/*- * Coda: an Experimental Distributed File System * Release 3.1 * * Copyright (c) 1987-1998 Carnegie Mellon University * All Rights Reserved * * Permission to use, copy, modify and distribute this software and its * documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation, and * that credit is given to Carnegie Mellon University in all documents * and publicity pertaining to direct or indirect use of this code or its * derivatives. * * CODA IS AN EXPERIMENTAL SOFTWARE SYSTEM AND IS KNOWN TO HAVE BUGS, * SOME OF WHICH MAY HAVE SERIOUS CONSEQUENCES. CARNEGIE MELLON ALLOWS * FREE USE OF THIS SOFTWARE IN ITS "AS IS" CONDITION. CARNEGIE MELLON * DISCLAIMS ANY LIABILITY OF ANY KIND FOR ANY DAMAGES WHATSOEVER * RESULTING DIRECTLY OR INDIRECTLY FROM THE USE OF THIS SOFTWARE OR OF * ANY DERIVATIVE WORK. * * Carnegie Mellon encourages users of this software to return any * improvements or extensions that they make, and to grant Carnegie * Mellon the rights to redistribute these changes without encumbrance. * * @(#) src/sys/coda/coda_subr.c,v 1.1.1.1 1998/08/29 21:14:52 rvb Exp $ */ /*- * Mach Operating System * Copyright (c) 1989 Carnegie-Mellon University * All rights reserved. The CMU software License Agreement specifies * the terms and conditions for use and redistribution. */ /* * This code was written for the Coda filesystem at Carnegie Mellon * University. Contributers include David Steere, James Kistler, and * M. Satyanarayanan. */ /*- * NOTES: rvb * 1. Added coda_unmounting to mark all cnodes as being UNMOUNTING. This * has to be done before dounmount is called. Because some of the * routines that dounmount calls before coda_unmounted might try to * force flushes to venus. The vnode pager does this. * 2. coda_unmounting marks all cnodes scanning coda_cache. * 3. cfs_checkunmounting (under DEBUG) checks all cnodes by chasing the * vnodes under the /coda mount point. * 4. coda_cacheprint (under DEBUG) prints names with vnode/cnode address. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include static int coda_active = 0; static int coda_reuse = 0; static int coda_new = 0; static struct cnode *coda_freelist = NULL; static struct cnode *coda_cache[CODA_CACHESIZE]; #define CNODE_NEXT(cp) ((cp)->c_next) #ifdef CODA_COMPAT_5 #define coda_hash(fid) (((fid)->Volume + (fid)->Vnode) & (CODA_CACHESIZE-1)) #define IS_DIR(cnode) (cnode.Vnode & 0x1) #else #define coda_hash(fid) (coda_f2i(fid) & (CODA_CACHESIZE-1)) #define IS_DIR(cnode) (cnode.opaque[2] & 0x1) #endif /* * Allocate a cnode. */ struct cnode * coda_alloc(void) { struct cnode *cp; if (coda_freelist != NULL) { cp = coda_freelist; coda_freelist = CNODE_NEXT(cp); coda_reuse++; } else { CODA_ALLOC(cp, struct cnode *, sizeof(struct cnode)); /* * FreeBSD vnodes don't have any Pager info in them ('cause * there are no external pagers, duh!). */ #define VNODE_VM_INFO_INIT(vp) /* MT */ VNODE_VM_INFO_INIT(CTOV(cp)); coda_new++; } bzero(cp, sizeof (struct cnode)); return (cp); } /* * Deallocate a cnode. */ void coda_free(struct cnode *cp) { CNODE_NEXT(cp) = coda_freelist; coda_freelist = cp; } /* * Put a cnode in the hash table. */ void coda_save(struct cnode *cp) { CNODE_NEXT(cp) = coda_cache[coda_hash(&cp->c_fid)]; coda_cache[coda_hash(&cp->c_fid)] = cp; } /* * Remove a cnode from the hash table. */ void coda_unsave(struct cnode *cp) { struct cnode *ptr; struct cnode *ptrprev = NULL; ptr = coda_cache[coda_hash(&cp->c_fid)]; while (ptr != NULL) { if (ptr == cp) { if (ptrprev == NULL) coda_cache[coda_hash(&cp->c_fid)] = CNODE_NEXT(ptr); else