/*- * Copyright (c) 2011 Chelsio Communications, Inc. * All rights reserved. * Written by: Navdeep Parhar * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include #include #include #include #include #include #include #include #include #include #include #include #include "common/common.h" #include "common/t4_regs.h" #include "common/t4_regs_values.h" #include "common/t4_msg.h" #include "common/t4fw_interface.h" struct fl_buf_info { int size; int type; uma_zone_t zone; }; /* t4_sge_init will fill up the zone */ static struct fl_buf_info fl_buf_info[FL_BUF_SIZES] = { { MCLBYTES, EXT_CLUSTER, NULL}, { MJUMPAGESIZE, EXT_JUMBOP, NULL}, { MJUM9BYTES, EXT_JUMBO9, NULL}, { MJUM16BYTES, EXT_JUMBO16, NULL} }; #define FL_BUF_SIZE(x) (fl_buf_info[x].size) #define FL_BUF_TYPE(x) (fl_buf_info[x].type) #define FL_BUF_ZONE(x) (fl_buf_info[x].zone) enum { FL_PKTSHIFT = 2 }; #define FL_ALIGN min(CACHE_LINE_SIZE, 32) #if CACHE_LINE_SIZE > 64 #define SPG_LEN 128 #else #define SPG_LEN 64 #endif /* Used to track coalesced tx work request */ struct txpkts { uint64_t *flitp; /* ptr to flit where next pkt should start */ uint8_t npkt; /* # of packets in this work request */ uint8_t nflits; /* # of flits used by this work request */ uint16_t plen; /* total payload (sum of all packets) */ }; /* A packet's SGL. This + m_pkthdr has all info needed for tx */ struct sgl { int nsegs; /* # of segments in the SGL, 0 means imm. tx */ int nflits; /* # of flits needed for the SGL */ bus_dma_segment_t seg[TX_SGL_SEGS]; }; static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int, int, iq_intr_handler_t *, char *); static inline void init_fl(struct sge_fl *, int, char *); static inline void init_txq(struct sge_txq *, int, char *); static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *, bus_addr_t *, void **); static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t, void *); static int alloc_iq_fl(struct port_info *, struct sge_iq *, struct sge_fl *, int); static int free_iq_fl(struct port_info *, struct sge_iq *, struct sge_fl *); static int alloc_iq(struct sge_iq *, int); static int free_iq(struct sge_iq *); static int alloc_rxq(struct port_info *, struct sge_rxq *, int, int); static int free_rxq(struct port_info *, struct sge_rxq *); static int alloc_txq(struct port_info *, struct sge_txq *, int); static int free_txq(struct port_info *, struct sge_txq *); static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int); static inline bool is_new_response(const struct sge_iq *, struct rsp_ctrl **); static inline void iq_next(struct sge_iq *); static inline void ring_fl_db(struct adapter *, struct sge_fl *); static void refill_fl(struct sge_fl *, int); static int alloc_fl_sdesc(struct sge_fl *); static void free_fl_sdesc(struct sge_fl *); static int alloc_eq_maps(struct sge_eq *); static void free_eq_maps(struct sge_eq *); static struct mbuf *get_fl_sdesc_data(struct sge_fl *, int, int); static void set_fl_tag_idx(struct sge_fl *, int); static int get_pkt_sgl(struct sge_txq *, struct mbuf **, struct sgl *, int); static int free_pkt_sgl(struct sge_txq *, struct sgl *); static int write_txpkt_wr(struct port_info *, struct sge_txq *, struct mbuf *, struct sgl *); static int add_to_txpkts(struct port_info *, struct sge_txq *, struct txpkts *, struct mbuf *, struct sgl *); static void write_txpkts_wr(struct sge_txq *, struct txpkts *); static inline void write_ulp_cpl_sgl(struct port_info *, struct sge_txq *, struct txpkts *, struct mbuf *, struct sgl *); static int write_sgl_to_txd(struct sge_eq *, struct sgl *, caddr_t *); static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int); static inline void ring_tx_db(struct adapter *, struct sge_eq *); static int reclaim_tx_descs(struct sge_eq *, int, int); static void write_eqflush_wr(struct sge_eq *); static __be64 get_flit(bus_dma_segment_t *, int, int); /** * t4_sge_init - initialize SGE * @sc: the adapter * * Performs SGE initialization needed every time after a chip reset. * We do not initialize any of the queues here, instead the driver * top-level must request them individually. */ void t4_sge_init(struct adapter *sc) { struct sge *s = &sc->sge; int i; FL_BUF_ZONE(0) = zone_clust; FL_BUF_ZONE(1) = zone_jumbop; FL_BUF_ZONE(2) = zone_jumbo9; FL_BUF_ZONE(3) = zone_jumbo16; t4_set_reg_field(sc, A_SGE_CONTROL, V_PKTSHIFT(M_PKTSHIFT) | V_INGPADBOUNDARY(M_INGPADBOUNDARY) | F_EGRSTATUSPAGESIZE, V_INGPADBOUNDARY(ilog2(FL_ALIGN) - 5) | V_PKTSHIFT(FL_PKTSHIFT) | F_RXPKTCPLMODE | V_EGRSTATUSPAGESIZE(SPG_LEN == 128)); t4_set_reg_field(sc, A_SGE_HOST_PAGE_SIZE, V_HOSTPAGESIZEPF0(M_HOSTPAGESIZEPF0), V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10)); for (i = 0; i < FL_BUF_SIZES; i++) { t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i), FL_BUF_SIZE(i)); } t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, V_THRESHOLD_0(s->counter_val[0]) | V_THRESHOLD_1(s->counter_val[1]) | V_THRESHOLD_2(s->counter_val[2]) | V_THRESHOLD_3(s->counter_val[3])); t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, V_TIMERVALUE0(us_to_core_ticks(sc, s->timer_val[0])) | V_TIMERVALUE1(us_to_core_ticks(sc, s->timer_val[1]))); t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, V_TIMERVALUE2(us_to_core_ticks(sc, s->timer_val[2])) | V_TIMERVALUE3(us_to_core_ticks(sc, s->timer_val[3]))); t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, V_TIMERVALUE4(us_to_core_ticks(sc, s->timer_val[4])) | V_TIMERVALUE5(us_to_core_ticks(sc, s->timer_val[5]))); } int t4_create_dma_tag(struct adapter *sc) { int rc; rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE, BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL, NULL, &sc->dmat); if (rc != 0) { device_printf(sc->dev, "failed to create main DMA tag: %d\n", rc); } return (rc); } int t4_destroy_dma_tag(struct adapter *sc) { if (sc->dmat) bus_dma_tag_destroy(sc->dmat); return (0); } /* * Allocate and initialize the firmware event queue and the forwarded interrupt * queues, if any. The adapter owns all these queues as they are not associated * with any particular port. * * Returns errno on failure. Resources allocated up to that point may still be * allocated. Caller is responsible for cleanup in case this function fails. */ int t4_setup_adapter_iqs(struct adapter *sc) { int i, rc; struct sge_iq *iq, *fwq; iq_intr_handler_t *handler; char name[16]; ADAPTER_LOCK_ASSERT_NOTOWNED(sc); fwq = &sc->sge.fwq; if (sc->flags & INTR_FWD) { iq = &sc->sge.fiq[0]; /* * Forwarded interrupt queues - allocate 1 if there's only 1 * vector available, one less than the number of vectors * otherwise (the first vector is reserved for the error * interrupt in that case). */ i = sc->intr_count > 1 ? 