Don't set the valid bit for correct operation of tlb update. */ pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) | (((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API); pt->pte_lo = pte_lo; } static __inline void pmap_pte_synch(struct pte *pt, struct pte *pvo_pt) { pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG); } static __inline void pmap_pte_clear(struct pte *pt, vm_offset_t va, int ptebit) { /* * As shown in Section 7.6.3.2.3 */ pt->pte_lo &= ~ptebit; TLBIE(va); EIEIO(); TLBSYNC(); SYNC(); } static __inline void pmap_pte_set(struct pte *pt, struct pte *pvo_pt) { pvo_pt->pte_hi |= PTE_VALID; /* * Update the PTE as defined in section 7.6.3.1. * Note that the REF/CHG bits are from pvo_pt and thus should havce * been saved so this routine can restore them (if desired). */ pt->pte_lo = pvo_pt->pte_lo; EIEIO(); pt->pte_hi = pvo_pt->pte_hi; SYNC(); pmap_pte_valid++; } static __inline void pmap_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va) { pvo_pt->pte_hi &= ~PTE_VALID; /* * Force the reg & chg bits back into the PTEs. */ SYNC(); /* * Invalidate the pte. */ pt->pte_hi &= ~PTE_VALID; SYNC(); TLBIE(va); EIEIO(); TLBSYNC(); SYNC(); /* * Save the reg & chg bits. */ pmap_pte_synch(pt, pvo_pt); pmap_pte_valid--; } static __inline void pmap_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va) { /* * Invalidate the PTE */ pmap_pte_unset(pt, pvo_pt, va); pmap_pte_set(pt, pvo_pt); } /* * Quick sort callout for comparing memory regions. */ static int mr_cmp(const void *a, const void *b); static int om_cmp(const void *a, const void *b); static int mr_cmp(const void *a, const void *b) { const struct mem_region *regiona; const struct mem_region *regionb; regiona = a; regionb = b; if (regiona->mr_start < regionb->mr_start) return (-1); else if (regiona->mr_start > regionb->mr_start) return (1); else return (0); } static int om_cmp(const void *a, const void *b) { const struct ofw_map *mapa; const struct ofw_map *mapb; mapa = a; mapb = b; if (mapa->om_pa < mapb->om_pa) return (-1); else if (mapa->om_pa > mapb->om_pa) return (1); else return (0); } void pmap_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend) { ihandle_t mmui; phandle_t chosen, mmu; int sz; int i, j; int ofw_mappings; vm_size_t size, physsz; vm_offset_t pa, va, off; u_int batl, batu; /* * Set up BAT0 to map the lowest 256 MB area */ battable[0x0].batl = BATL(0x00000000, BAT_M, BAT_PP_RW); battable[0x0].batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs); /* * Map PCI memory space. */ battable[0x8].batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW); battable[0x8].batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs); battable[0x9].batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW); battable[0x9].batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs); battable[0xa].batl = BATL(0xa0000000, BAT_I|BAT_G, BAT_PP_RW); battable[0xa].batu = BATU(0xa0000000, BAT_BL_256M, BAT_Vs); battable[0xb].batl = BATL(0xb0000000, BAT_I|BAT_G, BAT_PP_RW); battable[0xb].batu = BATU(0xb0000000, BAT_BL_256M, BAT_Vs); /* * Map obio devices. */ battable[0xf].batl = BATL(0xf0000000, BAT_I|BAT_G, BAT_PP_RW); battable[0xf].batu = BATU(0xf0000000, BAT_BL_256M, BAT_Vs); /* * Use an IBAT and a DBAT to map the bottom segment of memory * where we are. */ batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs); batl = BATL(0x00000000, BAT_M, BAT_PP_RW); __asm ("mtibatu 0,%0; mtibatl 0,%1; mtdbatu 0,%0; mtdbatl 0,%1" :: "r"(batu), "r"(batl)); #if 0 /* map frame buffer */ batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs); batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW); __asm ("mtdbatu 1,%0; mtdbatl 1,%1" :: "r"(batu), "r"(batl)); #endif #if 1 /* map pci space */ batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs); batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW); __asm ("mtdbatu 1,%0; mtdbatl 1,%1" :: "r"(batu), "r"(batl)); #endif /* * Set the start and end of kva. */ virtual_avail = VM_MIN_KERNEL_ADDRESS; virtual_end = VM_MAX_KERNEL_ADDRESS; mem_regions(&pregions, &pregions_sz, ®ions, ®ions_sz); CTR0(KTR_PMAP, "pmap_bootstrap: physical memory"); qsort(pregions, pregions_sz, sizeof(*pregions), mr_cmp); for (i = 0; i < pregions_sz; i++) { vm_offset_t pa; vm_offset_t end; CTR3(KTR_PMAP, "physregion: %#x - %#x (%#x)", pregions[i].mr_start, pregions[i].mr_start + pregions[i].mr_size, pregions[i].mr_size); /* * Install entries into the BAT table to allow all * of physmem to be convered by on-demand BAT entries. * The loop will sometimes set the same battable element * twice, but that's fine since they won't be used for * a while yet. */ pa = pregions[i].mr_start & 0xf0000000; end = pregions[i].mr_start + pregions[i].mr_size; do { u_int n = pa >> ADDR_SR_SHFT; battable[n].batl = BATL(pa, BAT_M, BAT_PP_RW); battable[n].batu = BATU(pa, BAT_BL_256M, BAT_Vs); pa += SEGMENT_LENGTH; } while (pa < end); } if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz) panic("pmap_bootstrap: phys_avail too small"); qsort(regions, regions_sz, sizeof(*regions), mr_cmp); phys_avail_count = 0; physsz = 0; for (i = 0, j = 0; i < regions_sz; i++, j += 2) { CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start, regions[i].mr_start + regions[i].mr_size, regions[i].mr_size); phys_avail[j] = regions[i].mr_start; phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size; phys_avail_count++; physsz += regions[i].mr_size; } physmem = btoc(physsz); /* * Allocate PTEG table. */ #ifdef PTEGCOUNT pmap_pteg_count = PTEGCOUNT; #else pmap_pteg_count = 0x1000; while (pmap_pteg_count < physmem) pmap_pteg_count <<= 1; pmap_pteg_count >>= 1; #endif /* PTEGCOUNT */ size = pmap_pteg_count * sizeof(struct pteg); CTR2(KTR_PMAP, "pmap_bootstrap: %d PTEGs, %d bytes", pmap_pteg_count, size); pmap_pteg_table = (struct pteg *)pmap_bootstrap_alloc(size, size); CTR1(KTR_PMAP, "pmap_bootstrap: PTEG table at %p", pmap_pteg_table); bzero((void *)pmap_pteg_table, pmap_pteg_count * sizeof(struct pteg)); pmap_pteg_mask = pmap_pteg_count - 1; /* * Allocate pv/overflow lists. */ size = sizeof(struct pvo_head) * pmap_pteg_count; pmap_pvo_table = (struct pvo_head *)pmap_bootstrap_alloc(size, PAGE_SIZE); CTR1(KTR_PMAP, "pmap_bootstrap: PVO table at %p", pmap_pvo_table); for (i = 0; i < pmap_pteg_count; i++) LIST_INIT(&pmap_pvo_table[i]); /* * Allocate the message buffer. */ msgbuf_phys = pmap_bootstrap_alloc(MSGBUF_SIZE, 0); /* * Initialise the unmanaged pvo pool. */ pmap_bpvo_pool = (struct pvo_entry *)pmap_bootstrap_alloc( BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0); pmap_bpvo_pool_index = 0; /* * Make sure kernel vsid is allocated as well as VSID 0. */ pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW] |= 1 << (KERNEL_VSIDBITS % VSID_NBPW); pmap_vsid_bitmap[0] |= 1; /* * Set up the OpenFirmware pmap and add it's mappings. */ pmap_pinit(&ofw_pmap); ofw_pmap.pm_sr[KERNEL_SR] = KERNEL_SEGMENT; if ((chosen = OF_finddevice("/chosen")) == -1) panic("pmap_bootstrap: can't find /chosen"); OF_getprop(chosen, "mmu", &mmui, 4); if ((mmu = OF_instance_to_package(mmui)) == -1) panic("pmap_bootstrap: can't get mmu package"); if ((sz = OF_getproplen(mmu, "translations")) == -1) panic("pmap_bootstrap: can't get ofw translation count"); translations = NULL; for (i = 0; phys_avail[i + 2] != 0; i += 2) { if (phys_avail[i + 1] >= sz) translations = (struct ofw_map *)phys_avail[i]; } if (translations == NULL) panic("pmap_bootstrap: no space to copy translations"); bzero(translations, sz); if (OF_getprop(mmu, "translations", translations, sz) == -1) panic("pmap_bootstrap: can't get ofw translations"); CTR0(KTR_PMAP, "pmap_bootstrap: translations"); sz /= sizeof(*translations); qsort(translations, sz, sizeof (*translations), om_cmp); for (i = 0, ofw_mappings = 0; i < sz; i++) { CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x", translations[i].om_pa, translations[i].om_va, translations[i].om_len); /* * If the mapping is 1:1, let the RAM and device on-demand * BAT tables take care of the translation. */ if (translations[i].om_va == translations[i].om_pa) continue; /* Enter the pages */ for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) { struct vm_page m; m.phys_addr = translations[i].om_pa + off; pmap_enter(&ofw_pmap, translations[i].om_va + off, &m, VM_PROT_ALL, 1); ofw_mappings++; } } #ifdef SMP TLBSYNC(); #endif /* * Initialize the kernel pmap (which is statically allocated). */ for (i = 0; i < 16; i++) { kernel_pmap->pm_sr[i] = EMPTY_SEGMENT; } kernel_pmap->pm_sr[KERNEL_SR] = KERNEL_SEGMENT; kernel_pmap->pm_active = ~0; /* * Allocate a kernel stack with a guard page for thread0 and map it * into the kernel page map. */ pa = pmap_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, 0); kstack0_phys = pa; kstack0 = virtual_avail + (KSTACK_GUARD_PAGES * PAGE_SIZE); CTR2(KTR_PMAP, "pmap_bootstrap: kstack0 at %#x (%#x)", kstack0_phys, kstack0); virtual_avail += (KSTACK_PAGES + KSTACK_GUARD_PAGES) * PAGE_SIZE; for (i = 0; i < KSTACK_PAGES; i++) { pa = kstack0_phys + i * PAGE_SIZE; va = kstack0 + i * PAGE_SIZE; pmap_kenter(va, pa); TLBIE(va); } /* * Calculate the first and last available physical addresses. */ avail_start = phys_avail[0]; for (i = 0; phys_avail[i + 2] != 0; i += 2) ; avail_end = phys_avail[i + 1]; Maxmem = powerpc_btop(avail_end); /* * Allocate virtual address space for the message buffer. */ msgbufp = (struct msgbuf *)virtual_avail; virtual_avail += round_page(MSGBUF_SIZE); /* * Initialize hardware. */ for (i = 0; i < 16; i++) { mtsrin(i << ADDR_SR_SHFT, EMPTY_SEGMENT); } __asm __volatile ("mtsr %0,%1" :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT)); __asm __volatile ("sync; mtsdr1 %0; isync" :: "r"((u_int)pmap_pteg_table | (pmap_pteg_mask >> 10))); tlbia(); pmap_bootstrapped++; } /* * Activate a user pmap. The pmap must be activated before it's address * space can be accessed in any way. */ void pmap_activate(struct thread *td) { pmap_t pm, pmr; /* * Load all the data we need up front to encourage the compiler to * not issue any loads while we have interrupts disabled below. */ pm = &td->td_proc->p_vmspace->vm_pmap; if ((pmr = (pmap_t)pmap_kextract((vm_offset_t)pm)) == NULL) pmr = pm; pm->pm_active |= PCPU_GET(cpumask); PCPU_SET(curpmap, pmr); } void pmap_deactivate(struct thread *td) { pmap_t pm; pm = &td->td_proc->p_vmspace->vm_pmap; pm->pm_active &= ~(PCPU_GET(cpumask)); PCPU_SET(curpmap, NULL); } vm_offset_t pmap_addr_hint(vm_object_t object, vm_offset_t va, vm_size_t size) { return (va); } void pmap_change_wiring(pmap_t pm, vm_offset_t va, boolean_t wired) { struct pvo_entry *pvo; pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL); if (pvo != NULL) { if (wired) { if ((pvo->pvo_vaddr & PVO_WIRED) == 0) pm->pm_stats.wired_count++; pvo->pvo_vaddr |= PVO_WIRED; } else { if ((pvo->pvo_vaddr & PVO_WIRED) != 0) pm->pm_stats.wired_count--; pvo->pvo_vaddr &= ~PVO_WIRED; } } } void pmap_clear_modify(vm_page_t m) { if (m->flags * PG_FICTITIOUS) return; pmap_clear_bit(m, PTE_CHG); } void pmap_collect(void) { TODO; } void pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr) { /* * This is not