/*- * Copyright (c) 1982, 1986, 1991, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_resource.c 8.5 (Berkeley) 1/21/94 * $FreeBSD$ */ #include "opt_compat.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static int donice(struct thread *td, struct proc *chgp, int n); static MALLOC_DEFINE(M_UIDINFO, "uidinfo", "uidinfo structures"); #define UIHASH(uid) (&uihashtbl[(uid) & uihash]) static struct mtx uihashtbl_mtx; static LIST_HEAD(uihashhead, uidinfo) *uihashtbl; static u_long uihash; /* size of hash table - 1 */ static struct uidinfo *uilookup(uid_t uid); /* * Resource controls and accounting. */ #ifndef _SYS_SYSPROTO_H_ struct getpriority_args { int which; int who; }; #endif /* * MPSAFE */ int getpriority(td, uap) struct thread *td; register struct getpriority_args *uap; { struct proc *p; int low = PRIO_MAX + 1; int error = 0; struct ksegrp *kg; mtx_lock(&Giant); switch (uap->which) { case PRIO_PROCESS: if (uap->who == 0) low = td->td_ksegrp->kg_nice; else { p = pfind(uap->who); if (p == NULL) break; if (p_cansee(td, p) == 0) { FOREACH_KSEGRP_IN_PROC(p, kg) { if (kg->kg_nice < low) low = kg->kg_nice; } } PROC_UNLOCK(p); } break; case PRIO_PGRP: { register struct pgrp *pg; sx_slock(&proctree_lock); if (uap->who == 0) { pg = td->td_proc->p_pgrp; PGRP_LOCK(pg); } else { pg = pgfind(uap->who); if (pg == NULL) { sx_sunlock(&proctree_lock); break; } } sx_sunlock(&proctree_lock); LIST_FOREACH(p, &pg->pg_members, p_pglist) { PROC_LOCK(p); if (!p_cansee(td, p)) { FOREACH_KSEGRP_IN_PROC(p, kg) { if (kg->kg_nice < low) low = kg->kg_nice; } } PROC_UNLOCK(p); } PGRP_UNLOCK(pg); break; } case PRIO_USER: if (uap->who == 0) uap->who = td->td_ucred->cr_uid; sx_slock(&allproc_lock); LIST_FOREACH(p, &allproc, p_list) { PROC_LOCK(p); if (!p_cansee(td, p) && p->p_ucred->cr_uid == uap->who) { FOREACH_KSEGRP_IN_PROC(p, kg) { if (kg->kg_nice < low) low = kg->kg_nice; } } PROC_UNLOCK(p); } sx_sunlock(&allproc_lock); break; default: error = EINVAL; break; } if (low == PRIO_MAX + 1 && error == 0) error = ESRCH; td->td_retval[0] = low; mtx_unlock(&Giant); return (error); } #ifndef _SYS_SYSPROTO_H_ struct setpriority_args { int which; int who; int prio; }; #endif /* * MPSAFE */ /* ARGSUSED */ int setpriority(td, uap) struct thread *td; register struct setpriority_args *uap; { struct proc *curp = td->td_proc; register struct proc *p; int found = 0, error = 0; mtx_lock(&Giant); switch (uap->which) { case PRIO_PROCESS: if (uap->who == 0) { PROC_LOCK(curp); error = donice(td, curp, uap->prio); PROC_UNLOCK(curp); } else { p = pfind(uap->who); if (p == 0) break; if (p_cansee(td, p) == 0) error = donice(td, p, uap->prio); PROC_UNLOCK(p); } found++; break; case PRIO_PGRP: { register struct pgrp *pg; sx_slock(&proctree_lock); if (uap->who == 0) { pg = curp->p_pgrp; PGRP_LOCK(pg); } else { pg = pgfind(uap->who); if (pg == NULL) { sx_sunlock(&proctree_lock); break; } } sx_sunlock(&proctree_lock); LIST_FOREACH(p, &pg->pg_members, p_pglist) { PROC_LOCK(p); if (!p_cansee(td, p)) { error = donice(td, p, uap->prio); found++; } PROC_UNLOCK(p); } PGRP_UNLOCK(pg); break; } case PRIO_USER: if (uap->who == 0) uap->who = td->td_ucred->cr_uid; sx_slock(&allproc_lock); FOREACH_PROC_IN_SYSTEM(p) { PROC_LOCK(p); if (p->p_ucred->cr_uid == uap->who && !p_cansee(td, p)) { error = donice(td, p, uap->prio); found++; } PROC_UNLOCK(p); } sx_sunlock(&allproc_lock); break; default: error = EINVAL; break; } if (found == 0 && error == 0) error = ESRCH; mtx_unlock(&Giant); return (error); } /* * Set "nice" for a process. Doesn't really understand threaded processes well * but does try. Has the unfortunate side effect of making all the NICE * values for a process's ksegrps the same.. This suggests that * NICE valuse should be stored as a process nice and deltas for the ksegrps. * (but not yet). */ static int donice(struct thread *td, struct proc *p, int n) { int error; int low = PRIO_MAX + 1; struct ksegrp *kg; PROC_LOCK_ASSERT(p, MA_OWNED); if ((error = p_cansched(td, p))) return (error); if (n > PRIO_MAX) n = PRIO_MAX; if (n < PRIO_MIN) n = PRIO_MIN; /* * Only allow nicing if to more than the lowest nice. * e.g. nices of 4,3,2 allow nice to 3 but not 1 */ FOREACH_KSEGRP_IN_PROC(p, kg) { if (kg->kg_nice < low) low = kg->kg_nice; } if (n < low && suser(td)) return (EACCES); FOREACH_KSEGRP_IN_PROC(p, kg) { kg->kg_nice = n; (void)resetpriority(kg); } return (0); } /* rtprio system call */ #ifndef _SYS_SYSPROTO_H_ struct rtprio_args { int function; pid_t pid; struct rtprio *rtp; }; #endif /* * Set realtime priority */ /* * MPSAFE */ /* ARGSUSED */ int rtprio(td, uap) struct thread *td; register struct rtprio_args *uap; { struct proc *curp = td->td_proc; register struct proc *p; struct rtprio rtp; int error, cierror = 0; /* Perform copyin before acquiring locks if needed. */ if (uap->function == RTP_SET) cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio)); if (uap->pid == 0) { p = curp; PROC_LOCK(p); } else { p = pfind(uap->pid); if (p == NULL) return (ESRCH); } switch (uap->function) { case RTP_LOOKUP: if ((error = p_cansee(td, p))) break; mtx_lock_spin(&sched_lock); pri_to_rtp(FIRST_KSEGRP_IN_PROC(p), &rtp); mtx_unlock_spin(&sched_lock); PROC_UNLOCK(p); return (copyout(&rtp, uap->rtp, sizeof(struct rtprio))); case RTP_SET: if ((error = p_cansched(td, p)) || (error = cierror)) break; /* disallow setting rtprio in most cases if not superuser */ if (suser(td) != 0) { /* can't set someone else's */ if (uap->pid) { error = EPERM; break; } /* can't set realtime priority */ /* * Realtime priority has to be restricted for reasons which should be * obvious. However, for idle priority, there is a potential for * system deadlock if an idleprio process gains a lock on a resource * that other processes need (and the idleprio process can't run * due to a CPU-bound normal process). Fix me! XXX */ #if 0 if (RTP_PRIO_IS_REALTIME(rtp.type)) #endif if (rtp.type != RTP_PRIO_NORMAL) { error = EPERM; break; } } mtx_lock_spin(&sched_lock); error = rtp_to_pri(&rtp, FIRST_KSEGRP_IN_PROC(p)); mtx_unlock_spin(&sched_lock); break; default: error = EINVAL; break; } PROC_UNLOCK(p); return (error); } int rtp_to_pri(struct rtprio *rtp, struct ksegrp *kg) { if (rtp->prio > RTP_PRIO_MAX) return (EINVAL); switch (RTP_PRIO_BASE(rtp->type)) { case RTP_PRIO_REALTIME: kg->kg_user_pri = PRI_MIN_REALTIME + rtp->prio; break; case RTP_PRIO_NORMAL: kg->kg_user_pri = PRI_MIN_TIMESHARE + rtp->prio; break; case RTP_PRIO_IDLE: kg->kg_user_pri = PRI_MIN_IDLE + rtp->prio; break; default: return (EINVAL); } kg->kg_pri_class = rtp->type; if (curthread->td_ksegrp == kg) { curthread->td_base_pri = kg->kg_user_pri; curthread->td_priority = kg->kg_user_pri; /* XXX dubious */ } return (0); } void pri_to_rtp(struct ksegrp *kg, struct rtprio *rtp) { switch (PRI_BASE(kg->kg_pri_class)) { case PRI_REALTIME: rtp->prio = kg->kg_user_pri - PRI_MIN_REALTIME; break; case PRI_TIMESHARE: rtp->prio = kg->kg_user_pri - PRI_MIN_TIMESHARE; break; case PRI_IDLE: rtp->prio = kg->kg_user_pri - PRI_MIN_IDLE; break; default: break; } rtp->type = kg->kg_pri_class; } #if defined(COMPAT_43) || defined(COMPAT_SUNOS) #ifndef _SYS_SYSPROTO_H_ struct osetrlimit_args { u_int which; struct orlimit *rlp; }; #endif /* * MPSAFE */ /* ARGSUSED */ int osetrlimit(td, uap) struct thread *td; register struct osetrlimit_args *uap; { struct orlimit olim; struct rlimit lim; int error; if ((error = copyin(uap->rlp, &olim, sizeof(struct orlimit)))) return (error); lim.rlim_cur = olim.rlim_cur; lim.rlim_max = olim.rlim_max; mtx_lock(&Giant); error = dosetrlimit(td, uap->which, &lim); mtx_unlock(&Giant); return (error); } #ifndef _SYS_SYSPROTO_H_ struct ogetrlimit_args { u_int which; struct orlimit *rlp; }; #endif /* * MPSAFE */ /* ARGSUSED */ int ogetrlimit(td, uap) struct thread *td; register struct ogetrlimit_args *uap; { struct proc *p = td->td_proc; struct orlimit olim; int error; if (uap->which >= RLIM_NLIMITS) return (EINVAL); mtx_lock(&Giant); olim.rlim_cur = p->p_rlimit[uap->which].rlim_cur; if (olim.rlim_cur == -1) olim.rlim_cur = 0x7fffffff; olim.rlim_max = p->p_rlimit[uap->which].rlim_max; if (olim.rlim_max == -1) olim.rlim_max = 0x7fffffff; error = copyout(&olim, uap->rlp, sizeof(olim)); mtx_unlock(&Giant); return (error); } #endif /* COMPAT_43 || COMPAT_SUNOS */ #ifndef _SYS_SYSPROTO_H_ struct __setrlimit_args { u_int which; struct rlimit *rlp; }; #endif /* * MPSAFE */ /* ARGSUSED */ int setrlimit(td, uap) struct thread *td; register struct __setrlimit_args *uap; { struct rlimit alim; int error; if ((error = copyin(uap->rlp, &alim, sizeof (struct rlimit)))) return (error); mtx_lock(&Giant); error = dosetrlimit(td, uap->which, &alim); mtx_unlock(&Giant); return (error); } int dosetrlimit(td, which, limp) struct thread *td; u_int which; struct rlimit *limp; { struct proc *p = td->td_proc; register struct rlimit *alimp; int error; GIANT_REQUIRED; if (which >= RLIM_NLIMITS) return (EINVAL); alimp = &p->p_rlimit[which]; /* * Preserve historical bugs by treating negative limits as unsigned. */ if (limp->rlim_cur < 0) limp->rlim_cur = RLIM_INFINITY; if (limp->rlim_max < 0) limp->rlim_max = RLIM_INFINITY; if (limp->rlim_cur > alimp->rlim_max || limp->rlim_max > alimp->rlim_max) if ((error = suser_cred(td->td_ucred, PRISON_ROOT))) return (error); if (limp->rlim_cur > limp->rlim_max) limp->rlim_cur = limp->rlim_max; if (p->p_limit->p_refcnt > 1 && (p->p_limit->p_lflags & PL_SHAREMOD) == 0) { p->p_limit->p_refcnt--; p->p_limit = limcopy(p->p_limit); alimp = &p->p_rlimit[which]; } switch (which) { case RLIMIT_CPU: if (limp->rlim_cur > RLIM_INFINITY / (rlim_t)1000000) p->p_limit->p_cpulimit = RLIM_INFINITY; else p->p_limit->p_cpulimit = (rlim_t)1000000 * limp->rlim_cur; break; case RLIMIT_DATA: if (limp->rlim_cur > maxdsiz) limp->rlim_cur = maxdsiz; if (limp->rlim_max > maxdsiz) limp->rlim_max = maxdsiz; break; case RLIMIT_STACK: if (limp->rlim_cur > maxssiz) limp->rlim_cur = maxssiz; if (limp->rlim_max > maxssiz) limp->rlim_max = maxssiz; /* * Stack is allocated to the max at exec time with only * "rlim_cur" bytes accessible. If stack limit is going * up make more accessible, if going down make inaccessible. */ if (limp->rlim_cur != alimp->rlim_cur) { vm_offset_t addr; vm_size_t size; vm_prot_t prot; if (limp->rlim_cur > alimp->rlim_cur) { prot = VM_PROT_ALL; size = limp->rlim_cur - alimp->rlim_cur; addr = USRSTACK - limp->rlim_cur; } else { prot = VM_PROT_NONE; size = alimp->rlim_cur - limp->rlim_cur; addr = USRSTACK - alimp->rlim_cur; } addr = trunc_page(addr); size = round_page(size); (void) vm_map_protect(&p->p_vmspace->vm_map, addr, addr+size, prot, FALSE); } break; case RLIMIT_NOFILE: if (limp->rlim_cur > maxfilesperproc) limp->rlim_cur = maxfilesperproc; if (limp->rlim_max > maxfilesperproc) limp->rlim_max = maxfilesperproc; break; case RLIMIT_NPROC: if (limp->rlim_cur > maxprocperuid) limp->rlim_cur = maxprocperuid; if (limp->rlim_max > maxprocperuid) limp->rlim_max = maxprocperuid; if (limp->rlim_cur < 1) limp->rlim_cur = 1; if (limp->rlim_max < 1) limp->rlim_max = 1; break; } *alimp = *limp; return (0); } #ifndef _SYS_SYSPROTO_H_ struct __getrlimit_args { u_int which; struct rlimit *rlp; }; #endif /* * MPSAFE */ /* ARGSUSED */ int getrlimit(td, uap) struct thread *td; register struct __getrlimit_args *uap; { int error; struct proc *p = td->td_proc; if (uap->which >= RLIM_NLIMITS) return (EINVAL); mtx_lock(&Giant); error = copyout(&p->p_rlimit[uap->which], uap->rlp, sizeof (struct rlimit)); mtx_unlock(&Giant); return(error); } /* * Transform the running time and tick information in proc p into user, * system, and interrupt time usage. */ void calcru(p, up, sp, ip) struct proc *p; struct timeval *up; struct timeval *sp; struct timeval *ip; { /* {user, system, interrupt, total} {ticks, usec}; previous tu: */ u_int64_t ut, uu, st, su, it, iu, tt, tu, ptu; u_int64_t uut = 0, sut = 0, iut = 0; int s; struct timeval tv; struct bintime bt; struct kse *ke; struct ksegrp *kg; mtx_assert(&sched_lock, MA_OWNED); /* XXX: why spl-protect ? worst case is an off-by-one report */ FOREACH_KSEGRP_IN_PROC(p, kg) { /* we could accumulate per ksegrp and per process here*/ FOREACH_KSE_IN_GROUP(kg, ke) { s = splstatclock(); ut = ke->ke_uticks; st = ke->ke_sticks; it = ke->ke_iticks; splx(s); tt = ut + st + it; if (tt == 0) { st = 1; tt = 1; } if (ke == curthread->td_kse) { /* * Adjust for the current time slice. This is actually fairly * important since the error here is on the order of a time * quantum, which is much greater than the sampling error. * XXXKSE use a different test due to threads on other * processors also being 'current'. */ binuptime(&bt); bintime_sub(&bt, PCPU_PTR(switchtime)); bintime_add(&bt, &p->p_runtime); } else { bt = p->p_runtime; } bintime2timeval(&bt, &tv); tu = (u_int64_t)tv.tv_sec * 1000000 + tv.tv_usec; ptu = ke->ke_uu + ke->ke_su + ke->ke_iu; if (tu < ptu || (int64_t)tu < 0) { /* XXX no %qd in kernel. Truncate. */ printf("calcru: negative time of %ld usec for pid %d (%s)\n", (long)tu, p->p_pid, p->p_comm); tu = ptu; } /* Subdivide tu. */ uu = (tu * ut) / tt; su = (tu * st) / tt; iu = tu - uu - su; /* Enforce monotonicity. */ if (uu < ke->ke_uu || su < ke->ke_su || iu < ke->ke_iu) { if (uu < ke->ke_uu) uu = ke->ke_uu; else if (uu + ke->ke_su + ke->ke_iu > tu) uu = tu - ke->ke_su - ke->ke_iu; if (st == 0) su = ke->ke_su; else { su = ((tu - uu) * st) / (st + it); if (su < ke->ke_su) su = ke->ke_su; else if (uu + su + ke->ke_iu > tu) su = tu - uu - ke->ke_iu; } KASSERT(uu + su + ke->ke_iu <= tu, ("calcru: monotonisation botch 1")); iu = tu - uu - su; KASSERT(iu >= ke->ke_iu, ("calcru: monotonisation botch 2")); } ke->ke_uu = uu; ke->ke_su = su; ke->ke_iu = iu; uut += uu; sut += su; iut += iu; } /* end kse loop */ } /* end kseg loop */ up->tv_sec = uut / 1000000; up->tv_usec = uut % 1000000; sp->tv_sec = sut / 1000000; sp->tv_usec = sut % 1000000; if (ip != NULL) { ip->tv_sec = iut / 1000000; ip->tv_usec = iut % 1000000; } } #ifndef _SYS_SYSPROTO_H_ struct getrusage_args { int who; struct rusage *rusage; }; #endif /* * MPSAFE */ /* ARGSUSED */ int getrusage(td, uap) register struct thread *td; register struct getrusage_args *uap; { struct proc *p = td->td_proc; register struct rusage *rup; int error = 0; mtx_lock(&Giant); switch (uap->who) { case RUSAGE_SELF: rup = &p->p_stats->p_ru; mtx_lock_spin(&sched_lock); calcru(p, &rup->ru_utime, &rup->ru_stime, NULL); mtx_unlock_spin(&sched_lock); break; case RUSAGE_CHILDREN: rup = &p->p_stats->p_cru; break; default: rup = NULL; error = EINVAL; break; } mtx_unlock(&Giant); if (error == 0) { error = copyout(rup, uap->rusage, sizeof (struct rusage)); } return(error); } void ruadd(ru, ru2) register struct rusage *ru, *ru2; { register long *ip, *ip2; register int i; timevaladd(&ru->ru_utime, &ru2->ru_utime); timevaladd(&ru->ru_stime, &ru2->ru_stime); if (ru->ru_maxrss < ru2->ru_maxrss) ru->ru_maxrss = ru2->ru_maxrss; ip = &ru->ru_first; ip2 = &ru2->ru_first; for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--) *ip++ += *ip2++; } /* * Make a copy of the plimit structure. * We share these structures copy-on-write after fork, * and copy when a limit is changed. */ struct plimit * limcopy(lim) struct plimit *lim; { register struct plimit *copy; MALLOC(copy, struct plimit *, sizeof(struct plimit), M_SUBPROC, M_WAITOK); bcopy(lim->pl_rlimit, copy->pl_rlimit, sizeof(struct plimit)); copy->p_lflags = 0; copy->p_refcnt = 1; return (copy); } /* * Find the uidinfo structure for a uid. This structure is used to * track the total resource consumption (process count, socket buffer * size, etc.) for the uid and impose limits. */ void uihashinit() { uihashtbl = hashinit(maxproc / 16, M_UIDINFO, &uihash); mtx_init(&uihashtbl_mtx, "uidinfo hash", NULL, MTX_DEF); } /* * lookup a uidinfo struct for the parameter uid. * uihashtbl_mtx must be locked. */ static struct uidinfo * uilookup(uid) uid_t uid; { struct uihashhead *uipp; struct uidinfo *uip; mtx_assert(&uihashtbl_mtx, MA_OWNED); uipp = UIHASH(uid); LIST_FOREACH(uip, uipp, ui_hash) if (uip->ui_uid == uid) break; return (uip); } /* * Find or allocate a struct uidinfo for a particular uid. * Increase refcount on uidinfo struct returned. * uifree() should be called on a struct uidinfo when released. */ struct uidinfo * uifind(uid) uid_t uid; { struct uidinfo *uip; mtx_lock(&uihashtbl_mtx); uip = uilookup(uid); if (uip == NULL) { struct