/*- * Copyright (c) 1983, 1992, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #if defined(LIBC_SCCS) && !defined(lint) static char sccsid[] = "@(#)gmon.c 8.1 (Berkeley) 6/4/93"; #endif #include __FBSDID("$FreeBSD$"); #include "namespace.h" #include #include #include #include #include #include #include #include #include #include #include #include "un-namespace.h" #include "libc_private.h" #if defined(__i386__) || defined(__sparc64__) || defined(__amd64__) || (defined(__powerpc__) && !defined(__powerpc64__)) extern char *minbrk __asm (".minbrk"); #elif defined(__powerpc64__) extern char *minbrk __asm ("_minbrk"); #else extern char *minbrk __asm ("minbrk"); #endif struct gmonparam _gmonparam = { GMON_PROF_OFF }; static int s_scale; /* See profil(2) where this is described (incorrectly). */ #define SCALE_SHIFT 16 #define ERR(s) _write(2, s, sizeof(s)) void moncontrol(int); static int hertz(void); void monstartup(lowpc, highpc) u_long lowpc; u_long highpc; { int o; char *cp; struct gmonparam *p = &_gmonparam; /* * round lowpc and highpc to multiples of the density we're using * so the rest of the scaling (here and in gprof) stays in ints. */ p->lowpc = ROUNDDOWN(lowpc, HISTFRACTION * sizeof(HISTCOUNTER)); p->highpc = ROUNDUP(highpc, HISTFRACTION * sizeof(HISTCOUNTER)); p->textsize = p->highpc - p->lowpc; p->kcountsize = p->textsize / HISTFRACTION; p->hashfraction = HASHFRACTION; p->fromssize = p->textsize / HASHFRACTION; p->tolimit = p->textsize * ARCDENSITY / 100; if (p->tolimit < MINARCS) p->tolimit = MINARCS; else if (p->tolimit > MAXARCS) p->tolimit = MAXARCS; p->tossize = p->tolimit * sizeof(struct tostruct); cp = sbrk(p->kcountsize + p->fromssize + p->tossize); if (cp == (char *)-1) { ERR("monstartup: out of memory\n"); return; } #ifdef notdef bzero(cp, p->kcountsize + p->fromssize + p->tossize); #endif p->tos = (struct tostruct *)cp; cp += p->tossize; p->kcount = (u_short *)cp; cp += p->kcountsize; p->froms = (u_short *)cp; minbrk = sbrk(0); p->tos[0].link = 0; o = p->highpc - p->lowpc; s_scale = (p->kcountsize < o) ? ((uintmax_t)p->kcountsize << SCALE_SHIFT) / o : (1 << SCALE_SHIFT); moncontrol(1); } void _mcleanup(void) { int fd; int fromindex; int endfrom; u_long frompc; int toindex; struct rawarc rawarc; struct gmonparam *p = &_gmonparam; struct gmonhdr gmonhdr, *hdr; struct clockinfo clockinfo; char outname[128]; int mib[2]; size_t size; #ifdef DEBUG int log, len; char buf[200]; #endif if (p->state == GMON_PROF_ERROR) ERR("_mcleanup: tos overflow\n"); size = sizeof(clockinfo); mib[0] = CTL_KERN; mib[1] = KERN_CLOCKRATE; if (sysctl(mib, 2, &clockinfo, &size, NULL, 0) < 0) { /* * Best guess */ clockinfo.profhz = hertz(); } else if (clockinfo.profhz == 0) { if (clockinfo.hz != 0) clockinfo.profhz = clockinfo.hz; else clockinfo.profhz = hertz(); } moncontrol(0); snprintf(outname, sizeof(outname), "%s.gmon", _getprogname()); fd = _open(outname, O_CREAT|O_TRUNC|O_WRONLY, 0666); if (fd < 0) { _warn("_mcleanup: %s", outname); return; } #ifdef DEBUG log = _open("gmon.log", O_CREAT|O_TRUNC|O_WRONLY, 0664); if (log < 0) { _warn("_mcleanup: gmon.log"); return; } len = sprintf(buf, "[mcleanup1] kcount 0x%p ssiz %lu\n", p->kcount, p->kcountsize); _write(log, buf, len); #endif hdr = (struct gmonhdr *)&gmonhdr; bzero(hdr, sizeof(*hdr)); hdr->lpc = p->lowpc; hdr->hpc = p->highpc; hdr->ncnt = p->kcountsize + sizeof(gmonhdr); hdr->version = GMONVERSION; hdr->profrate = clockinfo.profhz; _write(fd, (char *)hdr, sizeof *hdr); _write(fd, p->kcount, p->kcountsize); endfrom = p->fromssize / sizeof(*p->froms); for (fromindex = 0; fromindex < endfrom; fromindex++) { if (p->froms[fromindex] == 0) continue; frompc = p->lowpc; frompc += fromindex * p->hashfraction * sizeof(*p->froms); for (toindex = p->froms[fromindex]; toindex != 0; toindex = p->tos[toindex].link) { #ifdef DEBUG len = sprintf(buf, "[mcleanup2] frompc 0x%lx selfpc 0x%lx count %lu\n" , frompc, p->tos[toindex].selfpc, p->tos[toindex].count); _write(log, buf, len); #endif rawarc.raw_frompc = frompc; rawarc.raw_selfpc = p->tos[toindex].selfpc; rawarc.raw_count = p->tos[toindex].count; _write(fd, &rawarc, sizeof rawarc); } } _close(fd); } /* * Control profiling * profiling is what mcount checks to see if * all the data structures are ready. */ void moncontrol(mode) int mode; { struct gmonparam *p = &_gmonparam; if (mode) { /* start */ profil((char *)p->kcount, p->kcountsize, p->lowpc, s_scale); p->state = GMON_PROF_ON; } else { /* stop */ profil((char *)0, 0, 0, 0); p->state = GMON_PROF_OFF; } } /* * discover the tick frequency of the machine * if something goes wrong, we return 0, an impossible hertz. */ static int hertz() { struct itimerval tim; tim.it_interval.tv_sec = 0; tim.it_interval.tv_usec = 1; tim.it_value.tv_sec = 0; tim.it_value.tv_usec = 0; setitimer(ITIMER_REAL, &tim, 0); setitimer(ITIMER_REAL, 0, &tim); if (tim.it_interval.tv_usec < 2) return(0); return (1000000 / tim.it_interval.tv_usec); }