needed as it's mainly an optimisation. * It may want to be implemented later though. */ } void pmap_copy_page(vm_page_t msrc, vm_page_t mdst) { vm_offset_t dst; vm_offset_t src; dst = VM_PAGE_TO_PHYS(mdst); src = VM_PAGE_TO_PHYS(msrc); kcopy((void *)src, (void *)dst, PAGE_SIZE); } /* * Zero a page of physical memory by temporarily mapping it into the tlb. */ void pmap_zero_page(vm_page_t m) { vm_offset_t pa = VM_PAGE_TO_PHYS(m); caddr_t va; int i; if (pa < SEGMENT_LENGTH) { va = (caddr_t) pa; } else if (pmap_initialized) { if (pmap_pvo_zeropage == NULL) pmap_pvo_zeropage = pmap_rkva_alloc(); pmap_pa_map(pmap_pvo_zeropage, pa, NULL, NULL); va = (caddr_t)PVO_VADDR(pmap_pvo_zeropage); } else { panic("pmap_zero_page: can't zero pa %#x", pa); } bzero(va, PAGE_SIZE); #if 0 for (i = PAGE_SIZE / CACHELINESIZE; i > 0; i--) { __asm __volatile("dcbz 0,%0" :: "r"(va)); va += CACHELINESIZE; } #endif if (pa >= SEGMENT_LENGTH) pmap_pa_unmap(pmap_pvo_zeropage, NULL, NULL); } void pmap_zero_page_area(vm_page_t m, int off, int size) { vm_offset_t pa = VM_PAGE_TO_PHYS(m); caddr_t va; int i; if (pa < SEGMENT_LENGTH) { va = (caddr_t) pa; } else if (pmap_initialized) { if (pmap_pvo_zeropage == NULL) pmap_pvo_zeropage = pmap_rkva_alloc(); pmap_pa_map(pmap_pvo_zeropage, pa, NULL, NULL); va = (caddr_t)PVO_VADDR(pmap_pvo_zeropage); } else { panic("pmap_zero_page: can't zero pa %#x", pa); } bzero(va + off, size); #if 0 for (i = size / CACHELINESIZE; i > 0; i--) { __asm __volatile("dcbz 0,%0" :: "r"(va)); va += CACHELINESIZE; } #endif if (pa >= SEGMENT_LENGTH) pmap_pa_unmap(pmap_pvo_zeropage, NULL, NULL); } void pmap_zero_page_idle(vm_page_t m) { /* XXX this is called outside of Giant, is pmap_zero_page safe? */ /* XXX maybe have a dedicated mapping for this to avoid the problem? */ mtx_lock(&Giant); pmap_zero_page(m); mtx_unlock(&Giant); } /* * Map the given physical page at the specified virtual address in the * target pmap with the protection requested. If specified the page * will be wired down. */ void pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot, boolean_t wired) { struct pvo_head *pvo_head; uma_zone_t zone; vm_page_t pg; u_int pte_lo, pvo_flags, was_exec, i; int error; if (!pmap_initialized) { pvo_head = &pmap_pvo_kunmanaged; zone = pmap_upvo_zone; pvo_flags = 0; pg = NULL; was_exec = PTE_EXEC; } else { pvo_head = pa_to_pvoh(VM_PAGE_TO_PHYS(m), &pg); zone = pmap_mpvo_zone; pvo_flags = PVO_MANAGED; was_exec = 0; } /* * If this is a managed page, and it's the first reference to the page, * clear the execness of the page. Otherwise fetch the execness. */ if (pg != NULL) { if (LIST_EMPTY(pvo_head)) { pmap_attr_clear(pg, PTE_EXEC); } else { was_exec = pmap_attr_fetch(pg) & PTE_EXEC; } } /* * Assume the page is cache inhibited and access is guarded unless * it's in our available memory array. */ pte_lo = PTE_I | PTE_G; for (i = 0; i < pregions_sz; i++) { if ((VM_PAGE_TO_PHYS(m) >= pregions[i].mr_start) && (VM_PAGE_TO_PHYS(m) < (pregions[i].mr_start + pregions[i].mr_size))) { pte_lo &= ~(PTE_I | PTE_G); break; } } if (prot & VM_PROT_WRITE) pte_lo |= PTE_BW; else pte_lo |= PTE_BR; pvo_flags |= (prot & VM_PROT_EXECUTE); if (wired) pvo_flags |= PVO_WIRED; error = pmap_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m), pte_lo, pvo_flags); /* * Flush the real page from the instruction cache if this page is * mapped executable and cacheable and was not previously mapped (or * was not mapped executable). */ if (error == 0 && (pvo_flags & PVO_EXECUTABLE) && (pte_lo & PTE_I) == 0 && was_exec == 0) { /* * Flush the real memory from the cache. */ pmap_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE); if (pg != NULL) pmap_attr_save(pg, PTE_EXEC); } /* XXX syncicache always until problems are sorted */ pmap_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE); } vm_offset_t pmap_extract(pmap_t pm, vm_offset_t va) { struct pvo_entry *pvo; pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL); if (pvo != NULL) { return ((pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF)); } return (0); } /* * Grow the number of kernel page table entries. Unneeded. */ void pmap_growkernel(vm_offset_t addr) { } void pmap_init(vm_offset_t phys_start, vm_offset_t phys_end) { CTR0(KTR_PMAP, "pmap_init"); pmap_pvo_obj = vm_object_allocate(OBJT_PHYS, 16); pmap_pvo_count = 0; pmap_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM); uma_zone_set_allocf(pmap_upvo_zone, pmap_pvo_allocf); pmap_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM); uma_zone_set_allocf(pmap_mpvo_zone, pmap_pvo_allocf); pmap_initialized = TRUE; } void pmap_init2(void) { CTR0(KTR_PMAP, "pmap_init2"); } boolean_t pmap_is_modified(vm_page_t m) { if (m->flags & PG_FICTITIOUS) return (FALSE); return (pmap_query_bit(m, PTE_CHG)); } void pmap_clear_reference(vm_page_t m) { TODO; } /* * pmap_ts_referenced: * * Return a count of reference bits for a page, clearing those bits. * It is not necessary for every reference bit to be cleared, but it * is necessary that 0 only be returned when there are truly no * reference bits set. * * XXX: The exact number of bits to check and clear is a matter that * should be tested and standardized at some point in the future for * optimal aging of shared pages. */ int pmap_ts_referenced(vm_page_t m) { TODO; return (0); } /* * Map a wired page into kernel virtual address space. */ void pmap_kenter(vm_offset_t va, vm_offset_t pa) { u_int pte_lo; int error; int i; #if 0 if (va < VM_MIN_KERNEL_ADDRESS) panic("pmap_kenter: attempt to enter non-kernel address %#x", va); #endif