1 : 0; for (; i < sc->intr_count; i++, iq++) { snprintf(name, sizeof(name), "%s fiq%d", device_get_nameunit(sc->dev), i); init_iq(iq, sc, 0, 0, (sc->sge.nrxq + 1) * 2, 16, NULL, name); rc = alloc_iq(iq, i); if (rc != 0) { device_printf(sc->dev, "failed to create fwd intr queue %d: %d\n", i, rc); return (rc); } } handler = t4_intr_evt; i = 0; /* forward fwq's interrupt to the first fiq */ } else { handler = NULL; i = 1; /* fwq should use vector 1 (0 is used by error) */ } snprintf(name, sizeof(name), "%s fwq", device_get_nameunit(sc->dev)); init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE, FW_IQ_ESIZE, handler, name); rc = alloc_iq(fwq, i); if (rc != 0) { device_printf(sc->dev, "failed to create firmware event queue: %d\n", rc); } return (rc); } /* * Idempotent */ int t4_teardown_adapter_iqs(struct adapter *sc) { int i; struct sge_iq *iq; ADAPTER_LOCK_ASSERT_NOTOWNED(sc); iq = &sc->sge.fwq; free_iq(iq); if (sc->flags & INTR_FWD) { for (i = 0; i < NFIQ(sc); i++) { iq = &sc->sge.fiq[i]; free_iq(iq); } } return (0); } int t4_setup_eth_queues(struct port_info *pi) { int rc = 0, i, intr_idx; struct sge_rxq *rxq; struct sge_txq *txq; char name[16]; struct adapter *sc = pi->adapter; if (sysctl_ctx_init(&pi->ctx) == 0) { struct sysctl_oid *oid = device_get_sysctl_tree(pi->dev); struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); pi->oid_rxq = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "rxq", CTLFLAG_RD, NULL, "rx queues"); pi->oid_txq = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "txq", CTLFLAG_RD, NULL, "tx queues"); } for_each_rxq(pi, i, rxq) { snprintf(name, sizeof(name), "%s rxq%d-iq", device_get_nameunit(pi->dev), i); init_iq(&rxq->iq, sc, pi->tmr_idx, pi->pktc_idx, pi->qsize_rxq, RX_IQ_ESIZE, sc->flags & INTR_FWD ? t4_intr_data: NULL, name); snprintf(name, sizeof(name), "%s rxq%d-fl", device_get_nameunit(pi->dev), i); init_fl(&rxq->fl, pi->qsize_rxq / 8, name); if (sc->flags & INTR_FWD) intr_idx = (pi->first_rxq + i) % NFIQ(sc); else intr_idx = pi->first_rxq + i + 2; rc = alloc_rxq(pi, rxq, intr_idx, i); if (rc != 0) goto done; intr_idx++; } for_each_txq(pi, i, txq) { snprintf(name, sizeof(name), "%s txq%d", device_get_nameunit(pi->dev), i); init_txq(txq, pi->qsize_txq, name); rc = alloc_txq(pi, txq, i); if (rc != 0) goto done; } done: if (rc) t4_teardown_eth_queues(pi); return (rc); } /* * Idempotent */ int t4_teardown_eth_queues(struct port_info *pi) { int i; struct sge_rxq *rxq; struct sge_txq *txq; /* Do this before freeing the queues */ if (pi->oid_txq || pi->oid_rxq) { sysctl_ctx_free(&pi->ctx); pi->oid_txq = pi->oid_rxq = NULL; } for_each_txq(pi, i, txq) { free_txq(pi, txq); } for_each_rxq(pi, i, rxq) { free_rxq(pi, rxq); } return (0); } /* Deals with errors and forwarded interrupts */ void t4_intr_all(void *arg) { struct adapter *sc = arg; t4_intr_err(arg); t4_intr_fwd(&sc->sge.fiq[0]); } /* Deals with forwarded interrupts on the given ingress queue */ void t4_intr_fwd(void *arg) { struct sge_iq *iq = arg, *q; struct adapter *sc = iq->adapter; struct rsp_ctrl *ctrl; int ndesc_pending = 0, ndesc_total = 0; int qid; IQ_LOCK(iq); while (is_new_response(iq, &ctrl)) { rmb(); /* Only interrupt muxing expected on this queue */ KASSERT(G_RSPD_TYPE(ctrl->u.type_gen) == X_RSPD_TYPE_INTR, ("unexpected event on forwarded interrupt queue: %x", G_RSPD_TYPE(ctrl->u.type_gen))); qid = ntohl(ctrl->pldbuflen_qid) - sc->sge.iq_start; q = sc->sge.iqmap[qid]; q->handler(q); ndesc_total++; if (++ndesc_pending >= iq->qsize / 4) { t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndesc_pending) | V_INGRESSQID(iq->cntxt_id) | V_SEINTARM( V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX))); ndesc_pending = 0; } iq_next(iq); } IQ_UNLOCK(iq); if (ndesc_total > 0) { t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndesc_pending) | V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params)); } } /* Deals with error interrupts */ void t4_intr_err(void *arg) { struct adapter *sc = arg; if (sc->intr_type == 1) t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0); t4_slow_intr_handler(sc); } /* Deals with the firmware event queue */ void t4_intr_evt(void *arg) { struct sge_iq *iq = arg; struct adapter *sc = iq->adapter; struct rsp_ctrl *ctrl; const struct rss_header *rss; int ndesc_pending = 0, ndesc_total = 0; KASSERT(iq == &sc->sge.fwq, ("%s: unexpected ingress queue", __func__)); IQ_LOCK(iq); while (is_new_response(iq, &ctrl)) { rmb(); rss = (const void *)iq->cdesc; /* Should only get CPL on this queue */ KASSERT(G_RSPD_TYPE(ctrl->u.type_gen) == X_RSPD_TYPE_CPL, ("%s: unexpected type %d", __func__, G_RSPD_TYPE(ctrl->u.type_gen))); switch (rss->opcode) { case CPL_FW4_MSG: case CPL_FW6_MSG: { const struct cpl_fw6_msg *cpl; cpl = (const void *)(rss + 1); if (cpl->type == FW6_TYPE_CMD_RPL) t4_handle_fw_rpl(sc, cpl->data); break; } case CPL_SGE_EGR_UPDATE: { const struct cpl_sge_egr_update *cpl; unsigned int qid; struct sge *s = &sc->sge; struct sge_txq *txq; cpl = (const void *)(rss + 1); qid = G_EGR_QID(ntohl(cpl->opcode_qid)); txq = (void *)s->eqmap[qid - s->eq_start]; txq->egr_update++; /* XXX: wake up stalled tx */ break; } default: device_printf(sc->dev, "can't handle CPL opcode %d.", rss->opcode); } ndesc_total++; if (++ndesc_pending >= iq->qsize / 4) { t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndesc_pending) | V_INGRESSQID(iq->cntxt_id) | V_SEINTARM( V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX))); ndesc_pending = 0; } iq_next(iq); } IQ_UNLOCK(iq); if (ndesc_total > 0) { t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndesc_pending) | V_INGRESSQID(iq->cntxt_id) | V_SEINTARM(iq->intr_params)); } } void t4_intr_data(void *arg) { struct sge_rxq *rxq = arg; struct sge_iq *iq = arg; struct rsp_ctrl *ctrl; struct sge_fl *fl = &rxq->fl; struct port_info *pi = rxq->port; struct ifnet *ifp = pi->ifp; struct adapter *sc = pi->adapter; const struct rss_header *rss; const struct cpl_rx_pkt *cpl; int ndescs = 0, rsp_type; uint32_t len; struct mbuf *m0, *m; #ifdef INET struct lro_ctrl *lro = &rxq->lro; struct lro_entry *l; #endif IQ_LOCK(iq); iq->intr_next = iq->intr_params; while (is_new_response(iq, &ctrl)) { rmb(); rss = (const void *)iq->cdesc; cpl = (const void *)(rss + 1); rsp_type = G_RSPD_TYPE(ctrl->u.type_gen); if (__predict_false(rsp_type == X_RSPD_TYPE_CPL)) { const struct cpl_sge_egr_update *p = (const void *)cpl; unsigned int qid = G_EGR_QID(ntohl(p->opcode_qid)); KASSERT(cpl->opcode == CPL_SGE_EGR_UPDATE, ("unexpected opcode on data ingress queue: %x", cpl->opcode)); /* XXX: noone's waiting to be woken up... */ wakeup(sc->sge.eqmap[qid - sc->sge.eq_start]); ndescs++; iq_next(iq); continue; } KASSERT(G_RSPD_TYPE(ctrl->u.type_gen) == X_RSPD_TYPE_FLBUF, ("unexpected event on data ingress queue: %x", G_RSPD_TYPE(ctrl->u.type_gen))); len = be32toh(ctrl->pldbuflen_qid); KASSERT(len & F_RSPD_NEWBUF, ("%s: T4 misconfigured to pack buffers.", __func__)); len = G_RSPD_LEN(len); m0 = get_fl_sdesc_data(fl, len, M_PKTHDR); if (m0 == NULL) { iq->intr_next = V_QINTR_TIMER_IDX(SGE_NTIMERS - 1); break; } len -= FL_PKTSHIFT; m0->m_len -= FL_PKTSHIFT; m0->m_data += FL_PKTSHIFT; m0->m_pkthdr.len = len; m0->m_pkthdr.rcvif = ifp; m0->m_flags |= M_FLOWID; m0->m_pkthdr.flowid = rss->hash_val; if (cpl->csum_calc && !cpl->err_vec && ifp->if_capenable & IFCAP_RXCSUM) { m0->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED | CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR); if (cpl->ip_frag) m0->m_pkthdr.csum_data = be16toh(cpl->csum); else m0->m_pkthdr.csum_data = 0xffff; rxq->rxcsum++; } if (cpl->vlan_ex) { m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan); m0->m_flags |= M_VLANTAG; rxq->vlan_extraction++; } len -= m0->m_len; m = m0; while (len) { m->m_next = get_fl_sdesc_data(fl, len, 0); if (m->m_next == NULL) CXGBE_UNIMPLEMENTED("mbuf recovery"); m = m->m_next; len -= m->m_len; } #ifdef INET if (cpl->l2info & htobe32(F_RXF_LRO) && rxq->flags & RXQ_LRO_ENABLED && tcp_lro_rx(lro, m0, 0) == 0) { /* queued for LRO */ } else #endif (*ifp->if_input)(ifp, m0); FL_LOCK(fl); if (fl->needed >= 32) { refill_fl(fl, 64); if (fl->pending >= 32) ring_fl_db(sc, fl); } FL_UNLOCK(fl); ndescs++; iq_next(iq); if (ndescs > 32) { t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndescs) | V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX))); ndescs = 0; } } #ifdef INET while (!SLIST_EMPTY(&lro->lro_active)) { l = SLIST_FIRST(&lro->lro_active); SLIST_REMOVE_HEAD(&lro->lro_active, next); tcp_lro_flush(lro, l); } #endif t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndescs) | V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_next)); IQ_UNLOCK(iq); FL_LOCK(fl); if (fl->needed) { refill_fl(fl, -1); if (fl->pending >= 8) ring_fl_db(sc, fl); } FL_UNLOCK(fl); } /* Per-packet header in a coalesced tx WR, before the SGL starts (in flits) */ #define TXPKTS_PKT_HDR ((\ sizeof(struct ulp_txpkt) + \ sizeof(struct ulptx_idata) + \ sizeof(struct cpl_tx_pkt_core) \ ) / 8) /* Header of a coalesced tx WR, before SGL of first packet (in flits) */ #define TXPKTS_WR_HDR (\ sizeof(struct fw_eth_tx_pkts_wr) / 8 + \ TXPKTS_PKT_HDR) /* Header of a tx WR, before SGL of first packet (in flits) */ #define TXPKT_WR_HDR ((\ sizeof(struct fw_eth_tx_pkt_wr) + \ sizeof(struct cpl_tx_pkt_core) \ ) / 8 ) /* Header of a tx LSO WR, before SGL of first packet (in flits) */ #define TXPKT_LSO_WR_HDR ((\ sizeof(struct fw_eth_tx_pkt_wr) + \ sizeof(struct cpl_tx_pkt_lso) + \ sizeof(struct cpl_tx_pkt_core) \ ) / 8 ) int t4_eth_tx(struct ifnet *ifp, struct sge_txq *txq, struct mbuf *m) { struct port_info *pi = (void *)ifp->if_softc; struct adapter *sc = pi->adapter; struct sge_eq *eq = &txq->eq; struct buf_ring *br = eq->br; struct mbuf *next; int rc, coalescing; struct txpkts txpkts; struct sgl sgl; TXQ_LOCK_ASSERT_OWNED(txq); KASSERT(m, ("%s: called with nothing to do.", __func__)); txpkts.npkt = 0;/* indicates there's nothing in txpkts */ coalescing = 0; prefetch(&eq->sdesc[eq->pidx]); prefetch(&eq->desc[eq->pidx]); prefetch(&eq->maps[eq->map_pidx]); if (eq->avail < 8) reclaim_tx_descs(eq, 1, 8); for (; m; m = next ? next : drbr_dequeue(ifp, br)) { if (eq->avail < 8) break; next = m->m_nextpkt; m->m_nextpkt = NULL; if (next || buf_ring_peek(br)) coalescing = 1; rc = get_pkt_sgl(txq, &m, &sgl, coalescing); if (rc != 0) { if (rc == ENOMEM) { /* Short of resources, suspend tx */ m->m_nextpkt = next; break; } /* * Unrecoverable error for this packet, throw it away * and move on to the next. get_pkt_sgl may already * have freed m (it will be NULL in that case and the * m_freem here is still safe). */ m_freem(m); continue; } if (coalescing && add_to_txpkts(pi, txq, &txpkts, m, &sgl) == 0) { /* Successfully absorbed into txpkts */ write_ulp_cpl_sgl(pi, txq, &txpkts, m, &sgl); goto doorbell; } /* * We weren't coalescing to begin with, or current frame could * not be coalesced (add_to_txpkts flushes txpkts if a frame * given to it can't be coalesced). Either way there should be * nothing in txpkts. */ KASSERT(txpkts.npkt == 0, ("%s: txpkts not empty: %d", __func__, txpkts.npkt)); /* We're sending out individual packets now */ coalescing = 0; if (eq->avail < 8) reclaim_tx_descs(eq, 1, 8); rc = write_txpkt_wr(pi, txq, m, &sgl); if (rc != 0) { /* Short of hardware descriptors, suspend tx */ /* * This is an unlikely but expensive failure. We've * done all the hard work (DMA mappings etc.) and now we * can't send out the packet. What's worse, we have to * spend even more time freeing up everything in sgl. */ txq->no_desc++; free_pkt_sgl(txq, &sgl); m->m_nextpkt = next; break; } ETHER_BPF_MTAP(ifp, m); if (sgl.nsegs == 0) m_freem(m); doorbell: /* Fewer and fewer doorbells as the queue fills up */ if (eq->pending >= (1 << (fls(eq->qsize - eq->avail) / 2))) ring_tx_db(sc, eq); reclaim_tx_descs(eq, 16, 32); } if (txpkts.npkt > 0) write_txpkts_wr(txq, &txpkts); /* * m not NULL means there was an error but we haven't thrown it away. * This can happen when we're short of tx descriptors (no_desc) or maybe * even DMA maps (no_dmamap). Either way, a credit flush and reclaim * will get things going again. * * If eq->avail is already 0 we know a credit flush was requested in the * WR that reduced it to 0 so we don't need another flush (we don't have * any descriptor for a flush WR anyway, duh). */ if (m && eq->avail > 0) write_eqflush_wr(eq); txq->m = m; if (eq->pending) ring_tx_db(sc, eq); reclaim_tx_descs(eq, 16, eq->qsize); return (0); } void t4_update_fl_bufsize(struct ifnet *ifp) { struct port_info *pi = ifp->if_softc; struct sge_rxq *rxq; struct sge_fl *fl; int i; for_each_rxq(pi, i, rxq) { fl = &rxq->fl; FL_LOCK(fl); set_fl_tag_idx(fl, ifp->if_mtu); FL_UNLOCK(fl); } } /* * A non-NULL handler indicates this iq will not receive direct interrupts, the * handler will be invoked by a forwarded interrupt queue. */ static inline void init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx, int qsize, int esize, iq_intr_handler_t *handler, char *name) { KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS, ("%s: bad tmr_idx %d", __func__, tmr_idx)); KASSERT(pktc_idx < SGE_NCOUNTERS, /* -ve is ok, means don't use */ ("%s: bad pktc_idx %d", __func__, pktc_idx)); iq->flags = 0; iq->adapter = sc; iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx) | V_QINTR_CNT_EN(pktc_idx >= 0); iq->intr_pktc_idx = pktc_idx; iq->qsize = roundup(qsize, 16); /* See FW_IQ_CMD/iqsize */ iq->esize = max(esize, 16); /* See FW_IQ_CMD/iqesize */ iq->handler = handler; strlcpy(iq->lockname, name, sizeof(iq->lockname)); } static inline void init_fl(struct sge_fl *fl, int qsize, char *name) { fl->qsize = qsize; strlcpy(fl->lockname, name, sizeof(fl->lockname)); } static inline void init_txq(struct sge_txq *txq, int qsize, char *name) { txq->eq.qsize = qsize; strlcpy(txq->eq.lockname, name, sizeof(txq->eq.lockname)); } static int alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag, bus_dmamap_t *map, bus_addr_t *pa, void **va) { int rc; rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag); if (rc != 0) { device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc); goto done; } rc = bus_dmamem_alloc(*tag, va, BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map); if (rc != 0) { device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc); goto done; } rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0); if (rc != 0) { device_printf(sc->dev, "cannot load DMA map: %d\n", rc); goto done; } done: if (rc) free_ring(sc, *tag, *map, *pa, *va); return (rc); } static int free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map, bus_addr_t pa, void *va) { if (pa) bus_dmamap_unload(tag, map); if (va) bus_dmamem_free(tag, va, map); if (tag) bus_dma_tag_destroy(tag); return (0); } /* * Allocates the ring for an ingress queue and an optional freelist. If the * freelist is specified it will be allocated and then associated with the * ingress queue. * * Returns errno on failure. Resources allocated up to that point may still be * allocated. Caller is responsible for cleanup in case this function fails. * * If the ingress queue will take interrupts directly (iq->handler == NULL) then * the intr_idx specifies the vector, starting from 0. Otherwise it specifies * the index of the queue to which its interrupts will be forwarded. */ static int alloc_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl, int intr_idx) { int rc, i, cntxt_id; size_t len; struct fw_iq_cmd c; struct adapter *sc = iq->adapter; __be32 v = 0; /* The adapter queues are nominally allocated in port[0]'s name */ if (pi == NULL) pi = sc->port[0]; mtx_init(&iq->iq_lock, iq->lockname, NULL, MTX_DEF); len = iq->qsize * iq->esize; rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba, (void **)&iq->desc); if (rc != 0) return (rc); bzero(&c, sizeof(c)); c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) | V_FW_IQ_CMD_VFN(0)); c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART | FW_LEN16(c)); /* Special handling for firmware event queue */ if (iq == &sc->sge.fwq) v |= F_FW_IQ_CMD_IQASYNCH; if (iq->handler) { KASSERT(intr_idx < NFIQ(sc), ("%s: invalid indirect intr_idx %d", __func__, intr_idx)); v |= F_FW_IQ_CMD_IQANDST; v |= V_FW_IQ_CMD_IQANDSTINDEX(sc->sge.fiq[intr_idx].abs_id); } else { KASSERT(intr_idx < sc->intr_count, ("%s: invalid direct intr_idx %d", __func__, intr_idx)); v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx); } c.type_to_iqandstindex = htobe32(v | V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) | V_FW_IQ_CMD_VIID(pi->viid) | V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT)); c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) | F_FW_IQ_CMD_IQGTSMODE | V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) | V_FW_IQ_CMD_IQESIZE(ilog2(iq->esize) - 4)); c.iqsize = htobe16(iq->qsize); c.iqaddr = htobe64(iq->ba); if (fl) { mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF); for (i = 0; i < FL_BUF_SIZES; i++) { /* * A freelist buffer must be 16 byte aligned as the SGE * uses the low 4 bits of the bus addr to figure out the * buffer size. */ rc = bus_dma_tag_create(sc->dmat, 16, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, FL_BUF_SIZE(i), 1, FL_BUF_SIZE(i), BUS_DMA_ALLOCNOW, NULL, NULL, &fl->tag[i]); if (rc != 0) { device_printf(sc->dev, "failed to create fl DMA tag[%d]: %d\n", i, rc); return (rc); } } len = fl->qsize * RX_FL_ESIZE; rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map, &fl->ba, (void **)&fl->desc); if (rc) return (rc); /* Allocate space for one software descriptor per buffer. */ fl->cap = (fl->qsize - SPG_LEN / RX_FL_ESIZE) * 8; FL_LOCK(fl); set_fl_tag_idx(fl, pi->ifp->if_mtu); rc = alloc_fl_sdesc(fl); FL_UNLOCK(fl); if (rc != 0) { device_printf(sc->dev, "failed to setup fl software descriptors: %d\n", rc); return (rc); } fl->needed = fl->cap - 1; /* one less to avoid cidx = pidx */ c.iqns_to_fl0congen = htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE)); c.fl0dcaen_to_fl0cidxfthresh = htobe16(V_FW_IQ_CMD_FL0FBMIN(X_FETCHBURSTMIN_64B) | V_FW_IQ_CMD_FL0FBMAX(X_FETCHBURSTMAX_512B)); c.fl0size = htobe16(fl->qsize); c.fl0addr = htobe64(fl->ba); } rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); if (rc != 0) { device_printf(sc->dev, "failed to create ingress queue: %d\n", rc); return (rc); } iq->cdesc = iq->desc; iq->cidx = 0; iq->gen = 1; iq->intr_next = iq->intr_params; iq->cntxt_id = be16toh(c.iqid); iq->abs_id = be16toh(c.physiqid); iq->flags |= (IQ_ALLOCATED | IQ_STARTED); cntxt_id = iq->cntxt_id - sc->sge.iq_start; KASSERT(cntxt_id < sc->sge.niq, ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__, cntxt_id, sc->sge.niq - 1)); sc->sge.iqmap[cntxt_id] = iq; if (fl) { fl->cntxt_id = be16toh(c.fl0id); fl->pidx = fl->cidx = 0; cntxt_id = iq->cntxt_id - sc->sge.eq_start; KASSERT(cntxt_id < sc->sge.neq, ("%s: fl->cntxt_id (%d) more than the max (%d)", __func__, cntxt_id, sc->sge.neq - 1)); sc->sge.eqmap[cntxt_id] = (void *)fl; FL_LOCK(fl); refill_fl(fl, -1); if (fl->pending >= 8) ring_fl_db(sc, fl); FL_UNLOCK(fl); } /* Enable IQ interrupts */ t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_SEINTARM(iq->intr_params) | V_INGRESSQID(iq->cntxt_id)); return (0); } /* * This can be called with the iq/fl in any state - fully allocated and * functional, partially allocated, even all-zeroed out. */ static int free_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl) { int i, rc; struct adapter *sc = iq->adapter; device_t dev; if (sc == NULL) return (0); /* nothing to do */ dev = pi ? pi->dev : sc->dev; if (iq->flags & IQ_STARTED) { rc = -t4_iq_start_stop(sc, sc->mbox, 0, sc->pf, 0, iq->cntxt_id, fl ? fl->cntxt_id : 0xffff, 0xffff); if (rc != 0) { device_printf(dev, "failed to stop queue %p: %d\n", iq, rc); return (rc); } iq->flags &= ~IQ_STARTED; } if (iq->flags & IQ_ALLOCATED) { rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0, FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id, fl ? fl->cntxt_id : 0xffff, 0xffff); if (rc != 0) { device_printf(dev, "failed to free queue %p: %d\n", iq, rc); return (rc); } iq->flags &= ~IQ_ALLOCATED; } free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc); if (mtx_initialized(&iq->iq_lock)) mtx_destroy(&iq->iq_lock); bzero(iq, sizeof(*iq)); if (fl) { free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba, fl->desc); if (fl->sdesc) { FL_LOCK(fl); free_fl_sdesc(fl); FL_UNLOCK(fl); } if (mtx_initialized(&fl->fl_lock)) mtx_destroy(&fl->fl_lock); for (i = 0; i < FL_BUF_SIZES; i++) { if (fl->tag[i]) bus_dma_tag_destroy(fl->tag[i]); } bzero(fl, sizeof(*fl)); } return (0); } static int alloc_iq(struct sge_iq *iq, int intr_idx) { return alloc_iq_fl(NULL, iq, NULL, intr_idx); } static int free_iq(struct sge_iq *iq) { return free_iq_fl(NULL, iq, NULL); } static int alloc_rxq(struct port_info *pi, struct sge_rxq *rxq, int intr_idx, int idx) { int rc; struct sysctl_oid *oid; struct sysctl_oid_list *children; char