/* $FreeBSD$ */ /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */ /*- * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * This code is referd to RFC 2367 */ #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ipsec.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #include #include #include #endif /* INET6 */ #if defined(INET) || defined(INET6) #include #endif #ifdef INET6 #include #endif /* INET6 */ #include #include #include #include #include #include #ifdef INET6 #include #endif #include #include /* randomness */ #include #define FULLMASK 0xff #define _BITS(bytes) ((bytes) << 3) /* * Note on SA reference counting: * - SAs that are not in DEAD state will have (total external reference + 1) * following value in reference count field. they cannot be freed and are * referenced from SA header. * - SAs that are in DEAD state will have (total external reference) * in reference count field. they are ready to be freed. reference from * SA header will be removed in key_delsav(), when the reference count * field hits 0 (= no external reference other than from SA header. */ VNET_DEFINE(u_int32_t, key_debug_level) = 0; static VNET_DEFINE(u_int, key_spi_trycnt) = 1000; static VNET_DEFINE(u_int32_t, key_spi_minval) = 0x100; static VNET_DEFINE(u_int32_t, key_spi_maxval) = 0x0fffffff; /* XXX */ static VNET_DEFINE(u_int32_t, policy_id) = 0; /*interval to initialize randseed,1(m)*/ static VNET_DEFINE(u_int, key_int_random) = 60; /* interval to expire acquiring, 30(s)*/ static VNET_DEFINE(u_int, key_larval_lifetime) = 30; /* counter for blocking SADB_ACQUIRE.*/ static VNET_DEFINE(int, key_blockacq_count) = 10; /* lifetime for blocking SADB_ACQUIRE.*/ static VNET_DEFINE(int, key_blockacq_lifetime) = 20; /* preferred old sa rather than new sa.*/ static VNET_DEFINE(int, key_preferred_oldsa) = 1; #define V_key_spi_trycnt VNET(key_spi_trycnt) #define V_key_spi_minval VNET(key_spi_minval) #define V_key_spi_maxval VNET(key_spi_maxval) #define V_policy_id VNET(policy_id) #define V_key_int_random VNET(key_int_random) #define V_key_larval_lifetime VNET(key_larval_lifetime) #define V_key_blockacq_count VNET(key_blockacq_count) #define V_key_blockacq_lifetime VNET(key_blockacq_lifetime) #define V_key_preferred_oldsa VNET(key_preferred_oldsa) static VNET_DEFINE(u_int32_t, acq_seq) = 0; #define V_acq_seq VNET(acq_seq) /* SPD */ static VNET_DEFINE(LIST_HEAD(_sptree, secpolicy), sptree[IPSEC_DIR_MAX]); #define V_sptree VNET(sptree) static struct mtx sptree_lock; #define SPTREE_LOCK_INIT() \ mtx_init(&sptree_lock, "sptree", \ "fast ipsec security policy database", MTX_DEF) #define SPTREE_LOCK_DESTROY() mtx_destroy(&sptree_lock) #define SPTREE_LOCK() mtx_lock(&sptree_lock) #define SPTREE_UNLOCK() mtx_unlock(&sptree_lock) #define SPTREE_LOCK_ASSERT() mtx_assert(&sptree_lock, MA_OWNED) static VNET_DEFINE(LIST_HEAD(_sahtree, secashead), sahtree); /* SAD */ #define V_sahtree VNET(sahtree) static struct mtx sahtree_lock; #define SAHTREE_LOCK_INIT() \ mtx_init(&sahtree_lock, "sahtree", \ "fast ipsec security association database", MTX_DEF) #define SAHTREE_LOCK_DESTROY() mtx_destroy(&sahtree_lock) #define SAHTREE_LOCK() mtx_lock(&sahtree_lock) #define SAHTREE_UNLOCK() mtx_unlock(&sahtree_lock) #define SAHTREE_LOCK_ASSERT() mtx_assert(&sahtree_lock, MA_OWNED) /* registed list */ static VNET_DEFINE(LIST_HEAD(_regtree, secreg), regtree[SADB_SATYPE_MAX + 1]); #define V_regtree VNET(regtree) static struct mtx regtree_lock; #define REGTREE_LOCK_INIT() \ mtx_init(®tree_lock, "regtree", "fast ipsec regtree", MTX_DEF) #define REGTREE_LOCK_DESTROY() mtx_destroy(®tree_lock) #define REGTREE_LOCK() mtx_lock(®tree_lock) #define REGTREE_UNLOCK() mtx_unlock(®tree_lock) #define REGTREE_LOCK_ASSERT() mtx_assert(®tree_lock, MA_OWNED) static VNET_DEFINE(LIST_HEAD(_acqtree, secacq), acqtree); /* acquiring list */ #define V_acqtree VNET(acqtree) static struct mtx acq_lock; #define ACQ_LOCK_INIT() \ mtx_init(&acq_lock, "acqtree", "fast ipsec acquire list", MTX_DEF) #define ACQ_LOCK_DESTROY() mtx_destroy(&acq_lock) #define ACQ_LOCK() mtx_lock(&acq_lock) #define ACQ_UNLOCK() mtx_unlock(&acq_lock) #define ACQ_LOCK_ASSERT() mtx_assert(&acq_lock, MA_OWNED) /* SP acquiring list */ static VNET_DEFINE(LIST_HEAD(_spacqtree, secspacq), spacqtree); #define V_spacqtree VNET(spacqtree) static struct mtx spacq_lock; #define SPACQ_LOCK_INIT() \ mtx_init(&spacq_lock, "spacqtree", \ "fast ipsec security policy acquire list", MTX_DEF) #define SPACQ_LOCK_DESTROY() mtx_destroy(&spacq_lock) #define SPACQ_LOCK() mtx_lock(&spacq_lock) #define SPACQ_UNLOCK() mtx_unlock(&spacq_lock) #define SPACQ_LOCK_ASSERT() mtx_assert(&spacq_lock, MA_OWNED) /* search order for SAs */ static const u_int saorder_state_valid_prefer_old[] = { SADB_SASTATE_DYING, SADB_SASTATE_MATURE, }; static const u_int saorder_state_valid_prefer_new[] = { SADB_SASTATE_MATURE, SADB_SASTATE_DYING, }; static const u_int saorder_state_alive[] = { /* except DEAD */ SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL }; static const u_int saorder_state_any[] = { SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD }; static const int minsize[] = { sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ sizeof(struct sadb_sa), /* SADB_EXT_SA */ sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */ sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */ sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */ sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */ sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */ sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */ sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */ sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */ sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */ sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */ sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */ sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 0, /* SADB_X_EXT_KMPRIVATE */ sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */ sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */ sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */ sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */ sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */ sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */ sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */ }; static const int maxsize[] = { sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ sizeof(struct sadb_sa), /* SADB_EXT_SA */ sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 0, /* SADB_EXT_ADDRESS_SRC */ 0, /* SADB_EXT_ADDRESS_DST */ 0, /* SADB_EXT_ADDRESS_PROXY */ 0, /* SADB_EXT_KEY_AUTH */ 0, /* SADB_EXT_KEY_ENCRYPT */ 0, /* SADB_EXT_IDENTITY_SRC */ 0, /* SADB_EXT_IDENTITY_DST */ 0, /* SADB_EXT_SENSITIVITY */ 0, /* SADB_EXT_PROPOSAL */ 0, /* SADB_EXT_SUPPORTED_AUTH */ 0, /* SADB_EXT_SUPPORTED_ENCRYPT */ sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 0, /* SADB_X_EXT_KMPRIVATE */ 0, /* SADB_X_EXT_POLICY */ sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */ sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */ sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */ 0, /* SADB_X_EXT_NAT_T_OAI */ 0, /* SADB_X_EXT_NAT_T_OAR */ sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */ }; static VNET_DEFINE(int, ipsec_esp_keymin) = 256; static VNET_DEFINE(int, ipsec_esp_auth) = 0; static VNET_DEFINE(int, ipsec_ah_keymin) = 128; #define V_ipsec_esp_keymin VNET(ipsec_esp_keymin) #define V_ipsec_esp_auth VNET(ipsec_esp_auth) #define V_ipsec_ah_keymin VNET(ipsec_ah_keymin) #ifdef SYSCTL_DECL SYSCTL_DECL(_net_key); #endif SYSCTL_VNET_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, &VNET_NAME(key_debug_level), 0, ""); /* max count of trial for the decision of spi value */ SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, &VNET_NAME(key_spi_trycnt), 0, ""); /* minimum spi value to allocate automatically. */ SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, &VNET_NAME(key_spi_minval), 0, ""); /* maximun spi value to allocate automatically. */ SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, &VNET_NAME(key_spi_maxval), 0, ""); /* interval to initialize randseed */ SYSCTL_VNET_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, &VNET_NAME(key_int_random), 0, ""); /* lifetime for larval SA */ SYSCTL_VNET_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, &VNET_NAME(key_larval_lifetime), 0, ""); /* counter for blocking to send SADB_ACQUIRE to IKEd */ SYSCTL_VNET_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, &VNET_NAME(key_blockacq_count), 0, ""); /* lifetime for blocking to send SADB_ACQUIRE to IKEd */ SYSCTL_VNET_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, &VNET_NAME(key_blockacq_lifetime), 0, ""); /* ESP auth */ SYSCTL_VNET_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, &VNET_NAME(ipsec_esp_auth), 0, ""); /* minimum ESP key length */ SYSCTL_VNET_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, &VNET_NAME(ipsec_esp_keymin), 0, ""); /* minimum AH key length */ SYSCTL_VNET_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, &VNET_NAME(ipsec_ah_keymin), 0, ""); /* perfered old SA rather than new SA */ SYSCTL_VNET_INT(_net_key, KEYCTL_PREFERED_OLDSA, preferred_oldsa, CTLFLAG_RW, &VNET_NAME(key_preferred_oldsa), 0, ""); #define __LIST_CHAINED(elm) \ (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL)) #define LIST_INSERT_TAIL(head, elm, type, field) \ do {\ struct type *curelm = LIST_FIRST(head); \ if (curelm == NULL) {\ LIST_INSERT_HEAD(head, elm, field); \ } else { \ while (LIST_NEXT(curelm, field)) \ curelm = LIST_NEXT(curelm, field);\ LIST_INSERT_AFTER(curelm, elm, field);\ }\ } while (0) #define KEY_CHKSASTATE(head, sav, name) \ do { \ if ((head) != (sav)) { \ ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \ (name), (head), (sav))); \ continue; \ } \ } while (0) #define KEY_CHKSPDIR(head, sp, name) \ do { \ if ((head) != (sp)) { \ ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \ "anyway continue.\n", \ (name), (head), (sp))); \ } \ } while (0) MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association"); MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head"); MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy"); MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request"); MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous"); MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire"); MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire"); /* * set parameters into secpolicyindex buffer. * Must allocate secpolicyindex buffer passed to this function. */ #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \ do { \ bzero((idx), sizeof(struct secpolicyindex)); \ (idx)->dir = (_dir); \ (idx)->prefs = (ps); \ (idx)->prefd = (pd); \ (idx)->ul_proto = (ulp); \ bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ } while (0) /* * set parameters into secasindex buffer. * Must allocate secasindex buffer before calling this function. */ #define KEY_SETSECASIDX(p, m, r, s, d, idx) \ do { \ bzero((idx), sizeof(struct secasindex)); \ (idx)->proto = (p); \ (idx)->mode = (m); \ (idx)->reqid = (r); \ bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ } while (0) /* key statistics */ struct _keystat { u_long getspi_count; /* the avarage of count to try to get new SPI */ } keystat; struct sadb_msghdr { struct sadb_msg *msg; struct sadb_ext *ext[SADB_EXT_MAX + 1]; int extoff[SADB_EXT_MAX + 1]; int extlen[SADB_EXT_MAX + 1]; }; static struct secasvar *key_allocsa_policy __P((const struct secasindex *)); static void key_freesp_so __P((struct secpolicy **)); static struct secasvar *key_do_allocsa_policy __P((struct secashead *, u_int)); static void key_delsp __P((struct secpolicy *)); static struct secpolicy *key_getsp __P((struct secpolicyindex *)); static void _key_delsp(struct secpolicy *sp); static struct secpolicy *key_getspbyid __P((u_int32_t)); static u_int32_t key_newreqid __P((void)); static struct mbuf *key_gather_mbuf __P((struct mbuf *, const struct sadb_msghdr *, int, int, ...)); static int key_spdadd __P((struct socket *, struct mbuf *, const struct sadb_msghdr *)); static u_int32_t key_getnewspid __P((void)); static int key_spddelete __P((struct socket *, struct mbuf *, const struct sadb_msghdr *)); static int key_spddelete2 __P((struct socket *, struct mbuf *, const struct sadb_msghdr *)); static int key_spdget __P((struct socket *, struct mbuf *, const struct sadb_msghdr *)); static int key_spdflush __P((struct socket *, struct mbuf *, const struct sadb_msghdr *)); static int key_spddump __P((struct socket *, struct mbuf *, const struct sadb_msghdr *)); static struct mbuf *key_setdumpsp __P((struct secpolicy *, u_int8_t, u_int32_t, u_int32_t)); static u_int key_getspreqmsglen __P((struct secpolicy *)); static int key_spdexpire __P((struct secpolicy *)); static struct secashead *key_newsah __P((struct secasindex *)); static void key_delsah __P((struct secashead *)); static struct secasvar *key_newsav __P((struct mbuf *, const struct sadb_msghdr *, struct secashead *, int *, const char*, int)); #define KEY_NEWSAV(m, sadb, sah, e) \ key_newsav(m, sadb, sah, e, __FILE__, __LINE__) static void key_delsav __P((struct secasvar *)); static struct secashead *key_getsah __P((struct secasindex *)); static struct secasvar *key_checkspidup __P((struct secasindex *, u_int32_t)); static struct secasvar *key_getsavbyspi __P((struct secashead *, u_int32_t)); static int key_setsaval __P((struct secasvar *, struct mbuf *, const struct sadb_msghdr *)); static int key_mature __P((struct secasvar *)); static struct mbuf *key_setdumpsa __P((struct secasvar *, u_int8_t, u_int8_t, u_int32_t, u_int32_t)); static struct mbuf *key_setsadbmsg __P((u_int8_t, u_int16_t, u_int8_t, u_int32_t, pid_t, u_int16_t)); static struct mbuf *key_setsadbsa __P((struct secasvar *)); static struct mbuf *key_setsadbaddr __P((u_int16_t, const struct sockaddr *, u_int8_t, u_int16_t)); #ifdef IPSEC_NAT_T static struct mbuf *key_setsadbxport(u_int16_t, u_int16_t); static struct mbuf *key_setsadbxtype(u_int16_t); #endif static void key_porttosaddr(struct sockaddr *, u_int16_t); #define KEY_PORTTOSADDR(saddr, port) \ key_porttosaddr((struct sockaddr *)(saddr), (port)) static struct mbuf *key_setsadbxsa2 __P((u_int8_t, u_int32_t, u_int32_t)); static struct mbuf *key_setsadbxpolicy __P((u_int16_t, u_int8_t, u_int32_t)); static struct seckey *key_dup_keymsg(const struct sadb_key *, u_int, struct malloc_type *); static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src, struct malloc_type *type); #ifdef INET6 static int key_ismyaddr6 __P((struct sockaddr_in6 *)); #endif /* flags for key_cmpsaidx() */ #define CMP_HEAD 1 /* protocol, addresses. */ #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */ #define CMP_REQID 3 /* additionally HEAD, reaid. */ #define CMP_EXACTLY 4 /* all elements. */ static int key_cmpsaidx __P((const struct secasindex *, const struct secasindex *, int)); static int key_cmpspidx_exactly __P((struct secpolicyindex *, struct secpolicyindex *)); static int key_cmpspidx_withmask __P((struct secpolicyindex *, struct secpolicyindex *)); static int key_sockaddrcmp __P((const struct sockaddr *, const struct sockaddr *, int)); static int key_bbcmp __P((const void *, const void *, u_int)); static u_int16_t key_satype2proto __P((u_int8_t)); static u_int8_t key_proto2satype __P((u_int16_t)); static int key_getspi __P((struct socket *, struct mbuf *, const struct sadb_msghdr *)); static u_int32_t key_do_getnewspi __P((struct sadb_spirange *, struct secasindex *)); static int key_update __P((struct socket *, struct mbuf *, const struct sadb_msghdr *)); #ifdef IPSEC_DOSEQCHECK static struct secasvar *key_getsavbyseq __P((struct secashead *, u_int32_t)); #endif static int key_add __P((struct socket *, struct mbuf *, const struct sadb_msghdr *)); static int key_setident __P((struct secashead *, struct mbuf *, const struct sadb_msghdr *)); static struct mbuf *key_getmsgbuf_x1 __P((struct mbuf *, const struct sadb_msghdr *)); static int key_delete __P((struct socket *, struct mbuf *, const struct sadb_msghdr *)); static int key_get __P((struct socket *, struct mbuf *, const struct sadb_msghdr *)); static void key_getcomb_setlifetime __P((struct sadb_comb *)); static struct mbuf *key_getcomb_esp __P((void)); static struct mbuf *key_getcomb_ah __P((void)); static struct mbuf *key_getcomb_ipcomp __P((void)); static struct mbuf *key_getprop __P((const struct secasindex *)); static int key_acquire __P((const struct secasindex *, struct secpolicy *)); static struct secacq *key_newacq __P((const struct secasindex *)); static struct secacq *key_getacq __P((const struct secasindex *)); static struct secacq *key_getacqbyseq __P((u_int32_t)); static struct secspacq *key_newspacq __P((struct secpolicyindex *)); static struct secspacq *key_getspacq __P((struct secpolicyindex *)); static int key_acquire2 __P((struct socket *, struct mbuf *, const struct sadb_msghdr *)); static int key_register __P((struct socket *, struct mbuf *, const struct sadb_msghdr *)); static int key_expire __P((struct secasvar *)); static int key_flush __P((struct socket *, struct mbuf *, const struct sadb_msghdr *)); static int key_dump __P((struct socket *, struct mbuf *, const struct sadb_msghdr *)); static int key_promisc __P((struct socket *, struct mbuf *, const struct sadb_msghdr *)); static int key_senderror __P((struct socket *, struct mbuf *, int)); static int key_validate_ext __P((const struct sadb_ext *, int)); static int key_align __P((struct mbuf *, struct sadb_msghdr *)); static struct mbuf *key_setlifetime(struct seclifetime *src, u_int16_t exttype); static struct mbuf *key_setkey(struct seckey *src, u_int16_t exttype); #if 0 static const char *key_getfqdn __P((void)); static const char *key_getuserfqdn __P((void)); #endif static void key_sa_chgstate __P((struct secasvar *, u_int8_t)); static struct mbuf *key_alloc_mbuf __P((int)); static __inline void sa_initref(struct secasvar *sav) { refcount_init(&sav->refcnt, 1); } static __inline void sa_addref(struct secasvar *sav) { refcount_acquire(&sav->refcnt); IPSEC_ASSERT(sav->refcnt != 0, ("SA refcnt overflow")); } static __inline int sa_delref(struct secasvar *sav) { IPSEC_ASSERT(sav->refcnt > 0, ("SA refcnt underflow")); return (refcount_release(&sav->refcnt)); } #define SP_ADDREF(p) do { \ (p)->refcnt++; \ IPSEC_ASSERT((p)->refcnt != 0, ("SP refcnt overflow")); \ } while (0) #define SP_DELREF(p) do { \ IPSEC_ASSERT((p)->refcnt > 0, ("SP refcnt underflow")); \ (p)->refcnt--; \ } while (0) /* * Update the refcnt while holding the SPTREE lock. */ void key_addref(struct secpolicy *sp) { SPTREE_LOCK(); SP_ADDREF(sp); SPTREE_UNLOCK(); } /* * Return 0 when there are known to be no SP's for the specified * direction. Otherwise return 1. This is used by IPsec code * to optimize performance. */ int key_havesp(u_int dir) { return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ? LIST_FIRST(&V_sptree[dir]) != NULL : 1); } /* %%% IPsec policy management */ /* * allocating a SP for OUTBOUND or INBOUND packet. * Must call key_freesp() later. * OUT: NULL: not found * others: found and return the pointer. */ struct secpolicy * key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where, int tag) { struct secpolicy *sp; IPSEC_ASSERT(spidx != NULL, ("null spidx")); IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, ("invalid direction %u", dir)); KEYDEBUG(KEYDEBUG_IPSEC_STAMP, printf("DP %s from %s:%u\n", __func__, where, tag)); /* get a SP entry */ KEYDEBUG(KEYDEBUG_IPSEC_DATA, printf("*** objects\n"); kdebug_secpolicyindex(spidx)); SPTREE_LOCK(); LIST_FOREACH(sp, &V_sptree[dir], chain) { KEYDEBUG(KEYDEBUG_IPSEC_DATA, printf("*** in SPD\n"); kdebug_secpolicyindex(&sp->spidx)); if (sp->state == IPSEC_SPSTATE_DEAD) continue; if (key_cmpspidx_withmask(&sp->spidx, spidx)) goto found; } sp = NULL; found: if (sp) { /* sanity check */ KEY_CHKSPDIR(sp->spidx.dir, dir, __func__); /* found a SPD entry */ sp->lastused = time_second; SP_ADDREF(sp); } SPTREE_UNLOCK(); KEYDEBUG(KEYDEBUG_IPSEC_STAMP, printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); return sp; } /* * allocating a SP for OUTBOUND or INBOUND packet. * Must call key_freesp() later. * OUT: NULL: not found * others: found and return the pointer. */ struct secpolicy * key_allocsp2(u_int32_t spi, union sockaddr_union *dst, u_int8_t proto, u_int dir, const char* where, int tag) { struct