pte_lo = PTE_I | PTE_G; for (i = 0; i < pregions_sz; i++) { if ((pa >= pregions[i].mr_start) && (pa < (pregions[i].mr_start + pregions[i].mr_size))) { pte_lo &= ~(PTE_I | PTE_G); break; } } error = pmap_pvo_enter(kernel_pmap, pmap_upvo_zone, &pmap_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED); if (error != 0 && error != ENOENT) panic("pmap_kenter: failed to enter va %#x pa %#x: %d", va, pa, error); /* * Flush the real memory from the instruction cache. */ if ((pte_lo & (PTE_I | PTE_G)) == 0) { pmap_syncicache(pa, PAGE_SIZE); } } /* * Extract the physical page address associated with the given kernel virtual * address. */ vm_offset_t pmap_kextract(vm_offset_t va) { struct pvo_entry *pvo; pvo = pmap_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL); if (pvo == NULL) { return (0); } return ((pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF)); } /* * Remove a wired page from kernel virtual address space. */ void pmap_kremove(vm_offset_t va) { pmap_remove(kernel_pmap, va, va + PAGE_SIZE); } /* * Map a range of physical addresses into kernel virtual address space. * * The value passed in *virt is a suggested virtual address for the mapping. * Architectures which can support a direct-mapped physical to virtual region * can return the appropriate address within that region, leaving '*virt' * unchanged. We cannot and therefore do not; *virt is updated with the * first usable address after the mapped region. */ vm_offset_t pmap_map(vm_offset_t *virt, vm_offset_t pa_start, vm_offset_t pa_end, int prot) { vm_offset_t sva, va; sva = *virt; va = sva; for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE) pmap_kenter(va, pa_start); *virt = va; return (sva); } int pmap_mincore(pmap_t pmap, vm_offset_t addr) { TODO; return (0); } void pmap_object_init_pt(pmap_t pm, vm_offset_t addr, vm_object_t object, vm_pindex_t pindex, vm_size_t size, int limit) { KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap, ("pmap_remove_pages: non current pmap")); /* XXX */ } /* * Lower the permission for all mappings to a given page. */ void pmap_page_protect(vm_page_t m, vm_prot_t prot) { struct pvo_head *pvo_head; struct pvo_entry *pvo, *next_pvo; struct pte *pt; /* * Since the routine only downgrades protection, if the * maximal protection is desired, there isn't any change * to be made. */ if ((prot & (VM_PROT_READ|VM_PROT_WRITE)) == (VM_PROT_READ|VM_PROT_WRITE)) return; pvo_head = vm_page_to_pvoh(m); for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) { next_pvo = LIST_NEXT(pvo, pvo_vlink); PMAP_PVO_CHECK(pvo); /* sanity check */ /* * Downgrading to no mapping at all, we just remove the entry. */ if ((prot & VM_PROT_READ) == 0) { pmap_pvo_remove(pvo, -1); continue; } /* * If EXEC permission is being revoked, just clear the flag * in the PVO. */ if ((prot & VM_PROT_EXECUTE) == 0) pvo->pvo_vaddr &= ~PVO_EXECUTABLE; /* * If this entry is already RO, don't diddle with the page * table. */ if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) { PMAP_PVO_CHECK(pvo); continue; } /* * Grab the PTE before we diddle the bits so pvo_to_pte can * verify the pte contents are as expected. */ pt = pmap_pvo_to_pte(pvo, -1); pvo->pvo_pte.pte_lo &= ~PTE_PP; pvo->pvo_pte.pte_lo |= PTE_BR; if (pt != NULL) pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr); PMAP_PVO_CHECK(pvo); /* sanity check */ } } /* * Returns true if the pmap's pv is one of the first * 16 pvs linked to from this page. This count may * be changed upwards or downwards in the future; it * is only necessary that true be returned for a small * subset of pmaps for proper page aging. */ boolean_t pmap_page_exists_quick(pmap_t pmap, vm_page_t m) { TODO; return (0); } static u_int pmap_vsidcontext; void pmap_pinit(pmap_t pmap) { int i, mask; u_int entropy; entropy = 0; __asm __volatile("mftb %0" : "=r"(entropy)); /* * Allocate some segment registers for this pmap. */ for (i = 0; i < NPMAPS; i += VSID_NBPW) { u_int hash, n; /* * Create a new value by mutiplying by a prime and adding in * entropy from the timebase register. This is to make the * VSID more random so that the PT hash function collides * less often. (Note that the prime casues gcc to do shifts * instead of a multiply.) */ pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy; hash = pmap_vsidcontext & (NPMAPS - 1); if (hash == 0) /* 0 is special, avoid it */ continue; n = hash >> 5; mask = 1 << (hash & (VSID_NBPW - 1)); hash = (pmap_vsidcontext & 0xfffff); if (pmap_vsid_bitmap[n] & mask) { /* collision? */ /* anything free in this bucket? */ if (pmap_vsid_bitmap[n] == 0xffffffff) { entropy = (pmap_vsidcontext >> 20); continue; } i = ffs(~pmap_vsid_bitmap[i]) - 1; mask = 1 << i; hash &= 0xfffff & ~(VSID_NBPW - 1); hash |= i; } pmap_vsid_bitmap[n] |= mask; for (i = 0; i < 16; i++) pmap->pm_sr[i] = VSID_MAKE(i, hash); return; } panic("pmap_pinit: out of segments"); } /* * Initialize the pmap associated with process 0. */ void pmap_pinit0(pmap_t pm) { pmap_pinit(pm); bzero(&pm->pm_stats, sizeof(pm->pm_stats)); } void pmap_pinit2(pmap_t pmap) { /* XXX: Remove this stub when no longer called */ } void pmap_prefault(pmap_t pm, vm_offset_t va, vm_map_entry_t entry) { KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap, ("pmap_prefault: non current pmap")); /* XXX */ } /* * Set the physical protection on the specified range of this map as requested. */ void pmap_protect(pmap_t pm, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot) { struct pvo_entry *pvo; struct pte *pt; int