uidinfo *old_uip; mtx_unlock(&uihashtbl_mtx); uip = malloc(sizeof(*uip), M_UIDINFO, M_WAITOK | M_ZERO); mtx_lock(&uihashtbl_mtx); /* * There's a chance someone created our uidinfo while we * were in malloc and not holding the lock, so we have to * make sure we don't insert a duplicate uidinfo */ if ((old_uip = uilookup(uid)) != NULL) { /* someone else beat us to it */ free(uip, M_UIDINFO); uip = old_uip; } else { uip->ui_mtxp = mtx_pool_alloc(); uip->ui_uid = uid; LIST_INSERT_HEAD(UIHASH(uid), uip, ui_hash); } } uihold(uip); mtx_unlock(&uihashtbl_mtx); return (uip); } /* * Place another refcount on a uidinfo struct. */ void uihold(uip) struct uidinfo *uip; { UIDINFO_LOCK(uip); uip->ui_ref++; UIDINFO_UNLOCK(uip); } /*- * Since uidinfo structs have a long lifetime, we use an * opportunistic refcounting scheme to avoid locking the lookup hash * for each release. * * If the refcount hits 0, we need to free the structure, * which means we need to lock the hash. * Optimal case: * After locking the struct and lowering the refcount, if we find * that we don't need to free, simply unlock and return. * Suboptimal case: * If refcount lowering results in need to free, bump the count * back up, loose the lock and aquire the locks in the proper * order to try again. */ void uifree(uip) struct uidinfo *uip; { /* Prepare for optimal case. */ UIDINFO_LOCK(uip); if (--uip->ui_ref != 0) { UIDINFO_UNLOCK(uip); return; } /* Prepare for suboptimal case. */ uip->ui_ref++; UIDINFO_UNLOCK(uip); mtx_lock(&uihashtbl_mtx); UIDINFO_LOCK(uip); /* * We must subtract one from the count again because we backed out * our initial subtraction before dropping the lock. * Since another thread may have added a reference after we dropped the * initial lock we have to test for zero again. */ if (--uip->ui_ref == 0) { LIST_REMOVE(uip, ui_hash); mtx_unlock(&uihashtbl_mtx); if (uip->ui_sbsize != 0) /* XXX no %qd in kernel. Truncate. */ printf("freeing uidinfo: uid = %d, sbsize = %ld\n", uip->ui_uid, (long)uip->ui_sbsize); if (uip->ui_proccnt != 0) printf("freeing uidinfo: uid = %d, proccnt = %ld\n", uip->ui_uid, uip->ui_proccnt); UIDINFO_UNLOCK(uip); FREE(uip, M_UIDINFO); return; } mtx_unlock(&uihashtbl_mtx); UIDINFO_UNLOCK(uip); } /* * Change the count associated with number of processes * a given user is using. When 'max' is 0, don't enforce a limit */ int chgproccnt(uip, diff, max) struct uidinfo *uip; int diff; int max; { UIDINFO_LOCK(uip); /* don't allow them to exceed max, but allow subtraction */ if (diff > 0 && uip->ui_proccnt + diff > max && max != 0) { UIDINFO_UNLOCK(uip); return (0); } uip->ui_proccnt += diff; if (uip->ui_proccnt < 0) printf("negative proccnt for uid = %d\n", uip->ui_uid); UIDINFO_UNLOCK(uip); return (1); } /* * Change the total socket buffer size a user has used. */ int chgsbsize(uip, hiwat, to, max) struct uidinfo *uip; u_int *hiwat; u_int to; rlim_t max; { rlim_t new; int s; s = splnet(); UIDINFO_LOCK(uip); new = uip->ui_sbsize + to - *hiwat; /* don't allow them to exceed max, but allow subtraction */ if (to > *hiwat && new > max) { splx(s); UIDINFO_UNLOCK(uip); return (0); } uip->ui_sbsize = new; *hiwat = to; if (uip->ui_sbsize < 0) printf("negative sbsize for uid = %d\n", uip->ui_uid); splx(s); UIDINFO_UNLOCK(uip); return (1); }