name[16]; rc = alloc_iq_fl(pi, &rxq->iq, &rxq->fl, intr_idx); if (rc != 0) return (rc); #ifdef INET rc = tcp_lro_init(&rxq->lro); if (rc != 0) return (rc); rxq->lro.ifp = pi->ifp; /* also indicates LRO init'ed */ if (pi->ifp->if_capenable & IFCAP_LRO) rxq->flags |= RXQ_LRO_ENABLED; #endif rxq->port = pi; children = SYSCTL_CHILDREN(pi->oid_rxq); snprintf(name, sizeof(name), "%d", idx); oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD, NULL, "rx queue"); children = SYSCTL_CHILDREN(oid); SYSCTL_ADD_INT(&pi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD, &rxq->lro.lro_queued, 0, NULL); SYSCTL_ADD_INT(&pi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD, &rxq->lro.lro_flushed, 0, NULL); SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD, &rxq->rxcsum, "# of times hardware assisted with checksum"); SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "vlan_extraction", CTLFLAG_RD, &rxq->vlan_extraction, "# of times hardware extracted 802.1Q tag"); return (rc); } static int free_rxq(struct port_info *pi, struct sge_rxq *rxq) { int rc; #ifdef INET if (rxq->lro.ifp) { tcp_lro_free(&rxq->lro); rxq->lro.ifp = NULL; } #endif rc = free_iq_fl(pi, &rxq->iq, &rxq->fl); if (rc == 0) bzero(rxq, sizeof(*rxq)); return (rc); } static int alloc_txq(struct port_info *pi, struct sge_txq *txq, int idx) { int rc, cntxt_id; size_t len; struct adapter *sc = pi->adapter; struct fw_eq_eth_cmd c; struct sge_eq *eq = &txq->eq; char name[16]; struct sysctl_oid *oid; struct sysctl_oid_list *children; mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF); len = eq->qsize * TX_EQ_ESIZE; rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map, &eq->ba, (void **)&eq->desc); if (rc) return (rc); eq->cap = eq->qsize - SPG_LEN / TX_EQ_ESIZE; eq->spg = (void *)&eq->desc[eq->cap]; eq->avail = eq->cap - 1; /* one less to avoid cidx = pidx */ eq->sdesc = malloc(eq->cap * sizeof(struct tx_sdesc), M_CXGBE, M_ZERO | M_WAITOK); eq->br = buf_ring_alloc(eq->qsize, M_CXGBE, M_WAITOK, &eq->eq_lock); rc = bus_dma_tag_create(sc->dmat, 1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 64 * 1024, TX_SGL_SEGS, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL, NULL, &eq->tx_tag); if (rc != 0) { device_printf(sc->dev, "failed to create tx DMA tag: %d\n", rc); return (rc); } rc = alloc_eq_maps(eq); if (rc != 0) { device_printf(sc->dev, "failed to setup tx DMA maps: %d\n", rc); return (rc); } bzero(&c, sizeof(c)); c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) | V_FW_EQ_ETH_CMD_VFN(0)); c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC | F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c)); c.viid_pkd = htobe32(V_FW_EQ_ETH_CMD_VIID(pi->viid)); c.fetchszm_to_iqid = htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) | V_FW_EQ_ETH_CMD_PCIECHN(pi->tx_chan) | V_FW_EQ_ETH_CMD_IQID(sc->sge.rxq[pi->first_rxq].iq.cntxt_id)); c.dcaen_to_eqsize = htobe32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) | V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) | V_FW_EQ_ETH_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) | V_FW_EQ_ETH_CMD_EQSIZE(eq->qsize)); c.eqaddr = htobe64(eq->ba); rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); if (rc != 0) { device_printf(pi->dev, "failed to create egress queue: %d\n", rc); return (rc); } eq->pidx = eq->cidx = 0; eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd)); eq->flags |= (EQ_ALLOCATED | EQ_STARTED); cntxt_id = eq->cntxt_id - sc->sge.eq_start; KASSERT(cntxt_id < sc->sge.neq, ("%s: eq->cntxt_id (%d) more than the max (%d)", __func__, cntxt_id, sc->sge.neq - 1)); sc->sge.eqmap[cntxt_id] = eq; children = SYSCTL_CHILDREN(pi->oid_txq); snprintf(name, sizeof(name), "%d", idx); oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD, NULL, "tx queue"); children = SYSCTL_CHILDREN(oid); SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD, &txq->txcsum, "# of times hardware assisted with checksum"); SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "vlan_insertion", CTLFLAG_RD, &txq->vlan_insertion, "# of times hardware inserted 802.1Q tag"); SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD, &txq->tso_wrs, "# of IPv4 TSO work requests"); SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD, &txq->imm_wrs, "# of work requests with immediate data"); SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD, &txq->sgl_wrs, "# of work requests with direct SGL"); SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD, &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)"); SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts_wrs", CTLFLAG_RD, &txq->txpkts_wrs, "# of txpkts work requests (multiple pkts/WR)"); SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts_pkts", CTLFLAG_RD, &txq->txpkts_pkts, "# of frames tx'd using txpkts work requests"); SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "no_dmamap", CTLFLAG_RD, &txq->no_dmamap, 0, "# of times txq ran out of DMA maps"); SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "no_desc", CTLFLAG_RD, &txq->no_desc, 0, "# of times txq ran out of hardware descriptors"); SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "egr_update", CTLFLAG_RD, &txq->egr_update, 0, "egress update notifications from the SGE"); return (rc); } static int free_txq(struct port_info *pi, struct sge_txq *txq) { int rc; struct adapter *sc = pi->adapter; struct sge_eq *eq = &txq->eq; if (eq->flags & (EQ_ALLOCATED | EQ_STARTED)) { rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id); if (rc != 0) { device_printf(pi->dev, "failed to free egress queue %p: %d\n", eq, rc); return (rc); } eq->flags &= ~(EQ_ALLOCATED | EQ_STARTED); } free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc); free(eq->sdesc, M_CXGBE); if (eq->maps) free_eq_maps(eq); buf_ring_free(eq->br, M_CXGBE); if (eq->tx_tag) bus_dma_tag_destroy(eq->tx_tag); if (mtx_initialized(&eq->eq_lock)) mtx_destroy(&eq->eq_lock); bzero(txq, sizeof(*txq)); return (0); } static void oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error) { bus_addr_t *ba = arg; KASSERT(nseg == 1, ("%s meant for single segment mappings only.", __func__)); *ba = error ? 