pteidx; CTR4(KTR_PMAP, "pmap_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm, sva, eva, prot); KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap, ("pmap_protect: non current pmap")); if ((prot & VM_PROT_READ) == VM_PROT_NONE) { pmap_remove(pm, sva, eva); return; } for (; sva < eva; sva += PAGE_SIZE) { pvo = pmap_pvo_find_va(pm, sva, &pteidx); if (pvo == NULL) continue; if ((prot & VM_PROT_EXECUTE) == 0) pvo->pvo_vaddr &= ~PVO_EXECUTABLE; /* * Grab the PTE pointer before we diddle with the cached PTE * copy. */ pt = pmap_pvo_to_pte(pvo, pteidx); /* * Change the protection of the page. */ pvo->pvo_pte.pte_lo &= ~PTE_PP; pvo->pvo_pte.pte_lo |= PTE_BR; /* * If the PVO is in the page table, update that pte as well. */ if (pt != NULL) pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr); } } vm_offset_t pmap_phys_address(int ppn) { TODO; return (0); } /* * Map a list of wired pages into kernel virtual address space. This is * intended for temporary mappings which do not need page modification or * references recorded. Existing mappings in the region are overwritten. */ void pmap_qenter(vm_offset_t va, vm_page_t *m, int count) { int i; for (i = 0; i < count; i++, va += PAGE_SIZE) pmap_kenter(va, VM_PAGE_TO_PHYS(m[i])); } /* * Remove page mappings from kernel virtual address space. Intended for * temporary mappings entered by pmap_qenter. */ void pmap_qremove(vm_offset_t va, int count) { int i; for (i = 0; i < count; i++, va += PAGE_SIZE) pmap_kremove(va); } void pmap_release(pmap_t pmap) { int idx, mask; /* * Free segment register's VSID */ if (pmap->pm_sr[0] == 0) panic("pmap_release"); idx = VSID_TO_HASH(pmap->pm_sr[0]) & (NPMAPS-1); mask = 1 << (idx % VSID_NBPW); idx /= VSID_NBPW; pmap_vsid_bitmap[idx] &= ~mask; } /* * Remove the given range of addresses from the specified map. */ void pmap_remove(pmap_t pm, vm_offset_t sva, vm_offset_t eva) { struct pvo_entry *pvo; int pteidx; for (; sva < eva; sva += PAGE_SIZE) { pvo = pmap_pvo_find_va(pm, sva, &pteidx); if (pvo != NULL) { pmap_pvo_remove(pvo, pteidx); } } } /* * Remove all pages from specified address space, this aids process exit * speeds. This is much faster than pmap_remove in the case of running down * an entire address space. Only works for the current pmap. */ void pmap_remove_pages(pmap_t pm, vm_offset_t sva, vm_offset_t eva) { KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap, ("pmap_remove_pages: non current pmap")); pmap_remove(pm, sva, eva); } #ifndef KSTACK_MAX_PAGES #define KSTACK_MAX_PAGES 32 #endif /* * Create the kernel stack and pcb for a new thread. * This routine directly affects the fork perf for a process and * create performance for a thread. */ void pmap_new_thread(struct thread *td, int pages) { vm_page_t ma[KSTACK_MAX_PAGES]; vm_object_t ksobj; vm_offset_t ks; vm_page_t m; u_int i; /* Bounds check */ if (pages <= 1) pages = KSTACK_PAGES; else if (pages > KSTACK_MAX_PAGES) pages = KSTACK_MAX_PAGES; /* * Allocate object for the kstack. */ ksobj = vm_object_allocate(OBJT_DEFAULT, pages); td->td_kstack_obj = ksobj; /* * Get a kernel virtual address for the kstack for this thread. */ ks = kmem_alloc_nofault(kernel_map, (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE); if (ks == 0) panic("pmap_new_thread: kstack allocation failed"); TLBIE(ks); ks += KSTACK_GUARD_PAGES * PAGE_SIZE; td->td_kstack = ks; /* * Knowing the number of pages allocated is useful when you * want to deallocate them. */ td->td_kstack_pages = pages; for (i = 0; i < pages; i++) { /* * Get a kernel stack page. */ m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED); ma[i] = m; vm_page_wakeup(m); vm_page_flag_clear(m, PG_ZERO); m->valid = VM_PAGE_BITS_ALL; } /* * Enter the page into the kernel address space */ pmap_qenter(ks, ma, pages); } void pmap_dispose_thread(struct thread *td) { vm_object_t ksobj; vm_offset_t ks; vm_page_t m; int i; int pages; pages = td->td_kstack_pages; ksobj = td->td_kstack_obj; ks = td->td_kstack; for (i = 0; i < pages ; i++) { m = vm_page_lookup(ksobj, i); if (m == NULL) panic("pmap_dispose_thread: kstack already missing?"); vm_page_lock_queues(); vm_page_busy(m); vm_page_unwire(m, 0); vm_page_free(m); vm_page_unlock_queues(); } pmap_qremove(ks, pages); kmem_free(kernel_map, ks - (KSTACK_GUARD_PAGES * PAGE_SIZE), (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE); vm_object_deallocate(ksobj); } void pmap_new_altkstack(struct thread *td, int pages) { /* shuffle the original stack */ td->td_altkstack_obj = td->td_kstack_obj; td->td_altkstack = td->td_kstack; td->td_altkstack_pages = td->td_kstack_pages; pmap_new_thread(td, pages); } void pmap_dispose_altkstack(struct thread *td) { pmap_dispose_thread(td); /* restore the original kstack */ td->td_kstack = td->td_altkstack; td->td_kstack_obj = td->td_altkstack_obj; td->td_kstack_pages = td->td_altkstack_pages; td->td_altkstack = 0; td->td_altkstack_obj = NULL; td->td_altkstack_pages = 0; } void pmap_swapin_thread(struct thread *td) { vm_page_t ma[KSTACK_MAX_PAGES]; vm_object_t ksobj; vm_offset_t ks; vm_page_t m; int rv; int i; int pages; pages = td->td_kstack_pages; ksobj = td->td_kstack_obj; ks = td->td_kstack; for (i = 0; i < pages; i++) { m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY); if (m->valid != VM_PAGE_BITS_ALL) { rv = vm_pager_get_pages(ksobj, &m, 1, 0); if (rv != VM_PAGER_OK) panic("pmap_swapin_thread: cannot get kstack"); m = vm_page_lookup(ksobj, i); m->valid = VM_PAGE_BITS_ALL; } ma[i] = m; vm_page_lock_queues(); vm_page_wire(m); vm_page_wakeup(m); vm_page_unlock_queues(); } pmap_qenter(ks, ma, pages); } void pmap_swapout_thread(struct