CNODE_NEXT(ptrprev) = CNODE_NEXT(ptr); CNODE_NEXT(cp) = (struct cnode *)NULL; return; } ptrprev = ptr; ptr = CNODE_NEXT(ptr); } } /* * Lookup a cnode by fid. If the cnode is dying, it is bogus so skip it. * * NOTE: this allows multiple cnodes with same fid -- dcs 1/25/95 */ struct cnode * coda_find(CodaFid *fid) { struct cnode *cp; cp = coda_cache[coda_hash(fid)]; while (cp) { if (coda_fid_eq(&(cp->c_fid), fid) && (!IS_UNMOUNTING(cp))) { coda_active++; return (cp); } cp = CNODE_NEXT(cp); } return (NULL); } /* * Clear all cached access control decisions from Coda. */ static void coda_acccache_purge(struct mount *mnt) { struct cnode *cp; int hash; for (hash = 0; hash < CODA_CACHESIZE; hash++) { for (cp = coda_cache[hash]; cp != NULL; cp = CNODE_NEXT(cp)) { if (CTOV(cp)->v_mount == mnt && VALID_ACCCACHE(cp)) { CODADEBUG(CODA_FLUSH, myprintf(("acccache " "purge fid %s uid %d mode 0x%x\n", coda_f2s(&cp->c_fid), cp->c_cached_uid, cp->c_cached_mode));); cp->c_flags &= ~C_ACCCACHE; } } } } /* * When a user loses their tokens (or other related events), we invalidate * any cached access rights in the access cache. In the Linux version of * Coda, we maintain a global epoch and simply bump it to invalidate all * cached results generated in the epoch. For now, we walk all cnodes and * manually invalidate just that uid in FreeBSD. */ static void coda_acccache_purgeuser(struct mount *mnt, uid_t uid) { struct cnode *cp; int hash; for (hash = 0; hash < CODA_CACHESIZE; hash++) { for (cp = coda_cache[hash]; cp != NULL; cp = CNODE_NEXT(cp)) { if (CTOV(cp)->v_mount == mnt && VALID_ACCCACHE(cp) && (cp->c_cached_uid == uid)) { CODADEBUG(CODA_PURGEUSER, myprintf(( "acccache purgeuser fid %s uid %d mode " "0x%x\n", coda_f2s(&cp->c_fid), cp->c_cached_uid, cp->c_cached_mode));); cp->c_flags &= ~C_ACCCACHE; } } } } /* * coda_kill is called as a side effect to vcopen. To prevent any cnodes * left around from an earlier run of a venus or warden from causing problems * with the new instance, mark any outstanding cnodes as dying. Future * operations on these cnodes should fail (excepting coda_inactive of * course!). Since multiple venii/wardens can be running, only kill the * cnodes for a particular entry in the coda_mnttbl. -- DCS 12/1/94 * * XXX: I don't believe any special behavior is required with respect to the * global namecache here, as /coda will have unmounted and hence cache_flush * will have run...? */ int coda_kill(struct mount *whoIam, enum dc_status dcstat) { int hash, count = 0; struct cnode *cp; /*- * Algorithm is as follows: * Second, flush whatever vnodes we can from the name cache. * * Finally, step through whatever is left and mark them dying. * This prevents any operation at all. * * This is slightly overkill, but should work. Eventually it'd be * nice to only flush those entries from the namecache that reference * a vnode in this vfs. * * XXXRW: Perhaps we no longer need to purge the name cache when * using the VFS name cache, as unmount will do that. */ cache_purgevfs(whoIam); for (hash = 0; hash < CODA_CACHESIZE; hash++) { for (cp = coda_cache[hash];cp != NULL; cp = CNODE_NEXT(cp)) { if (CTOV(cp)->v_mount == whoIam) { #ifdef DEBUG printf("coda_kill: vp %p, cp %p\n", CTOV(cp), cp); #endif count++; CODADEBUG(CODA_FLUSH, myprintf(("Live cnode " "fid %s flags %d count %d\n", coda_f2s(&cp->c_fid), cp->c_flags, vrefcnt(CTOV(cp))));); } } } return (count); } /* * There are two reasons why a cnode may be in use, it may be in the name * cache or it may be executing. */ void coda_flush(struct coda_mntinfo *mnt, enum