0 : segs->ds_addr; } static inline bool is_new_response(const struct sge_iq *iq, struct rsp_ctrl **ctrl) { *ctrl = (void *)((uintptr_t)iq->cdesc + (iq->esize - sizeof(struct rsp_ctrl))); return (((*ctrl)->u.type_gen >> S_RSPD_GEN) == iq->gen); } static inline void iq_next(struct sge_iq *iq) { iq->cdesc = (void *) ((uintptr_t)iq->cdesc + iq->esize); if (__predict_false(++iq->cidx == iq->qsize - 1)) { iq->cidx = 0; iq->gen ^= 1; iq->cdesc = iq->desc; } } static inline void ring_fl_db(struct adapter *sc, struct sge_fl *fl) { int ndesc = fl->pending / 8; /* Caller responsible for ensuring there's something useful to do */ KASSERT(ndesc > 0, ("%s called with no useful work to do.", __func__)); wmb(); t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL), F_DBPRIO | V_QID(fl->cntxt_id) | V_PIDX(ndesc)); fl->pending &= 7; } static void refill_fl(struct sge_fl *fl, int nbufs) { __be64 *d = &fl->desc[fl->pidx]; struct fl_sdesc *sd = &fl->sdesc[fl->pidx]; bus_dma_tag_t tag; bus_addr_t pa; caddr_t cl; int rc; FL_LOCK_ASSERT_OWNED(fl); if (nbufs < 0 || nbufs > fl->needed) nbufs = fl->needed; while (nbufs--) { if (sd->cl != NULL) { /* * This happens when a frame small enough to fit * entirely in an mbuf was received in cl last time. * We'd held on to cl and can reuse it now. Note that * we reuse a cluster of the old size if fl->tag_idx is * no longer the same as sd->tag_idx. */ KASSERT(*d == sd->ba_tag, ("%s: recyling problem at pidx %d", __func__, fl->pidx)); d++; goto recycled; } if (fl->tag_idx != sd->tag_idx) { bus_dmamap_t map; bus_dma_tag_t newtag = fl->tag[fl->tag_idx]; bus_dma_tag_t oldtag = fl->tag[sd->tag_idx]; /* * An MTU change can get us here. Discard the old map * which was created with the old tag, but only if * we're able to get a new one. */ rc = bus_dmamap_create(newtag, 0, &map); if (rc == 0) { bus_dmamap_destroy(oldtag, sd->map); sd->map = map; sd->tag_idx = fl->tag_idx; } } tag = fl->tag[sd->tag_idx]; cl = m_cljget(NULL, M_NOWAIT, FL_BUF_SIZE(sd->tag_idx)); if (cl == NULL) break; rc = bus_dmamap_load(tag, sd->map, cl, FL_BUF_SIZE(sd->tag_idx), oneseg_dma_callback, &pa, 0); if (rc != 0 || pa == 0) { fl->dmamap_failed++; uma_zfree(FL_BUF_ZONE(sd->tag_idx), cl); break; } sd->cl = cl; *d++ = htobe64(pa | sd->tag_idx); #ifdef INVARIANTS sd->ba_tag = htobe64(pa | sd->tag_idx); #endif recycled: fl->pending++; fl->needed--; sd++; if (++fl->pidx == fl->cap) { fl->pidx = 0; sd = fl->sdesc; d = fl->desc; } /* No harm if gethdr fails, we'll retry after rx */ if (sd->m == NULL) sd->m = m_gethdr(M_NOWAIT, MT_NOINIT); } } static int alloc_fl_sdesc(struct sge_fl *fl) { struct fl_sdesc *sd; bus_dma_tag_t tag; int i, rc; FL_LOCK_ASSERT_OWNED(fl); fl->sdesc = malloc(fl->cap * sizeof(struct fl_sdesc), M_CXGBE, M_ZERO | M_WAITOK); tag = fl->tag[fl->tag_idx]; sd = fl->sdesc; for (i = 0; i < fl->cap; i++, sd++) { sd->tag_idx = fl->tag_idx; rc = bus_dmamap_create(tag, 0, &sd->map); if (rc != 0) goto failed; /* Doesn't matter if this succeeds or not */ sd->m = m_gethdr(M_NOWAIT, MT_NOINIT); } return (0); failed: while (--i >= 0) { sd--; bus_dmamap_destroy(tag, sd->map); if (sd->m) { m_init(sd->m, zone_mbuf, MLEN, M_NOWAIT, MT_DATA, 0); m_free(sd->m); sd->m = NULL; } } KASSERT(sd == fl->sdesc, ("%s: EDOOFUS", __func__)); free(fl->sdesc, M_CXGBE); fl->sdesc = NULL; return (rc); } static void free_fl_sdesc(struct sge_fl *fl) { struct fl_sdesc *sd; int i; FL_LOCK_ASSERT_OWNED(fl); sd = fl->sdesc; for (i = 0; i < fl->cap; i++, sd++) { if (sd->m) { m_init(sd->m, zone_mbuf, MLEN, M_NOWAIT, MT_DATA, 0); m_free(sd->m); sd->m = NULL; } if (sd->cl) { bus_dmamap_unload(fl->tag[sd->tag_idx], sd->map); uma_zfree(FL_BUF_ZONE(sd->tag_idx), sd->cl); sd->cl = NULL; } bus_dmamap_destroy(fl->tag[sd->tag_idx], sd->map); } free(fl->sdesc, M_CXGBE); fl->sdesc = NULL; } static int alloc_eq_maps(struct sge_eq *eq) { struct tx_map *txm; int i, rc, count; /* * We can stuff ~10 frames in an 8-descriptor txpkts WR (8 is the SGE * limit for any WR). txq->no_dmamap events shouldn't occur if maps is * sized for the worst case. */ count = eq->qsize * 10 / 8; eq->map_total = eq->map_avail = count; eq->map_cidx = eq->map_pidx = 0; eq->maps = malloc(count * sizeof(struct tx_map), M_CXGBE, M_ZERO | M_WAITOK); txm = eq->maps; for (i = 0; i < count; i++, txm++) { rc = bus_dmamap_create(eq->tx_tag, 0, &txm->map); if (rc != 0) goto failed; } return (0); failed: while (--i >= 0) { txm--; bus_dmamap_destroy(eq->tx_tag, txm->map); } KASSERT(txm == eq->maps, ("%s: EDOOFUS", __func__)); free(eq->maps, M_CXGBE); eq->maps = NULL; return (rc); } static void free_eq_maps(struct sge_eq *eq) { struct tx_map *txm; int i; txm = eq->maps; for (i = 0; i < eq->map_total; i++, txm++) { if (txm->m) { bus_dmamap_unload(eq->tx_tag, txm->map); m_freem(txm->m); txm->m = NULL; } bus_dmamap_destroy(eq->tx_tag, txm->map); } free(eq->maps, M_CXGBE); eq->maps = NULL; } /* * We'll do immediate data tx for non-TSO, but only when not coalescing. We're * willing to use upto 2 hardware descriptors which means a maximum of 96 bytes * of immediate data. */ #define IMM_LEN ( \ 2 * TX_EQ_ESIZE \ - sizeof(struct fw_eth_tx_pkt_wr) \ - sizeof(struct cpl_tx_pkt_core)) /* * Returns non-zero on failure, no need to cleanup anything in that case. * * Note 1: We always try to defrag the mbuf if required and return EFBIG only * if the resulting chain still won't fit in a tx descriptor. * * Note 2: We'll pullup the mbuf chain if TSO is requested and the first mbuf * does not have the TCP header in it. */ static int get_pkt_sgl(struct sge_txq *txq, struct mbuf **fp, struct sgl *sgl, int sgl_only) { struct mbuf *m = *fp; struct sge_eq *eq = &txq->eq; struct tx_map *txm; int rc, defragged = 0, n; TXQ_LOCK_ASSERT_OWNED(txq); if (m->m_pkthdr.tso_segsz) sgl_only = 1; /* Do not allow immediate data with LSO */ start: sgl->nsegs = 0; if (m->m_pkthdr.len <= IMM_LEN && !sgl_only) return (0); /* nsegs = 0 tells caller to use imm. tx */ if (eq->map_avail == 0) { txq->no_dmamap++; return (ENOMEM); } txm = &eq->maps[eq->map_pidx]; if (m->m_pkthdr.tso_segsz && m->m_len < 50) { *fp = m_pullup(m, 50); m = *fp; if (m == NULL) return (ENOBUFS); } rc = bus_dmamap_load_mbuf_sg(eq->tx_tag, txm->map, m, sgl->seg, &sgl->nsegs, BUS_DMA_NOWAIT); if (rc == EFBIG && defragged == 0) { m = m_defrag(m, M_DONTWAIT); if (m == NULL) return (EFBIG); defragged = 1; *fp = m; goto start; } if (rc != 0) return (rc); txm->m = m; eq->map_avail--; if (++eq->map_pidx == eq->map_total) eq->map_pidx = 0; KASSERT(sgl->nsegs > 0 && sgl->nsegs <= TX_SGL_SEGS, ("%s: bad DMA mapping (%d segments)", __func__, sgl->nsegs)); /* * Store the # of flits required to hold this frame's SGL in nflits. An * SGL has a (ULPTX header + len0, addr0) tuple optionally followed by * multiple (len0 + len1, addr0, addr1) tuples. If addr1 is not used * then len1 must be set to 0. */ n = sgl->nsegs - 1; sgl->nflits = (3 * n) / 2 + (n & 1) + 2; return (0); } /* * Releases all the txq resources used up in the specified sgl. */ static int free_pkt_sgl(struct sge_txq *txq, struct sgl *sgl) { struct sge_eq *eq = &txq->eq; struct tx_map *txm; TXQ_LOCK_ASSERT_OWNED(txq); if (sgl->nsegs == 0) return (0); /* didn't use any map */ /* 1 pkt uses exactly 1 map, back it out */ eq->map_avail++; if (eq->map_pidx > 0) eq->map_pidx--; else eq->map_pidx = eq->map_total - 1; txm = &eq->maps[eq->map_pidx]; bus_dmamap_unload(eq->tx_tag, txm->map); txm->m = NULL; return (0); } static int write_txpkt_wr(struct port_info *pi, struct sge_txq *txq, struct mbuf *m, struct sgl *sgl) { struct sge_eq *eq = &txq->eq; struct fw_eth_tx_pkt_wr *wr; struct cpl_tx_pkt_core *cpl; uint32_t ctrl; /* used in many