thread *td) { vm_object_t ksobj; vm_offset_t ks; vm_page_t m; int i; int pages; pages = td->td_kstack_pages; ksobj = td->td_kstack_obj; ks = (vm_offset_t)td->td_kstack; for (i = 0; i < pages; i++) { m = vm_page_lookup(ksobj, i); if (m == NULL) panic("pmap_swapout_thread: kstack already missing?"); vm_page_lock_queues(); vm_page_dirty(m); vm_page_unwire(m, 0); vm_page_unlock_queues(); } pmap_qremove(ks, pages); } /* * Allocate a physical page of memory directly from the phys_avail map. * Can only be called from pmap_bootstrap before avail start and end are * calculated. */ static vm_offset_t pmap_bootstrap_alloc(vm_size_t size, u_int align) { vm_offset_t s, e; int i, j; size = round_page(size); for (i = 0; phys_avail[i + 1] != 0; i += 2) { if (align != 0) s = (phys_avail[i] + align - 1) & ~(align - 1); else s = phys_avail[i]; e = s + size; if (s < phys_avail[i] || e > phys_avail[i + 1]) continue; if (s == phys_avail[i]) { phys_avail[i] += size; } else if (e == phys_avail[i + 1]) { phys_avail[i + 1] -= size; } else { for (j = phys_avail_count * 2; j > i; j -= 2) { phys_avail[j] = phys_avail[j - 2]; phys_avail[j + 1] = phys_avail[j - 1]; } phys_avail[i + 3] = phys_avail[i + 1]; phys_avail[i + 1] = s; phys_avail[i + 2] = e; phys_avail_count++; } return (s); } panic("pmap_bootstrap_alloc: could not allocate memory"); } /* * Return an unmapped pvo for a kernel virtual address. * Used by pmap functions that operate on physical pages. */ static struct pvo_entry * pmap_rkva_alloc(void) { struct pvo_entry *pvo; struct pte *pt; vm_offset_t kva; int pteidx; if (pmap_rkva_count == 0) panic("pmap_rkva_alloc: no more reserved KVAs"); kva = pmap_rkva_start + (PAGE_SIZE * --pmap_rkva_count); pmap_kenter(kva, 0); pvo = pmap_pvo_find_va(kernel_pmap, kva, &pteidx); if (pvo == NULL) panic("pmap_kva_alloc: pmap_pvo_find_va failed"); pt = pmap_pvo_to_pte(pvo, pteidx); if (pt == NULL) panic("pmap_kva_alloc: pmap_pvo_to_pte failed"); pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr); PVO_PTEGIDX_CLR(pvo); pmap_pte_overflow++; return (pvo); } static void pmap_pa_map(struct pvo_entry *pvo, vm_offset_t pa, struct pte *saved_pt, int *depth_p) { struct pte *pt; /* * If this pvo already has a valid pte, we need to save it so it can * be restored later. We then just reload the new PTE over the old * slot. */ if (saved_pt != NULL) { pt = pmap_pvo_to_pte(pvo, -1); if (pt != NULL) { pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr); PVO_PTEGIDX_CLR(pvo); pmap_pte_overflow++; } *saved_pt = pvo->pvo_pte; pvo->pvo_pte.pte_lo &= ~PTE_RPGN; } pvo->pvo_pte.pte_lo |= pa; if (!pmap_pte_spill(pvo->pvo_vaddr)) panic("pmap_pa_map: could not spill pvo %p", pvo); if (depth_p != NULL) (*depth_p)++; } static void pmap_pa_unmap(struct pvo_entry *pvo, struct pte *saved_pt, int *depth_p) { struct pte *pt; pt = pmap_pvo_to_pte(pvo, -1); if (pt != NULL) { pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr); PVO_PTEGIDX_CLR(pvo); pmap_pte_overflow++; } pvo->pvo_pte.pte_lo &= ~PTE_RPGN; /* * If there is a saved PTE and it's valid, restore it and return. */ if (saved_pt != NULL && (saved_pt->pte_lo & PTE_RPGN) != 0) { if (depth_p != NULL && --(*depth_p) == 0) panic("pmap_pa_unmap: restoring but depth == 0"); pvo->pvo_pte = *saved_pt; if (!pmap_pte_spill(pvo->pvo_vaddr)) panic("pmap_pa_unmap: could not spill pvo %p", pvo); } } static void pmap_syncicache(vm_offset_t pa, vm_size_t len) { __syncicache((void *)pa, len); } static void tlbia(void) { caddr_t i; SYNC(); for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) { TLBIE(i); EIEIO(); } TLBSYNC(); SYNC(); } static int pmap_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head, vm_offset_t va, vm_offset_t pa, u_int pte_lo, int flags) { struct pvo_entry *pvo; u_int sr; int first; u_int ptegidx; int i; int bootstrap; pmap_pvo_enter_calls++; first = 0; bootstrap = 0; /* * Compute the PTE Group index. */ va &= ~ADDR_POFF; sr = va_to_sr(pm->pm_sr, va); ptegidx = va_to_pteg(sr, va); /* * Remove any existing mapping for this page. Reuse the pvo entry if * there is a mapping. */ LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) { if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) { if ((pvo->pvo_pte.pte_lo & PTE_RPGN) == pa && (pvo->pvo_pte.pte_lo & PTE_PP) == (pte_lo & PTE_PP)) { return (0); } pmap_pvo_remove(pvo, -1); break; } } /* * If we aren't overwriting a mapping, try to allocate. */ if (pmap_initialized) { pvo = uma_zalloc(zone, M_NOWAIT); } else { if (pmap_bpvo_pool_index >= BPVO_POOL_SIZE) { panic("pmap_enter: bpvo pool exhausted, %d, %d, %d", pmap_bpvo_pool_index, BPVO_POOL_SIZE, BPVO_POOL_SIZE * sizeof(struct pvo_entry)); } pvo = &pmap_bpvo_pool[pmap_bpvo_pool_index]; pmap_bpvo_pool_index++; bootstrap = 1; } if (pvo == NULL) { return (ENOMEM); } pmap_pvo_entries++; pvo->pvo_vaddr = va; pvo->pvo_pmap = pm; LIST_INSERT_HEAD(&pmap_pvo_table[ptegidx], pvo, pvo_olink); pvo->pvo_vaddr &= ~ADDR_POFF; if (flags & VM_PROT_EXECUTE) pvo->pvo_vaddr |= PVO_EXECUTABLE; if (flags & PVO_WIRED) pvo->pvo_vaddr |= PVO_WIRED; if (pvo_head != &pmap_pvo_kunmanaged) pvo->pvo_vaddr |= PVO_MANAGED; if (bootstrap) pvo->pvo_vaddr |= PVO_BOOTSTRAP; pmap_pte_create(&pvo->pvo_pte, sr, va, pa | pte_lo); /* * Remember if the list was empty and therefore will be the first * item. */ if (LIST_FIRST(pvo_head) == NULL) first = 1; LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink); if (pvo->pvo_pte.pte_lo & PVO_WIRED) pvo->pvo_pmap->pm_stats.wired_count++; pvo->pvo_pmap->pm_stats.resident_count++; /* * We hope this succeeds but it isn't required. */ i = pmap_pte_insert(ptegidx, &pvo->pvo_pte); if (i >= 0) { PVO_PTEGIDX_SET(pvo, i); } else { panic("pmap_pvo_enter: overflow"); pmap_pte_overflow++; } return (first ? ENOENT : 0); } static void pmap_pvo_remove(struct pvo_entry *pvo, int pteidx) { struct pte *pt; /* * If there is an active pte entry, we need to deactivate it (and * save the ref & cfg bits). */ pt = pmap_pvo_to_pte(pvo, pteidx); if (pt != NULL) { pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr); PVO_PTEGIDX_CLR(pvo); } else { pmap_pte_overflow--; } /* * Update our statistics. */ pvo->pvo_pmap->pm_stats.resident_count--; if (pvo->pvo_pte.pte_lo & PVO_WIRED) pvo->pvo_pmap->pm_stats.wired_count--; /* * Save the REF/CHG bits into their cache if the page is managed. */ if (pvo->pvo_vaddr & PVO_MANAGED) { struct vm_page *pg; pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte_lo & PTE_RPGN); if (pg != NULL) { pmap_attr_save(pg, pvo->pvo_pte.pte_lo & (PTE_REF | PTE_CHG)); } } /* * Remove this PVO from the PV list. */ LIST_REMOVE(pvo, pvo_vlink); /* * Remove this from the overflow list and return it to the pool * if we aren't going to reuse it. */ LIST_REMOVE(pvo, pvo_olink); if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP)) uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? pmap_mpvo_zone : pmap_upvo_zone, pvo); pmap_pvo_entries--; pmap_pvo_remove_calls++; } static __inline int pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx) { int pteidx; /* * We can find the actual pte entry without searching by grabbing * the PTEG index from 3 unused bits in pte_lo[11:9] and by * noticing the HID bit. */ pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo); if (pvo->pvo_pte.pte_hi & PTE_HID) pteidx ^= pmap_pteg_mask * 8; return (pteidx); } static struct pvo_entry * pmap_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p) { struct pvo_entry *pvo; int ptegidx; u_int sr; va &= ~ADDR_POFF; sr = va_to_sr(pm->pm_sr, va); ptegidx = va_to_pteg(sr, va); LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) { if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) { if (pteidx_p) *pteidx_p = pmap_pvo_pte_index(pvo, ptegidx); return (pvo); } } return (NULL); } static struct pte * pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx) { struct pte *pt; /* * If we haven't been supplied the ptegidx, calculate it. */ if (pteidx == -1) { int ptegidx; u_int sr; sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr); ptegidx = va_to_pteg(sr, pvo->pvo_vaddr); pteidx = pmap_pvo_pte_index(pvo, ptegidx); } pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7]; if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) { panic("pmap_pvo_to_pte: pvo %p has valid pte in pvo but no " "valid pte index", pvo); } if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) { panic("pmap_pvo_to_pte: pvo %p has valid pte index in pvo " "pvo but no valid pte", pvo); } if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) { if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) { panic("pmap_pvo_to_pte: pvo %p has valid pte in " "pmap_pteg_table %p but invalid in pvo", pvo, pt); } if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) { panic("pmap_pvo_to_pte: pvo %p pte does not match " "pte %p in pmap_pteg_table", pvo, pt); } return (pt); } if (pvo->pvo_pte.pte_hi & PTE_VALID) { panic("pmap_pvo_to_pte: pvo %p has invalid pte %p in " "pmap_pteg_table but valid in pvo", pvo, pt); } return (NULL); } static void * pmap_pvo_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait) { vm_page_t m; if (bytes != PAGE_SIZE) panic("pmap_pvo_allocf: benno was shortsighted. hit him."); *flags = UMA_SLAB_PRIV; m = vm_page_alloc(pmap_pvo_obj, pmap_pvo_count, VM_ALLOC_SYSTEM); if (m == NULL) return (NULL); pmap_pvo_count++; return ((void *)VM_PAGE_TO_PHYS(m)); } /* * XXX: THIS STUFF SHOULD BE IN pte.c? */ int pmap_pte_spill(vm_offset_t addr) { struct pvo_entry *source_pvo, *victim_pvo; struct pvo_entry *pvo; int ptegidx, i, j; u_int sr; struct pteg *pteg; struct pte *pt; pmap_pte_spills++; sr = mfsrin(addr); ptegidx = va_to_pteg(sr, addr); /* * Have to substitute some entry. Use the primary hash for this. * Use low bits of timebase as random generator. */ pteg = &pmap_pteg_table[ptegidx]; __asm __volatile("mftb %0" : "=r"(i)); i &= 7; pt = &pteg->pt[i]; source_pvo = NULL; victim_pvo = NULL; LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) { /* * We need to find a pvo entry for this address. */ PMAP_PVO_CHECK(pvo); if (source_pvo == NULL && pmap_pte_match(&pvo->pvo_pte, sr, addr, pvo->pvo_pte.pte_hi & PTE_HID)) { /* * Now found an entry to be spilled into the pteg. * The PTE is now valid, so we know it's active. */ j = pmap_pte_insert(ptegidx, &pvo->pvo_pte); if (j >= 0) { PVO_PTEGIDX_SET(pvo, j); pmap_pte_overflow--; PMAP_PVO_CHECK(pvo); return (1); } source_pvo = pvo; if (victim_pvo != NULL) break; } /* * We also need the pvo entry of the victim we are replacing * so save the R & C bits of the PTE. */ if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL && pmap_pte_compare(pt, &pvo->pvo_pte)) { victim_pvo = pvo; if (source_pvo != NULL) break; } } if (source_pvo == NULL) return (0); if (victim_pvo == NULL) { if ((pt->pte_hi & PTE_HID) == 0) panic("pmap_pte_spill: victim p-pte (%p) has no pvo" "entry", pt); /* * If this is a secondary PTE, we need to search it's primary * pvo bucket for the matching PVO. */ LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx ^ pmap_pteg_mask], pvo_olink) { PMAP_PVO_CHECK(pvo); /* * We also need the pvo entry of the victim we are * replacing so save