dc_status dcstat) { int hash; struct cnode *cp; coda_clstat.ncalls++; coda_clstat.reqs[CODA_FLUSH]++; coda_acccache_purge(mnt->mi_vfsp); cache_purgevfs(mnt->mi_vfsp); for (hash = 0; hash < CODA_CACHESIZE; hash++) { for (cp = coda_cache[hash]; cp != NULL; cp = CNODE_NEXT(cp)) { /* * Only files that can be executed need to be flushed * from the VM. * * NOTE: Currently this doesn't do anything, but * perhaps it should? */ if (!IS_DIR(cp->c_fid)) coda_vmflush(cp); } } } /* * As a debugging measure, print out any cnodes that lived through a name * cache flush. */ void coda_testflush(void) { int hash; struct cnode *cp; for (hash = 0; hash < CODA_CACHESIZE; hash++) { for (cp = coda_cache[hash]; cp != NULL; cp = CNODE_NEXT(cp)) myprintf(("Live cnode fid %s count %d\n", coda_f2s(&cp->c_fid), CTOV(cp)->v_usecount)); } } /* * First, step through all cnodes and mark them unmounting. FreeBSD kernels * may try to fsync them now that venus is dead, which would be a bad thing. */ void coda_unmounting(struct mount *whoIam) { int hash; struct cnode *cp; for (hash = 0; hash < CODA_CACHESIZE; hash++) { for (cp = coda_cache[hash]; cp != NULL; cp = CNODE_NEXT(cp)) { if (CTOV(cp)->v_mount == whoIam) { if (cp->c_flags & (C_LOCKED|C_WANTED)) { printf("coda_unmounting: Unlocking " "%p\n", cp); cp->c_flags &= ~(C_LOCKED|C_WANTED); wakeup((caddr_t) cp); } cp->c_flags |= C_UNMOUNTING; } } } } #ifdef DEBUG void coda_checkunmounting(struct mount *mp) { struct vnode *vp, *nvp; struct cnode *cp; int count = 0, bad = 0; MNT_ILOCK(mp); MNT_VNODE_FOREACH(vp, mp, nvp) { VI_LOCK(vp); if (vp->v_iflag & VI_DOOMED) { VI_UNLOCK(vp); continue; } cp = VTOC(vp); count++; if (!(cp->c_flags & C_UNMOUNTING)) { bad++; printf("vp %p, cp %p missed\n", vp, cp); cp->c_flags |= C_UNMOUNTING; } VI_UNLOCK(vp); } MNT_IUNLOCK(mp); } void coda_cacheprint(struct mount *whoIam) { int hash; struct cnode *cp; int count = 0; printf("coda_cacheprint: coda_ctlvp %p, cp %p", coda_ctlvp, VTOC(coda_ctlvp)); #if 0 coda_nc_name(VTOC(coda_ctlvp)); #endif printf("\n"); for (hash = 0; hash < CODA_CACHESIZE; hash++) { for (cp = coda_cache[hash]; cp != NULL; cp = CNODE_NEXT(cp)) { if (CTOV(cp)->v_mount == whoIam) { printf("coda_cacheprint: vp %p, cp %p", CTOV(cp), cp); #if 0 coda_nc_name(cp); #endif printf("\n"); count++; } } } printf("coda_cacheprint: count %d\n", count); } #endif /*- * There are 6 cases where invalidations occur. The semantics of each is * listed here: * * CODA_FLUSH -- Flush all entries from the name cache and the cnode * cache. * * CODA_PURGEUSER -- Flush all entries from the name cache for a specific * user. This call is a result of token expiration. * * The next two are the result of callbacks on a file or directory: * * CODA_ZAPDIR -- Flush the attributes for the dir from its cnode. Zap * all children of this directory from the namecache. * * CODA_ZAPFILE -- Flush the attributes for a file. * * The fifth is a result of Venus detecting an inconsistent file: * * CODA_PURGEFID -- Flush the attribute for the file; if it is a dir (odd * vnode), purge its children from the namecache; remove * the file from the namecache. * * The sixth allows Venus to replace local fids with global ones during * reintegration. * * CODA_REPLACE -- Replace one CodaFid with another throughout the name * cache. */ int handleDownCall(struct coda_mntinfo *mnt, int opcode, union outputArgs *out) { int error; /* * Handle invalidate requests. */ switch (opcode) { case CODA_FLUSH: { coda_flush(mnt, IS_DOWNCALL); /* Print any remaining cnodes. */ CODADEBUG(CODA_FLUSH, coda_testflush();); return (0); } case CODA_PURGEUSER: { coda_clstat.ncalls++; coda_clstat.reqs[CODA_PURGEUSER]++; /* XXX - need to prevent fsync's. */ /* * Purge any access cache entries for the uid. */ #ifdef CODA_COMPAT_5 coda_acccache_purgeuser(mnt->mi_vfsp, out->coda_purgeuser.cred.cr_uid); #else coda_acccache_purgeuser(mnt->mi_vfsp, out->coda_purgeuser.uid); #endif return (0); } case CODA_ZAPFILE: { struct cnode *cp; error = 0; coda_clstat.ncalls++; coda_clstat.reqs[CODA_ZAPFILE]++; cp = coda_find(&out->coda_zapfile.Fid); if (cp != NULL) { vref(CTOV(cp)); cache_purge(CTOV(cp)); cp->c_flags &= ~(C_VATTR | C_ACCCACHE); ASSERT_VOP_LOCKED(CTOV(cp), "coda HandleDownCall"); if (CTOV(cp)->v_vflag & VV_TEXT) error = coda_vmflush(cp); CODADEBUG(CODA_ZAPFILE, myprintf(("zapfile: fid = %s, refcnt = %d, error = " "%d\n", coda_f2s(&cp->c_fid), CTOV(cp)->v_usecount - 1, error));); if (vrefcnt(CTOV(cp)) == 1) cp->c_flags |= C_PURGING; vrele(CTOV(cp)); } return (error); } case CODA_ZAPDIR: { struct cnode *cp; coda_clstat.ncalls++; coda_clstat.reqs[CODA_ZAPDIR]++; cp = coda_find(&out->coda_zapdir.Fid); if (cp != NULL) { vref(CTOV(cp)); cache_purge(CTOV(cp)); cp->c_flags &= ~(C_VATTR | C_ACCCACHE); CODADEBUG(CODA_ZAPDIR, myprintf(("zapdir: fid = %s, " "refcnt = %d\n", coda_f2s(&cp->c_fid), CTOV(cp)->v_usecount - 1));); if (vrefcnt(CTOV(cp)) == 1) cp->c_flags |= C_PURGING; vrele(CTOV(cp)); } return (0); } case CODA_PURGEFID: { struct cnode *cp; error = 0; coda_clstat.ncalls++; coda_clstat.reqs[CODA_PURGEFID]++; cp = coda_find(&out->coda_purgefid.Fid); if (cp != NULL) { vref(CTOV(cp)); cache_purge(CTOV(cp)); cp->c_flags &= ~(C_VATTR | C_ACCCACHE); ASSERT_VOP_LOCKED(CTOV(cp), "coda HandleDownCall"); if (!(IS_DIR(out->coda_purgefid.Fid)) && (CTOV(cp)->v_vflag & VV_TEXT)) error = coda_vmflush(cp); CODADEBUG(CODA_PURGEFID, myprintf(("purgefid: fid " "= %s, refcnt = %d, error = %d\n", coda_f2s(&cp->c_fid), CTOV(cp)->v_usecount - 1, error));); if (vrefcnt(CTOV(cp)) == 1) cp->c_flags |= C_PURGING; vrele(CTOV(cp)); } return (error); } case CODA_REPLACE: { struct cnode *cp = NULL; coda_clstat.ncalls++; coda_clstat.reqs[CODA_REPLACE]++; cp = coda_find(&out->coda_replace.OldFid); if (cp != NULL) { /* * Remove the cnode from the hash table, replace the * fid, and reinsert. Clear the attribute cache as * the "inode number" may have changed (it's just a * hash of the fid, and the fid is changing). */ vref(CTOV(cp)); coda_unsave(cp); cp->c_fid = out->coda_replace.NewFid; cp->c_flags &= ~C_VATTR; coda_save(cp); CODADEBUG(CODA_REPLACE, myprintf(("replace: oldfid " "= %s, newfid = %s, cp = %p\n", coda_f2s(&out->coda_replace.OldFid), coda_f2s(&cp->c_fid), cp));); vrele(CTOV(cp)); } return (0); } default: myprintf(("handleDownCall: unknown opcode %d\n", opcode)); return (EINVAL); } } int coda_vmflush(struct cnode *cp) { return (0); } /* * Kernel-internal debugging switches. */ void coda_debugon(void) { codadebug = -1; coda_vnop_print_entry = 1; coda_psdev_print_entry = 1; coda_vfsop_print_entry = 1; } void coda_debugoff(void) { codadebug = 0; coda_vnop_print_entry = 0; coda_psdev_print_entry = 0; coda_vfsop_print_entry = 0; } /*- * Utilities used by both client and server * Standard levels: * 0) no debugging * 1) hard failures * 2) soft failures * 3) current test software * 4) main procedure entry points * 5) main procedure exit points * 6) utility procedure entry points * 7) utility procedure exit points * 8) obscure procedure entry points * 9) obscure procedure exit points * 10) random stuff * 11) all <= 1 * 12) all <= 2 * 13) all <= 3 * ... */