unrelated places */ uint64_t ctrl1; int nflits, ndesc; struct tx_sdesc *txsd; caddr_t dst; TXQ_LOCK_ASSERT_OWNED(txq); /* * Do we have enough flits to send this frame out? */ ctrl = sizeof(struct cpl_tx_pkt_core); if (m->m_pkthdr.tso_segsz) { nflits = TXPKT_LSO_WR_HDR; ctrl += sizeof(struct cpl_tx_pkt_lso); } else nflits = TXPKT_WR_HDR; if (sgl->nsegs > 0) nflits += sgl->nflits; else { nflits += howmany(m->m_pkthdr.len, 8); ctrl += m->m_pkthdr.len; } ndesc = howmany(nflits, 8); if (ndesc > eq->avail) return (ENOMEM); /* Firmware work request header */ wr = (void *)&eq->desc[eq->pidx]; wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) | V_FW_WR_IMMDLEN(ctrl)); ctrl = V_FW_WR_LEN16(howmany(nflits, 2)); if (eq->avail == ndesc) ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ; wr->equiq_to_len16 = htobe32(ctrl); wr->r3 = 0; if (m->m_pkthdr.tso_segsz) { struct cpl_tx_pkt_lso *lso = (void *)(wr + 1); struct ether_header *eh; struct ip *ip; struct tcphdr *tcp; ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE; eh = mtod(m, struct ether_header *); if (eh->ether_type == htons(ETHERTYPE_VLAN)) { ctrl |= V_LSO_ETHHDR_LEN(1); ip = (void *)((struct ether_vlan_header *)eh + 1); } else ip = (void *)(eh + 1); tcp = (void *)((uintptr_t)ip + ip->ip_hl * 4); ctrl |= V_LSO_IPHDR_LEN(ip->ip_hl) | V_LSO_TCPHDR_LEN(tcp->th_off); lso->lso_ctrl = htobe32(ctrl); lso->ipid_ofst = htobe16(0); lso->mss = htobe16(m->m_pkthdr.tso_segsz); lso->seqno_offset = htobe32(0); lso->len = htobe32(m->m_pkthdr.len); cpl = (void *)(lso + 1); txq->tso_wrs++; } else cpl = (void *)(wr + 1); /* Checksum offload */ ctrl1 = 0; if (!(m->m_pkthdr.csum_flags & CSUM_IP)) ctrl1 |= F_TXPKT_IPCSUM_DIS; if (!(m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))) ctrl1 |= F_TXPKT_L4CSUM_DIS; if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP)) txq->txcsum++; /* some hardware assistance provided */ /* VLAN tag insertion */ if (m->m_flags & M_VLANTAG) { ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->m_pkthdr.ether_vtag); txq->vlan_insertion++; } /* CPL header */ cpl->ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) | V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf)); cpl->pack = 0; cpl->len = htobe16(m->m_pkthdr.len); cpl->ctrl1 = htobe64(ctrl1); /* Software descriptor */ txsd = &eq->sdesc[eq->pidx]; txsd->desc_used = ndesc; eq->pending += ndesc; eq->avail -= ndesc; eq->pidx += ndesc; if (eq->pidx >= eq->cap) eq->pidx -= eq->cap; /* SGL */ dst = (void *)(cpl + 1); if (sgl->nsegs > 0) { txsd->map_used = 1; txq->sgl_wrs++; write_sgl_to_txd(eq, sgl, &dst); } else { txsd->map_used = 0; txq->imm_wrs++; for (; m; m = m->m_next) { copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len); } } txq->txpkt_wrs++; return (0); } /* * Returns 0 to indicate that m has been accepted into a coalesced tx work * request. It has either been folded into txpkts or txpkts was flushed and m * has started a new coalesced work request (as the first frame in a fresh * txpkts). * * Returns non-zero to indicate a failure - caller is responsible for * transmitting m, if there was anything in txpkts it has been flushed. */ static int add_to_txpkts(struct port_info *pi, struct sge_txq *txq, struct txpkts *txpkts, struct mbuf *m, struct sgl *sgl) { struct sge_eq *eq = &txq->eq; int can_coalesce; struct tx_sdesc *txsd; int flits; TXQ_LOCK_ASSERT_OWNED(txq); if (txpkts->npkt > 0) { flits = TXPKTS_PKT_HDR + sgl->nflits; can_coalesce = m->m_pkthdr.tso_segsz == 0 && txpkts->nflits + flits <= TX_WR_FLITS && txpkts->nflits + flits <= eq->avail * 8 && txpkts->plen + m->m_pkthdr.len < 65536; if (can_coalesce) { txpkts->npkt++; txpkts->nflits += flits; txpkts->plen += m->m_pkthdr.len; txsd = &eq->sdesc[eq->pidx]; txsd->map_used++; return (0); } /* * Couldn't coalesce m into txpkts. The first order of business * is to send txpkts on its way. Then we'll revisit m. */ write_txpkts_wr(txq, txpkts); } /* * Check if we can start a new coalesced tx work request with m as * the first packet in it. */ KASSERT(txpkts->npkt == 0, ("%s: txpkts not empty", __func__)); flits = TXPKTS_WR_HDR + sgl->nflits; can_coalesce = m->m_pkthdr.tso_segsz == 0 && flits <= eq->avail * 8 && flits <= TX_WR_FLITS; if (can_coalesce == 0) return (EINVAL); /* * Start a fresh coalesced tx WR with m as the first frame in it. */ txpkts->npkt = 1; txpkts->nflits = flits; txpkts->flitp = &eq->desc[eq->pidx].flit[2]; txpkts->plen = m->m_pkthdr.len; txsd = &eq->sdesc[eq->pidx]; txsd->map_used = 1; return (0); } /* * Note that write_txpkts_wr can never run out of hardware descriptors (but * write_txpkt_wr can). add_to_txpkts ensures that a frame is accepted for * coalescing only if sufficient hardware descriptors are available. */ static void write_txpkts_wr(struct sge_txq *txq, struct txpkts *txpkts) { struct sge_eq *eq = &txq->eq; struct fw_eth_tx_pkts_wr *wr; struct tx_sdesc *txsd; uint32_t ctrl; int ndesc; TXQ_LOCK_ASSERT_OWNED(txq); ndesc = howmany(txpkts->nflits, 8); wr = (void *)&eq->desc[eq->pidx]; wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR) | V_FW_WR_IMMDLEN(0)); /* immdlen does not matter in this WR */ ctrl = V_FW_WR_LEN16(howmany(txpkts->nflits, 2)); if (eq->avail == ndesc) ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ; wr->equiq_to_len16 = htobe32(ctrl); wr->plen = htobe16(txpkts->plen); wr->npkt = txpkts->npkt; wr->r3 = wr->r4 = 0; /* Everything else already written */ txsd = &eq->sdesc[eq->pidx]; txsd->desc_used = ndesc; KASSERT(eq->avail >= ndesc, ("%s: out ouf descriptors", __func__)); eq->pending += ndesc; eq->avail -= ndesc; eq->pidx += ndesc; if (eq->pidx >= eq->cap) eq->pidx -= eq->cap; txq->txpkts_pkts += txpkts->npkt; txq->txpkts_wrs++; txpkts->npkt = 0; /* emptied */ } static inline void write_ulp_cpl_sgl(struct port_info *pi, struct sge_txq *txq, struct txpkts *txpkts, struct mbuf *m, struct sgl *sgl) { struct ulp_txpkt *ulpmc; struct ulptx_idata *ulpsc; struct cpl_tx_pkt_core *cpl; struct sge_eq *eq = &txq->eq; uintptr_t flitp, start, end; uint64_t ctrl; caddr_t dst; KASSERT(txpkts->npkt > 0, ("%s: txpkts is empty", __func__)); start = (uintptr_t)eq->desc; end = (uintptr_t)eq->spg; /* Checksum offload */ ctrl = 0; if (!(m->m_pkthdr.csum_flags & CSUM_IP)) ctrl |= F_TXPKT_IPCSUM_DIS; if (!