the R & C bits of the PTE. */ if (pmap_pte_compare(pt, &pvo->pvo_pte)) { victim_pvo = pvo; break; } } if (victim_pvo == NULL) panic("pmap_pte_spill: victim s-pte (%p) has no pvo" "entry", pt); } /* * We are invalidating the TLB entry for the EA we are replacing even * though it's valid. If we don't, we lose any ref/chg bit changes * contained in the TLB entry. */ source_pvo->pvo_pte.pte_hi &= ~PTE_HID; pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr); pmap_pte_set(pt, &source_pvo->pvo_pte); PVO_PTEGIDX_CLR(victim_pvo); PVO_PTEGIDX_SET(source_pvo, i); pmap_pte_replacements++; PMAP_PVO_CHECK(victim_pvo); PMAP_PVO_CHECK(source_pvo); return (1); } static int pmap_pte_insert(u_int ptegidx, struct pte *pvo_pt) { struct pte *pt; int i; /* * First try primary hash. */ for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) { if ((pt->pte_hi & PTE_VALID) == 0) { pvo_pt->pte_hi &= ~PTE_HID; pmap_pte_set(pt, pvo_pt); return (i); } } /* * Now try secondary hash. */ ptegidx ^= pmap_pteg_mask; ptegidx++; for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) { if ((pt->pte_hi & PTE_VALID) == 0) { pvo_pt->pte_hi |= PTE_HID; pmap_pte_set(pt, pvo_pt); return (i); } } panic("pmap_pte_insert: overflow"); return (-1); } static boolean_t pmap_query_bit(vm_page_t m, int ptebit) { struct pvo_entry *pvo; struct pte *pt; if (pmap_attr_fetch(m) & ptebit) return (TRUE); LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { PMAP_PVO_CHECK(pvo); /* sanity check */ /* * See if we saved the bit off. If so, cache it and return * success. */ if (pvo->pvo_pte.pte_lo & ptebit) { pmap_attr_save(m, ptebit); PMAP_PVO_CHECK(pvo); /* sanity check */ return (TRUE); } } /* * No luck, now go through the hard part of looking at the PTEs * themselves. Sync so that any pending REF/CHG bits are flushed to * the PTEs. */ SYNC(); LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { PMAP_PVO_CHECK(pvo); /* sanity check */ /* * See if this pvo has a valid PTE. if so, fetch the * REF/CHG bits from the valid PTE. If the appropriate * ptebit is set, cache it and return success. */ pt = pmap_pvo_to_pte(pvo, -1); if (pt != NULL) { pmap_pte_synch(pt, &pvo->pvo_pte); if (pvo->pvo_pte.pte_lo & ptebit) { pmap_attr_save(m, ptebit); PMAP_PVO_CHECK(pvo); /* sanity check */ return (TRUE); } } } return (TRUE); } static boolean_t pmap_clear_bit(vm_page_t m, int ptebit) { struct pvo_entry *pvo; struct pte *pt; int rv; /* * Clear the cached value. */ rv = pmap_attr_fetch(m); pmap_attr_clear(m, ptebit); /* * Sync so that any pending REF/CHG bits are flushed to the PTEs (so * we can reset the right ones). note that since the pvo entries and * list heads are accessed via BAT0 and are never placed in the page * table, we don't have to worry about further accesses setting the * REF/CHG bits. */ SYNC(); /* * For each pvo entry, clear the pvo's ptebit. If this pvo has a * valid pte clear the ptebit from the valid pte. */ LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { PMAP_PVO_CHECK(pvo); /* sanity check */ pt = pmap_pvo_to_pte(pvo, -1); if (pt != NULL) { pmap_pte_synch(pt, &pvo->pvo_pte); if (pvo->pvo_pte.pte_lo & ptebit) pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit); } rv |= pvo->pvo_pte.pte_lo; pvo->pvo_pte.pte_lo &= ~ptebit; PMAP_PVO_CHECK(pvo); /* sanity check */ } return ((rv & ptebit) != 0); } /* * Return true if the physical range is encompassed by the battable[idx] */ static int pmap_bat_mapped(int idx, vm_offset_t pa, vm_size_t size) { u_int prot; u_int32_t start; u_int32_t end; u_int32_t bat_ble; /* * Return immediately if not a valid mapping */ if (!battable[idx].batu & BAT_Vs) return (EINVAL); /* * The BAT entry must be cache-inhibited, guarded, and r/w * so it can function as an i/o page */ prot = battable[idx].batl & (BAT_I|BAT_G|BAT_PP_RW); if (prot != (BAT_I|BAT_G|BAT_PP_RW)) return (EPERM); /* * The address should be within the BAT range. Assume that the * start address in the BAT has the correct alignment (thus * not requiring masking) */ start = battable[idx].batl & BAT_PBS; bat_ble = (battable[idx].batu & ~(BAT_EBS)) | 0x03; end = start | (bat_ble << 15) | 0x7fff; if ((pa < start) || ((pa + size) > end)) return (ERANGE); return (0); } /* * Map a set of physical memory pages into the kernel virtual * address space. Return a pointer to where it is mapped. This * routine is intended to be used for mapping device memory, * NOT real memory. */ void * pmap_mapdev(vm_offset_t pa, vm_size_t size) { vm_offset_t va, tmpva, ppa, offset; int i; ppa = trunc_page(pa); offset = pa & PAGE_MASK; size = roundup(offset + size, PAGE_SIZE); GIANT_REQUIRED; /* * If the physical address lies within a valid BAT table entry, * return the 1:1 mapping. This currently doesn't work * for regions that overlap 256M BAT segments. */ for (i = 0; i < 16; i++) { if (pmap_bat_mapped(i, pa, size) == 0) return ((void *) pa); } va = kmem_alloc_pageable(kernel_map, size); if (!va) panic("pmap_mapdev: Couldn't alloc kernel virtual memory"); for (tmpva = va; size > 0;) { pmap_kenter(tmpva, ppa); TLBIE(tmpva); /* XXX or should it be invalidate-all ? */ size -= PAGE_SIZE; tmpva += PAGE_SIZE; ppa += PAGE_SIZE; } return ((void *)(va + offset)); } void pmap_unmapdev(vm_offset_t va, vm_size_t size) { vm_offset_t base, offset; /* * If this is outside kernel virtual space, then it's a * battable entry and doesn't require unmapping */ if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) { base = trunc_page(va); offset = va & PAGE_MASK; size = roundup(offset + size, PAGE_SIZE); kmem_free(kernel_map, base, size); } }