(m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))) ctrl |= F_TXPKT_L4CSUM_DIS; if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP)) txq->txcsum++; /* some hardware assistance provided */ /* VLAN tag insertion */ if (m->m_flags & M_VLANTAG) { ctrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->m_pkthdr.ether_vtag); txq->vlan_insertion++; } /* * The previous packet's SGL must have ended at a 16 byte boundary (this * is required by the firmware/hardware). It follows that flitp cannot * wrap around between the ULPTX master command and ULPTX subcommand (8 * bytes each), and that it can not wrap around in the middle of the * cpl_tx_pkt_core either. */ flitp = (uintptr_t)txpkts->flitp; KASSERT((flitp & 0xf) == 0, ("%s: last SGL did not end at 16 byte boundary: %p", __func__, txpkts->flitp)); /* ULP master command */ ulpmc = (void *)flitp; ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0)); ulpmc->len = htonl(howmany(sizeof(*ulpmc) + sizeof(*ulpsc) + sizeof(*cpl) + 8 * sgl->nflits, 16)); /* ULP subcommand */ ulpsc = (void *)(ulpmc + 1); ulpsc->cmd_more = htobe32(V_ULPTX_CMD((u32)ULP_TX_SC_IMM) | F_ULP_TX_SC_MORE); ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core)); flitp += sizeof(*ulpmc) + sizeof(*ulpsc); if (flitp == end) flitp = start; /* CPL_TX_PKT */ cpl = (void *)flitp; cpl->ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) | V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf)); cpl->pack = 0; cpl->len = htobe16(m->m_pkthdr.len); cpl->ctrl1 = htobe64(ctrl); flitp += sizeof(*cpl); if (flitp == end) flitp = start; /* SGL for this frame */ dst = (caddr_t)flitp; txpkts->nflits += write_sgl_to_txd(eq, sgl, &dst); txpkts->flitp = (void *)dst; KASSERT(((uintptr_t)dst & 0xf) == 0, ("%s: SGL ends at %p (not a 16 byte boundary)", __func__, dst)); } /* * If the SGL ends on an address that is not 16 byte aligned, this function will * add a 0 filled flit at the end. It returns 1 in that case. */ static int write_sgl_to_txd(struct sge_eq *eq, struct sgl *sgl, caddr_t *to) { __be64 *flitp, *end; struct ulptx_sgl *usgl; bus_dma_segment_t *seg; int i, padded; KASSERT(sgl->nsegs > 0 && sgl->nflits > 0, ("%s: bad SGL - nsegs=%d, nflits=%d", __func__, sgl->nsegs, sgl->nflits)); KASSERT(((uintptr_t)(*to) & 0xf) == 0, ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to)); flitp = (__be64 *)(*to); end = flitp + sgl->nflits; seg = &sgl->seg[0]; usgl = (void *)flitp; /* * We start at a 16 byte boundary somewhere inside the tx descriptor * ring, so we're at least 16 bytes away from the status page. There is * no chance of a wrap around in the middle of usgl (which is 16 bytes). */ usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) | V_ULPTX_NSGE(sgl->nsegs)); usgl->len0 = htobe32(seg->ds_len); usgl->addr0 = htobe64(seg->ds_addr); seg++; if ((uintptr_t)end <= (uintptr_t)eq->spg) { /* Won't wrap around at all */ for (i = 0; i < sgl->nsegs - 1; i++, seg++) { usgl->sge[i / 2].len[i & 1] = htobe32(seg->ds_len); usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ds_addr); } if (i & 1) usgl->sge[i / 2].len[1] = htobe32(0); } else { /* Will wrap somewhere in the rest of the SGL */ /* 2 flits already written, write the rest flit by flit */ flitp = (void *)(usgl + 1); for (i = 0; i < sgl->nflits - 2; i++) { if ((uintptr_t)flitp == (uintptr_t)eq->spg) flitp = (void *)eq->desc; *flitp++ = get_flit(seg, sgl->nsegs - 1, i); } end = flitp; } if ((uintptr_t)end & 0xf) { *(uint64_t *)end = 0; end++; padded = 1; } else padded = 0; if ((uintptr_t)end == (uintptr_t)eq->spg) *to = (void *)eq->desc; else *to = (void *)end; return (padded); } static inline void copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len) { if ((uintptr_t)(*to) + len <= (uintptr_t)eq->spg) { bcopy(from, *to, len); (*to) += len; } else { int portion = (uintptr_t)eq->spg - (uintptr_t)(*to); bcopy(from, *to, portion); from += portion; portion = len - portion; /* remaining */ bcopy(from, (void *)eq->desc, portion); (*to) = (caddr_t)eq->desc + portion; } } static inline void ring_tx_db(struct adapter *sc, struct sge_eq *eq) { wmb(); t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL), V_QID(eq->cntxt_id) | V_PIDX(eq->pending)); eq->pending = 0; } static int reclaim_tx_descs(struct sge_eq *eq, int atleast, int howmany) { struct tx_sdesc *txsd; struct tx_map *txm, *next_txm; unsigned int cidx, can_reclaim, reclaimed, maps, next_map_cidx; EQ_LOCK_ASSERT_OWNED(eq); cidx = eq->spg->cidx; /* stable snapshot */ cidx = be16_to_cpu(cidx); if (cidx >= eq->cidx) can_reclaim = cidx - eq->cidx; else can_reclaim = cidx + eq->cap - eq->cidx; if (can_reclaim < atleast) return (0); next_map_cidx = eq->map_cidx; next_txm = txm = &eq->maps[next_map_cidx]; prefetch(txm); maps = reclaimed = 0; do { int ndesc; txsd = &eq->sdesc[eq->cidx]; ndesc = txsd->desc_used; /* Firmware doesn't return "partial" credits. */ KASSERT(can_reclaim >= ndesc, ("%s: unexpected number of credits: %d, %d", __func__, can_reclaim, ndesc)); maps += txsd->map_used; reclaimed += ndesc; eq->cidx += ndesc; if (eq->cidx >= eq->cap) eq->cidx -= eq->cap; can_reclaim -= ndesc; } while (can_reclaim && reclaimed < howmany); eq->avail += reclaimed; KASSERT(eq->avail < eq->cap, /* avail tops out at (cap - 1) */ ("%s: too many descriptors available", __func__)); eq->map_avail += maps; KASSERT(eq->map_avail <= eq->map_total, ("%s: too many maps available", __func__)); prefetch(txm->m); while (maps--) { next_txm++; if (++next_map_cidx == eq->map_total) { next_map_cidx = 0; next_txm = eq->maps; } prefetch(next_txm->m); bus_dmamap_unload(eq->tx_tag, txm->map); m_freem(txm->m); txm->m = NULL; txm = next_txm; } eq->map_cidx = next_map_cidx; return (reclaimed); } static void write_eqflush_wr(struct sge_eq *eq) { struct fw_eq_flush_wr *wr; struct tx_sdesc *txsd; EQ_LOCK_ASSERT_OWNED(eq); KASSERT(eq->avail > 0, ("%s: no descriptors left.", __func__)); wr = (void *)&eq->desc[eq->pidx]; bzero(wr, sizeof(*wr)); wr->opcode = FW_EQ_FLUSH_WR; wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(sizeof(*wr) / 16) | F_FW_WR_EQUEQ | F_FW_WR_EQUIQ); txsd = &eq->sdesc[eq->pidx]; txsd->desc_used = 1; txsd->map_used = 0; eq->pending++; eq->avail--; if (++eq->pidx == eq->cap) eq->pidx = 0; } static __be64 get_flit(bus_dma_segment_t *sgl, int nsegs, int idx) { int i = (idx / 3) * 2; switch (idx % 3) { case 0: { __be64 rc; rc = htobe32(sgl[i].ds_len); if (i + 1 < nsegs) rc |= (uint64_t)htobe32(sgl[i + 1].ds_len) << 32; return (rc); } case 1: return htobe64(sgl[i].ds_addr); case 2: return htobe64(sgl[i + 1].ds_addr); } return (0); } static struct mbuf * get_fl_sdesc_data(struct sge_fl *fl, int len, int flags) { struct fl_sdesc *sd; struct mbuf *m; sd = &fl->sdesc[fl->cidx]; FL_LOCK(fl); if (++fl->cidx == fl->cap) fl->cidx = 0; fl->needed++; FL_UNLOCK(fl); m = sd->m; if (m == NULL) { m = m_gethdr(M_NOWAIT, MT_NOINIT); if (m == NULL) return (NULL); } sd->m = NULL; /* consumed */ bus_dmamap_sync(fl->tag[sd->tag_idx], sd->map, BUS_DMASYNC_POSTREAD); m_init(m, zone_mbuf, MLEN, M_NOWAIT, MT_DATA, flags); if ((flags && len < MINCLSIZE) || (!flags && len <= MLEN)) bcopy(sd->cl, mtod(m, caddr_t), len); else { bus_dmamap_unload(fl->tag[sd->tag_idx], sd->map); m_cljset(m, sd->cl, FL_BUF_TYPE(sd->tag_idx)); sd->cl = NULL; /* consumed */ } m->m_len = min(len, FL_BUF_SIZE(sd->tag_idx)); return (m); } static void set_fl_tag_idx(struct sge_fl *fl, int mtu) { int i; FL_LOCK_ASSERT_OWNED(fl); for (i = 0; i < FL_BUF_SIZES - 1; i++) { if (FL_BUF_SIZE(i) >= (mtu + FL_PKTSHIFT)) break; } fl->tag_idx = i; }