secpolicy *sp; IPSEC_ASSERT(dst != NULL, ("null dst")); IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, ("invalid direction %u", dir)); KEYDEBUG(KEYDEBUG_IPSEC_STAMP, printf("DP %s from %s:%u\n", __func__, where, tag)); /* get a SP entry */ KEYDEBUG(KEYDEBUG_IPSEC_DATA, printf("*** objects\n"); printf("spi %u proto %u dir %u\n", spi, proto, dir); kdebug_sockaddr(&dst->sa)); SPTREE_LOCK(); LIST_FOREACH(sp, &V_sptree[dir], chain) { KEYDEBUG(KEYDEBUG_IPSEC_DATA, printf("*** in SPD\n"); kdebug_secpolicyindex(&sp->spidx)); if (sp->state == IPSEC_SPSTATE_DEAD) continue; /* compare simple values, then dst address */ if (sp->spidx.ul_proto != proto) continue; /* NB: spi's must exist and match */ if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi) continue; if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0) goto found; } sp = NULL; found: if (sp) { /* sanity check */ KEY_CHKSPDIR(sp->spidx.dir, dir, __func__); /* found a SPD entry */ sp->lastused = time_second; SP_ADDREF(sp); } SPTREE_UNLOCK(); KEYDEBUG(KEYDEBUG_IPSEC_STAMP, printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); return sp; } #if 0 /* * return a policy that matches this particular inbound packet. * XXX slow */ struct secpolicy * key_gettunnel(const struct sockaddr *osrc, const struct sockaddr *odst, const struct sockaddr *isrc, const struct sockaddr *idst, const char* where, int tag) { struct secpolicy *sp; const int dir = IPSEC_DIR_INBOUND; struct ipsecrequest *r1, *r2, *p; struct secpolicyindex spidx; KEYDEBUG(KEYDEBUG_IPSEC_STAMP, printf("DP %s from %s:%u\n", __func__, where, tag)); if (isrc->sa_family != idst->sa_family) { ipseclog((LOG_ERR, "%s: protocol family mismatched %d != %d\n.", __func__, isrc->sa_family, idst->sa_family)); sp = NULL; goto done; } SPTREE_LOCK(); LIST_FOREACH(sp, &V_sptree[dir], chain) { if (sp->state == IPSEC_SPSTATE_DEAD) continue; r1 = r2 = NULL; for (p = sp->req; p; p = p->next) { if (p->saidx.mode != IPSEC_MODE_TUNNEL) continue; r1 = r2; r2 = p; if (!r1) { /* here we look at address matches only */ spidx = sp->spidx; if (isrc->sa_len > sizeof(spidx.src) || idst->sa_len > sizeof(spidx.dst)) continue; bcopy(isrc, &spidx.src, isrc->sa_len); bcopy(idst, &spidx.dst, idst->sa_len); if (!key_cmpspidx_withmask(&sp->spidx, &spidx)) continue; } else { if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) || key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0)) continue; } if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) || key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0)) continue; goto found; } } sp = NULL; found: if (sp) { sp->lastused = time_second; SP_ADDREF(sp); } SPTREE_UNLOCK(); done: KEYDEBUG(KEYDEBUG_IPSEC_STAMP, printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); return sp; } #endif /* * allocating an SA entry for an *OUTBOUND* packet. * checking each request entries in SP, and acquire an SA if need. * OUT: 0: there are valid requests. * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring. */ int key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx) { u_int level; int error; struct secasvar *sav; IPSEC_ASSERT(isr != NULL, ("null isr")); IPSEC_ASSERT(saidx != NULL, ("null saidx")); IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT || saidx->mode == IPSEC_MODE_TUNNEL, ("unexpected policy %u", saidx->mode)); /* * XXX guard against protocol callbacks from the crypto * thread as they reference ipsecrequest.sav which we * temporarily null out below. Need to rethink how we * handle bundled SA's in the callback thread. */ IPSECREQUEST_LOCK_ASSERT(isr); /* get current level */ level = ipsec_get_reqlevel(isr); /* * We check new SA in the IPsec request because a different * SA may be involved each time this request is checked, either * because new SAs are being configured, or this request is * associated with an unconnected datagram socket, or this request * is associated with a system default policy. * * key_allocsa_policy should allocate the oldest SA available. * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt. */ sav = key_allocsa_policy(saidx); if (sav != isr->sav) { /* SA need to be updated. */ if (!IPSECREQUEST_UPGRADE(isr)) { /* Kick everyone off. */ IPSECREQUEST_UNLOCK(isr); IPSECREQUEST_WLOCK(isr); } if (isr->sav != NULL) KEY_FREESAV(&isr->sav); isr->sav = sav; IPSECREQUEST_DOWNGRADE(isr); } else if (sav != NULL) KEY_FREESAV(&sav); /* When there is SA. */ if (isr->sav != NULL) { if (isr->sav->state != SADB_SASTATE_MATURE && isr->sav->state != SADB_SASTATE_DYING) return EINVAL; return 0; } /* there is no SA */ error = key_acquire(saidx, isr->sp); if (error != 0) { /* XXX What should I do ? */ ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n", __func__, error)); return error; } if (level != IPSEC_LEVEL_REQUIRE) { /* XXX sigh, the interface to this routine is botched */ IPSEC_ASSERT(isr->sav == NULL, ("unexpected SA")); return 0; } else { return ENOENT; } } /* * allocating a SA for policy entry from SAD. * NOTE: searching SAD of aliving state. * OUT: NULL: not found. * others: found and return the pointer. */ static struct secasvar * key_allocsa_policy(const struct secasindex *saidx) { #define N(a) _ARRAYLEN(a) struct secashead *sah; struct secasvar *sav; u_int stateidx, arraysize; const u_int *state_valid; state_valid = NULL; /* silence gcc */ arraysize = 0; /* silence gcc */ SAHTREE_LOCK(); LIST_FOREACH(sah, &V_sahtree, chain) { if (sah->state == SADB_SASTATE_DEAD) continue; if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) { if (V_key_preferred_oldsa) { state_valid = saorder_state_valid_prefer_old; arraysize = N(saorder_state_valid_prefer_old); } else { state_valid = saorder_state_valid_prefer_new; arraysize = N(saorder_state_valid_prefer_new); } break; } } SAHTREE_UNLOCK(); if (sah == NULL) return NULL; /* search valid state */ for (stateidx = 0; stateidx < arraysize; stateidx++) { sav = key_do_allocsa_policy(sah, state_valid[stateidx]); if (sav != NULL) return sav; } return NULL; #undef N } /* * searching SAD with direction, protocol, mode and state. * called by key_allocsa_policy(). * OUT: * NULL : not found * others : found, pointer to a SA. */ static struct secasvar * key_do_allocsa_policy(struct secashead *sah, u_int state) { struct secasvar *sav, *nextsav, *candidate, *d; /* initilize */ candidate = NULL; SAHTREE_LOCK(); for (sav = LIST_FIRST(&sah->savtree[state]); sav != NULL; sav = nextsav) { nextsav = LIST_NEXT(sav, chain); /* sanity check */ KEY_CHKSASTATE(sav->state, state, __func__); /* initialize */ if (candidate == NULL) { candidate = sav; continue; } /* Which SA is the better ? */ IPSEC_ASSERT(candidate->lft_c != NULL, ("null candidate lifetime")); IPSEC_ASSERT(sav->lft_c != NULL, ("null sav lifetime")); /* What the best method is to compare ? */ if (V_key_preferred_oldsa) { if (candidate->lft_c->addtime > sav->lft_c->addtime) { candidate = sav; } continue; /*NOTREACHED*/ } /* preferred new sa rather than old sa */ if (candidate->lft_c->addtime < sav->lft_c->addtime) { d = candidate; candidate = sav; } else d = sav; /* * prepared to delete the SA when there is more * suitable candidate and the lifetime of the SA is not * permanent. */ if (d->lft_h->addtime != 0) { struct mbuf *m, *result; u_int8_t satype; key_sa_chgstate(d, SADB_SASTATE_DEAD); IPSEC_ASSERT(d->refcnt > 0, ("bogus ref count")); satype = key_proto2satype(d->sah->saidx.proto); if (satype == 0) goto msgfail; m = key_setsadbmsg(SADB_DELETE, 0, satype, 0, 0, d->refcnt - 1); if (!m) goto msgfail; result = m; /* set sadb_address for saidx's. */ m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &d->sah->saidx.src.sa, d->sah->saidx.src.sa.sa_len << 3, IPSEC_ULPROTO_ANY); if (!m) goto msgfail; m_cat(result, m); /* set sadb_address for saidx's. */ m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &d->sah->saidx.dst.sa, d->sah->saidx.dst.sa.sa_len << 3, IPSEC_ULPROTO_ANY); if (!m) goto msgfail; m_cat(result, m); /* create SA extension */ m = key_setsadbsa(d); if (!m) goto msgfail; m_cat(result, m); if (result->m_len < sizeof(struct sadb_msg)) { result = m_pullup(result, sizeof(struct sadb_msg)); if (result == NULL) goto msgfail; } result->m_pkthdr.len = 0; for (m = result; m; m = m->m_next) result->m_pkthdr.len += m->m_len; mtod(result, struct sadb_msg *)->sadb_msg_len = PFKEY_UNIT64(result->m_pkthdr.len); if (key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED)) goto msgfail; msgfail: KEY_FREESAV(&d); } } if (candidate) { sa_addref(candidate); KEYDEBUG(KEYDEBUG_IPSEC_STAMP, printf("DP %s cause refcnt++:%d SA:%p\n", __func__, candidate->refcnt, candidate)); } SAHTREE_UNLOCK(); return candidate; } /* * allocating a usable SA entry for a *INBOUND* packet. * Must call key_freesav() later. * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state). * NULL: not found, or error occured. * * In the comparison, no source address is used--for RFC2401 conformance. * To quote, from section 4.1: * A security association is uniquely identified by a triple consisting * of a Security Parameter Index (SPI), an IP Destination Address, and a * security protocol (AH or ESP) identifier. * Note that, however, we do need to keep source address in IPsec SA. * IKE specification and PF_KEY specification do assume that we * keep source address in IPsec SA. We see a tricky situation here. */ struct secasvar * key_allocsa( union sockaddr_union *dst, u_int proto, u_int32_t spi, const char* where, int tag) { struct secashead *sah; struct secasvar *sav; u_int stateidx, arraysize, state; const u_int *saorder_state_valid; int chkport; IPSEC_ASSERT(dst != NULL, ("null dst address")); KEYDEBUG(KEYDEBUG_IPSEC_STAMP, printf("DP %s from %s:%u\n", __func__, where, tag)); #ifdef IPSEC_NAT_T chkport = (dst->sa.sa_family == AF_INET && dst->sa.sa_len == sizeof(struct sockaddr_in) && dst->sin.sin_port != 0); #else chkport = 0; #endif /* * searching SAD. * XXX: to be checked internal IP header somewhere. Also when * IPsec tunnel packet is received. But ESP tunnel mode is * encrypted so we can't check internal IP header. */ SAHTREE_LOCK(); if (V_key_preferred_oldsa) { saorder_state_valid = saorder_state_valid_prefer_old; arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); } else { saorder_state_valid = saorder_state_valid_prefer_new; arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); } LIST_FOREACH(sah, &V_sahtree, chain) { /* search valid state */ for (stateidx = 0; stateidx < arraysize; stateidx++) { state = saorder_state_valid[stateidx]; LIST_FOREACH(sav, &sah->savtree[state], chain) { /* sanity check */ KEY_CHKSASTATE(sav->state, state, __func__); /* do not return entries w/ unusable state */ if (sav->state != SADB_SASTATE_MATURE && sav->state != SADB_SASTATE_DYING) continue; if (proto != sav->sah->saidx.proto) continue; if (spi != sav->spi) continue; #if 0 /* don't check src */ /* check src address */ if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, chkport) != 0) continue; #endif /* check dst address */ if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, chkport) != 0) continue; sa_addref(sav); goto done; } } } sav = NULL; done: SAHTREE_UNLOCK(); KEYDEBUG(KEYDEBUG_IPSEC_STAMP, printf("DP %s return SA:%p; refcnt %u\n", __func__, sav, sav ? sav->refcnt : 0)); return sav; } /* * Must be called after calling key_allocsp(). * For both the packet without socket and key_freeso(). */ void _key_freesp(struct secpolicy **spp, const char* where, int tag) { struct secpolicy *sp = *spp; IPSEC_ASSERT(sp != NULL, ("null sp")); SPTREE_LOCK(); SP_DELREF(sp); KEYDEBUG(KEYDEBUG_IPSEC_STAMP, printf("DP %s SP:%p (ID=%u) from %s:%u; refcnt now %u\n", __func__, sp, sp->id, where, tag, sp->refcnt)); if (sp->refcnt == 0) { *spp = NULL; key_delsp(sp); } SPTREE_UNLOCK(); } /* * Must be called after calling key_allocsp(). * For the packet with socket. */ void key_freeso(struct socket *so) { IPSEC_ASSERT(so != NULL, ("null so")); switch (so->so_proto->pr_domain->dom_family) { #if defined(INET) || defined(INET6) #ifdef INET case PF_INET: #endif #ifdef INET6 case PF_INET6: #endif { struct inpcb *pcb = sotoinpcb(so); /* Does it have a PCB ? */ if (pcb == NULL) return; key_freesp_so(&pcb->inp_sp->sp_in); key_freesp_so(&pcb->inp_sp->sp_out); } break; #endif /* INET || INET6 */ default: ipseclog((LOG_DEBUG, "%s: unknown address family=%d.\n", __func__, so->so_proto->pr_domain->dom_family)); return; } } static void key_freesp_so(struct secpolicy **sp) { IPSEC_ASSERT(sp != NULL && *sp != NULL, ("null sp")); if ((*sp)->policy == IPSEC_POLICY_ENTRUST || (*sp)->policy == IPSEC_POLICY_BYPASS) return; IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC, ("invalid policy %u", (*sp)->policy)); KEY_FREESP(sp); } void key_addrefsa(struct secasvar *sav, const char* where, int tag) { IPSEC_ASSERT(sav != NULL, ("null sav")); IPSEC_ASSERT(sav->refcnt > 0, ("refcount must exist")); sa_addref(sav); } /* * Must be called after calling key_allocsa(). * This function is called by key_freesp() to free some SA allocated * for a policy. */ void key_freesav(struct secasvar **psav, const char* where, int tag) { struct secasvar *sav = *psav; IPSEC_ASSERT(sav != NULL, ("null sav")); if (sa_delref(sav)) { KEYDEBUG(KEYDEBUG_IPSEC_STAMP, printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n", __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt)); *psav = NULL; key_delsav(sav); } else { KEYDEBUG(KEYDEBUG_IPSEC_STAMP, printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n", __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt)); } } /* %%% SPD management */ /* * free security policy entry. */ static void key_delsp(struct secpolicy *sp) { struct ipsecrequest *isr, *nextisr; IPSEC_ASSERT(sp != NULL, ("null sp")); SPTREE_LOCK_ASSERT(); sp->state = IPSEC_SPSTATE_DEAD; IPSEC_ASSERT(sp->refcnt == 0, ("SP with references deleted (refcnt %u)", sp->refcnt)); /* remove from SP index */ if (__LIST_CHAINED(sp)) LIST_REMOVE(sp, chain); for (isr = sp->req; isr != NULL; isr = nextisr) { if (isr->sav != NULL) { KEY_FREESAV(&isr->sav); isr->sav = NULL; } nextisr = isr->next; ipsec_delisr(isr); } _key_delsp(sp); } /* * search SPD * OUT: NULL : not found * others : found, pointer to a SP. */ static struct secpolicy * key_getsp(struct secpolicyindex *spidx) { struct secpolicy *sp; IPSEC_ASSERT(spidx != NULL, ("null spidx")); SPTREE_LOCK(); LIST_FOREACH(sp, &V_sptree[spidx->dir], chain) { if (sp->state == IPSEC_SPSTATE_DEAD) continue; if (key_cmpspidx_exactly(spidx, &sp->spidx)) { SP_ADDREF(sp); break; } } SPTREE_UNLOCK(); return sp; } /* * get SP by index. * OUT: NULL : not found * others : found, pointer to a SP. */ static struct secpolicy * key_getspbyid(u_int32_t id) { struct secpolicy *sp; SPTREE_LOCK(); LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_INBOUND], chain) { if (sp->state == IPSEC_SPSTATE_DEAD) continue; if (sp->id == id) { SP_ADDREF(sp); goto done; } } LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_OUTBOUND], chain) { if (sp->state == IPSEC_SPSTATE_DEAD) continue; if (sp->id == id) { SP_ADDREF(sp); goto done; } } done: SPTREE_UNLOCK(); return sp; } struct secpolicy * key_newsp(const char* where, int tag) { struct secpolicy *newsp = NULL; newsp = (struct secpolicy *) malloc(sizeof(struct secpolicy), M_IPSEC_SP, M_NOWAIT|M_ZERO); if (newsp) { SECPOLICY_LOCK_INIT(newsp); newsp->refcnt = 1; newsp->req = NULL; } KEYDEBUG(KEYDEBUG_IPSEC_STAMP, printf("DP %s from %s:%u return SP:%p\n", __func__, where, tag, newsp)); return newsp; } static void _key_delsp(struct secpolicy *sp) { SECPOLICY_LOCK_DESTROY(sp); free(sp, M_IPSEC_SP); } /* * create secpolicy structure from sadb_x_policy structure. * NOTE: `state', `secpolicyindex' in secpolicy structure are not set, * so must be set properly later. */ struct secpolicy * key_msg2sp(xpl0, len, error) struct sadb_x_policy *xpl0; size_t len; int *error; { struct secpolicy *newsp; IPSEC_ASSERT(xpl0 != NULL, ("null xpl0")); IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len)); if (len != PFKEY_EXTLEN(xpl0)) { ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__)); *error = EINVAL; return NULL; } if ((newsp = KEY_NEWSP()) == NULL) { *error = ENOBUFS; return NULL; } newsp->spidx.dir = xpl0->sadb_x_policy_dir; newsp->policy = xpl0->sadb_x_policy_type; /* check policy */ switch (xpl0->sadb_x_policy_type) { case IPSEC_POLICY_DISCARD: case IPSEC_POLICY_NONE: case IPSEC_POLICY_ENTRUST: case IPSEC_POLICY_BYPASS: newsp->req = NULL; break; case IPSEC_POLICY_IPSEC: { int tlen; struct sadb_x_ipsecrequest *xisr; struct ipsecrequest **p_isr = &newsp->req; /* validity check */ if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) { ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__)); KEY_FREESP(&newsp); *error = EINVAL; return NULL; } tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0); xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1); while (tlen > 0) { /* length check */ if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) { ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest " "length.\n", __func__)); KEY_FREESP(&newsp); *error = EINVAL; return NULL; } /* allocate request buffer */ /* NB: data structure is zero'd */ *p_isr = ipsec_newisr(); if ((*p_isr) == NULL) { ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); KEY_FREESP(&newsp); *error = ENOBUFS; return NULL; } /* set values */ switch (xisr->sadb_x_ipsecrequest_proto) { case IPPROTO_ESP: case IPPROTO_AH: case IPPROTO_IPCOMP: break; default: ipseclog((LOG_DEBUG, "%s: invalid proto type=%u\n", __func__, xisr->sadb_x_ipsecrequest_proto)); KEY_FREESP(&newsp); *error = EPROTONOSUPPORT; return NULL; } (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto; switch (xisr->sadb_x_ipsecrequest_mode) { case IPSEC_MODE_TRANSPORT: case IPSEC_MODE_TUNNEL: break; case IPSEC_MODE_ANY: default: ipseclog((LOG_DEBUG, "%s: invalid mode=%u\n", __func__, xisr->sadb_x_ipsecrequest_mode)); KEY_FREESP(&newsp); *error = EINVAL; return NULL; } (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode; switch (xisr->sadb_x_ipsecrequest_level) { case IPSEC_LEVEL_DEFAULT: case IPSEC_LEVEL_USE: case IPSEC_LEVEL_REQUIRE: break; case IPSEC_LEVEL_UNIQUE: /* validity check */ /* * If range violation of reqid, kernel will * update it, don't refuse it. */ if (xisr->sadb_x_ipsecrequest_reqid > IPSEC_MANUAL_REQID_MAX) { ipseclog((LOG_DEBUG, "%s: reqid=%d range " "violation, updated by kernel.\n", __func__, xisr->sadb_x_ipsecrequest_reqid)); xisr->sadb_x_ipsecrequest_reqid = 0; } /* allocate new reqid id if reqid is zero. */ if (xisr->sadb_x_ipsecrequest_reqid == 0) { u_int32_t reqid; if ((reqid = key_newreqid()) == 0) { KEY_FREESP(&newsp); *error = ENOBUFS; return NULL; } (*p_isr)->saidx.reqid = reqid; xisr->sadb_x_ipsecrequest_reqid = reqid; } else { /* set it for manual keying. */ (*p_isr)->saidx.reqid = xisr->sadb_x_ipsecrequest_reqid; } break; default: ipseclog((LOG_DEBUG, "%s: invalid level=%u\n", __func__, xisr->sadb_x_ipsecrequest_level)); KEY_FREESP(&newsp); *error = EINVAL; return NULL; } (*p_isr)->level = xisr->sadb_x_ipsecrequest_level; /* set IP addresses if there */ if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) { struct sockaddr *paddr; paddr = (struct sockaddr *)(xisr + 1); /* validity check */ if (paddr->sa_len > sizeof((*p_isr)->saidx.src)) { ipseclog((LOG_DEBUG, "%s: invalid " "request address length.\n", __func__)); KEY_FREESP(&newsp); *error = EINVAL; return NULL; } bcopy(paddr, &(*p_isr)->saidx.src, paddr->sa_len); paddr = (struct sockaddr *)((caddr_t)paddr + paddr->sa_len); /* validity check */ if (paddr->sa_len > sizeof((*p_isr)->saidx.dst)) { ipseclog((LOG_DEBUG, "%s: invalid " "request address length.\n", __func__)); KEY_FREESP(&newsp); *error = EINVAL; return NULL; } bcopy(paddr, &(*p_isr)->saidx.dst, paddr->sa_len); } (*p_isr)->sp = newsp; /* initialization for the next. */ p_isr = &(*p_isr)->next; tlen -= xisr->sadb_x_ipsecrequest_len; /* validity check */ if (tlen < 0) { ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n", __func__)); KEY_FREESP(&newsp); *error = EINVAL; return NULL; } xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr + xisr->sadb_x_ipsecrequest_len); } } break; default: ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__)); KEY_FREESP(&newsp); *error = EINVAL; return NULL; } *error = 0; return newsp; } static u_int32_t key_newreqid() { static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1; auto_reqid = (auto_reqid == ~0 ? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1); /* XXX should be unique check */ return auto_reqid; } /* * copy secpolicy struct to sadb_x_policy structure indicated. */ struct mbuf * key_sp2msg(sp) struct secpolicy *sp; { struct sadb_x_policy *xpl; int tlen; caddr_t p; struct mbuf *m; IPSEC_ASSERT(sp != NULL, ("null policy")); tlen = key_getspreqmsglen(sp); m = key_alloc_mbuf(tlen); if (!m || m->m_next) { /*XXX*/ if (m) m_freem(m); return NULL; } m->m_len = tlen; m->m_next = NULL; xpl = mtod(m, struct sadb_x_policy *); bzero(xpl, tlen); xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen); xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY; xpl->sadb_x_policy_type = sp->policy; xpl->sadb_x_policy_dir = sp->spidx.dir; xpl->sadb_x_policy_id = sp->id; p = (caddr_t)xpl + sizeof(*xpl); /* if is the policy for ipsec ? */ if (sp->policy == IPSEC_POLICY_IPSEC) { struct sadb_x_ipsecrequest *xisr; struct ipsecrequest *isr; for (isr = sp->req; isr != NULL; isr = isr->next) { xisr = (struct sadb_x_ipsecrequest *)p; xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto; xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode; xisr->sadb_x_ipsecrequest_level = isr->level; xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid; p += sizeof(*xisr); bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len); p += isr->saidx.src.sa.sa_len; bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len); p += isr->saidx.src.sa.sa_len; xisr->sadb_x_ipsecrequest_len = PFKEY_ALIGN8(sizeof(*xisr) + isr->saidx.src.sa.sa_len + isr->saidx.dst.sa.sa_len); } } return m; } /* m will not be freed nor modified */ static struct mbuf * #ifdef __STDC__ key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp, int ndeep, int nitem, ...) #else key_gather_mbuf(m, mhp, ndeep, nitem, va_alist) struct mbuf *m; const struct sadb_msghdr *mhp; int ndeep; int nitem; va_dcl #endif { va_list ap; int idx; int i; struct mbuf *result = NULL, *n; int len; IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); va_start(ap, nitem); for (i = 0; i < nitem; i++) { idx = va_arg(ap, int); if (idx < 0 || idx > SADB_EXT_MAX) goto fail; /* don't attempt to pull empty extension */ if (idx == SADB_EXT_RESERVED && mhp->msg == NULL) continue; if (idx != SADB_EXT_RESERVED && (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0)) continue; if (idx == SADB_EXT_RESERVED) { len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len)); MGETHDR(n, M_DONTWAIT, MT_DATA); if (!n) goto fail; n->m_len = len; n->m_next = NULL; m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t)); } else if (i < ndeep) { len = mhp->extlen[idx]; n = key_alloc_mbuf(len); if (!n || n->m_next) { /*XXX*/ if (n) m_freem(n); goto fail; } m_copydata(m, mhp->extoff[idx], mhp->extlen[idx], mtod(n, caddr_t)); } else { n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx], M_DONTWAIT); } if (n == NULL) goto fail; if (result) m_cat(result, n); else result = n; } va_end(ap); if ((result->m_flags & M_PKTHDR) != 0) { result->m_pkthdr.len = 0; for (n = result; n; n = n->m_next) result->m_pkthdr.len += n->m_len; } return result; fail: m_freem(result); va_end(ap); return NULL; } /* * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing * add an entry to SP database, when received * * from the user(?). * Adding to SP database, * and send * * to the socket which was send. * * SPDADD set a unique policy entry. * SPDSETIDX like SPDADD without a part of policy requests. * SPDUPDATE replace a unique policy entry. * * m will always be freed. */ static int key_spdadd(so, m, mhp) struct socket *so; struct mbuf *m; const struct sadb_msghdr *mhp; { struct sadb_address *src0, *dst0; struct sadb_x_policy *xpl0, *xpl; struct sadb_lifetime *lft = NULL; struct secpolicyindex spidx; struct secpolicy *newsp; int error; IPSEC_ASSERT(so != NULL, ("null socket")); IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || mhp->ext[SADB_X_EXT_POLICY] == NULL) { ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n")); return key_senderror(so, m, EINVAL); } if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) { if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(struct sadb_lifetime)) { ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; } src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; /* * Note: do not parse SADB_X_EXT_NAT_T_* here: * we are processing traffic endpoints. */ /* make secindex */ /* XXX boundary check against sa_len */ KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, src0 + 1, dst0 + 1, src0->sadb_address_prefixlen, dst0->sadb_address_prefixlen, src0->sadb_address_proto, &spidx); /* checking the direciton. */ switch (xpl0->sadb_x_policy_dir) { case IPSEC_DIR_INBOUND: case IPSEC_DIR_OUTBOUND: break; default: ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__)); mhp->msg->sadb_msg_errno = EINVAL; return 0; } /* check policy */ /* key_spdadd() accepts DISCARD, NONE and IPSEC. */ if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) { ipseclog((LOG_DEBUG, "%s: Invalid policy type.\n", __func__)); return key_senderror(so, m, EINVAL); } /* policy requests are mandatory when action is ipsec. */ if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) { ipseclog((LOG_DEBUG, "%s: some policy requests part required\n", __func__)); return key_senderror(so, m, EINVAL); } /* * checking there is SP already or not. * SPDUPDATE doesn't depend on whether there is a SP or not. * If the type is either SPDADD or SPDSETIDX AND a SP is found, * then error. */ newsp = key_getsp(&spidx); if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { if (newsp) { SPTREE_LOCK(); newsp->state = IPSEC_SPSTATE_DEAD; SPTREE_UNLOCK(); KEY_FREESP(&newsp); } } else { if (newsp != NULL) { KEY_FREESP(&newsp); ipseclog((LOG_DEBUG, "%s: a SP entry exists already.\n", __func__)); return key_senderror(so, m, EEXIST); } } /* allocation new SP entry */ if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) { return key_senderror(so, m, error); } if ((newsp->id = key_getnewspid()) == 0) { _key_delsp(newsp); return key_senderror(so, m, ENOBUFS); } /* XXX boundary check against sa_len */ KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, src0 + 1, dst0 + 1, src0->sadb_address_prefixlen, dst0->sadb_address_prefixlen, src0->sadb_address_proto, &newsp->spidx); /* sanity check on addr pair */ if (((struct sockaddr *)(src0 + 1))->sa_family != ((struct sockaddr *)(dst0+ 1))->sa_family) { _key_delsp(newsp); return key_senderror(so, m, EINVAL); } if (((struct sockaddr *)(src0 + 1))->sa_len != ((struct sockaddr *)(dst0+ 1))->sa_len) { _key_delsp(newsp); return key_senderror(so, m, EINVAL); } #if 1 if (newsp->req && newsp->req->saidx.src.sa.sa_family && newsp->req->saidx.dst.sa.sa_family) { if (newsp->req->saidx.src.sa.sa_family != newsp->req->saidx.dst.sa.sa_family) { _key_delsp(newsp); return key_senderror(so, m, EINVAL); } } #endif newsp->created = time_second; newsp->lastused = newsp->created; newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0; newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0; newsp->refcnt = 1; /* do not reclaim until I say I do */ newsp->state = IPSEC_SPSTATE_ALIVE; LIST_INSERT_TAIL(&V_sptree[newsp->spidx.dir], newsp, secpolicy, chain); /* delete the entry in spacqtree */ if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { struct secspacq *spacq = key_getspacq(&spidx); if (spacq != NULL) { /* reset counter in order to deletion by timehandler. */ spacq->created = time_second; spacq->count = 0; SPACQ_UNLOCK(); } } { struct mbuf *n, *mpolicy; struct sadb_msg *newmsg; int off; /* * Note: do not send SADB_X_EXT_NAT_T_* here: * we are sending traffic endpoints. */ /* create new sadb_msg to reply. */ if (lft) { n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED, SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); } else { n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED, SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); } if (!n) return key_senderror(so, m, ENOBUFS); if (n->m_len < sizeof(*newmsg)) { n = m_pullup(n, sizeof(*newmsg)); if (!n) return key_senderror(so, m, ENOBUFS); } newmsg = mtod(n, struct sadb_msg *); newmsg->sadb_msg_errno = 0; newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); off = 0; mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)), sizeof(*xpl), &off); if (mpolicy == NULL) { /* n is already freed */ return key_senderror(so, m, ENOBUFS); } xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off); if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) { m_freem(n); return key_senderror(so, m, EINVAL); } xpl->sadb_x_policy_id = newsp->id; m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); } } /* * get new policy id. * OUT: * 0: failure. * others: success. */ static u_int32_t key_getnewspid() { u_int32_t newid = 0; int count = V_key_spi_trycnt; /* XXX */ struct secpolicy *sp; /* when requesting to allocate spi ranged */ while (count--) { newid = (V_policy_id = (V_policy_id == ~0 ? 1 : V_policy_id + 1)); if ((sp = key_getspbyid(newid)) == NULL) break; KEY_FREESP(&sp); } if (count == 0 || newid == 0) { ipseclog((LOG_DEBUG, "%s: to allocate policy id is failed.\n", __func__)); return 0; } return newid; } /* * SADB_SPDDELETE processing * receive * * from the user(?), and set SADB_SASTATE_DEAD, * and send, * * to the ikmpd. * policy(*) including direction of policy. * * m will always be freed. */ static int key_spddelete(so, m, mhp) struct socket *so; struct mbuf *m; const struct sadb_msghdr *mhp; { struct sadb_address *src0, *dst0; struct sadb_x_policy *xpl0; struct secpolicyindex spidx; struct secpolicy *sp; IPSEC_ASSERT(so != NULL, ("null so")); IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || mhp->ext[SADB_X_EXT_POLICY] == NULL) { ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; /* * Note: do not parse SADB_X_EXT_NAT_T_* here: * we are processing traffic endpoints. */ /* make secindex */ /* XXX boundary check against sa_len */ KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, src0 + 1, dst0 + 1, src0->sadb_address_prefixlen, dst0->sadb_address_prefixlen, src0->sadb_address_proto, &spidx); /* checking the direciton. */ switch (xpl0->sadb_x_policy_dir) { case IPSEC_DIR_INBOUND: case IPSEC_DIR_OUTBOUND: break; default: ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__)); return key_senderror(so, m, EINVAL); } /* Is there SP in SPD ? */ if ((sp = key_getsp(&spidx)) == NULL) { ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__)); return key_senderror(so, m, EINVAL); } /* save policy id to buffer to be returned. */ xpl0->sadb_x_policy_id = sp->id; SPTREE_LOCK(); sp->state = IPSEC_SPSTATE_DEAD; SPTREE_UNLOCK(); KEY_FREESP(&sp); { struct mbuf *n; struct sadb_msg *newmsg; /* * Note: do not send SADB_X_EXT_NAT_T_* here: * we are sending traffic endpoints. */ /* create new sadb_msg to reply. */ n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); if (!n) return key_senderror(so, m, ENOBUFS); newmsg = mtod(n, struct sadb_msg *); newmsg->sadb_msg_errno = 0; newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); } } /* * SADB_SPDDELETE2 processing * receive * * from the user(?), and set SADB_SASTATE_DEAD, * and send, * * to the ikmpd. * policy(*) including direction of policy. * * m will always be freed. */ static int key_spddelete2(so, m, mhp) struct socket *so; struct mbuf *m; const struct sadb_msghdr *mhp; { u_int32_t id; struct secpolicy *sp; IPSEC_ASSERT(so != NULL, ("null socket")); IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); if (mhp->ext[SADB_X_EXT_POLICY] == NULL || mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; /* Is there SP in SPD ? */ if ((sp = key_getspbyid(id)) == NULL) { ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id)); return key_senderror(so, m, EINVAL); } SPTREE_LOCK(); sp->state = IPSEC_SPSTATE_DEAD; SPTREE_UNLOCK(); KEY_FREESP(&sp); { struct mbuf *n, *nn; struct sadb_msg *newmsg; int off, len; /* create new sadb_msg to reply. */ len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); MGETHDR(n, M_DONTWAIT, MT_DATA); if (n && len > MHLEN) { MCLGET(n, M_DONTWAIT); if ((n->m_flags & M_EXT) == 0) { m_freem(n); n = NULL; } } if (!n) return key_senderror(so, m, ENOBUFS); n->m_len = len; n->m_next = NULL; off = 0; m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)", off, len)); n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY], mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT); if (!n->m_next) { m_freem(n); return key_senderror(so, m, ENOBUFS); } n->m_pkthdr.len = 0; for (nn = n; nn; nn = nn->m_next) n->m_pkthdr.len += nn->m_len; newmsg = mtod(n, struct sadb_msg *); newmsg->sadb_msg_errno = 0; newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); } } /* * SADB_X_GET processing * receive * * from the user(?), * and send, * * to the ikmpd. * policy(*) including direction of policy. * * m will always be freed. */ static int key_spdget(so, m, mhp) struct socket *so; struct mbuf *m; const struct sadb_msghdr *mhp; { u_int32_t id; struct secpolicy *sp; struct mbuf *n; IPSEC_ASSERT(so != NULL, ("null socket")); IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); if (mhp->ext[SADB_X_EXT_POLICY] == NULL || mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; /* Is there SP in SPD ? */ if ((sp = key_getspbyid(id)) == NULL) { ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id)); return key_senderror(so, m, ENOENT); } n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid); KEY_FREESP(&sp); if (n != NULL) { m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); } else return key_senderror(so, m, ENOBUFS); } /* * SADB_X_SPDACQUIRE processing. * Acquire policy and SA(s) for a *OUTBOUND* packet. * send * * to KMD, and expect to receive * with SADB_X_SPDACQUIRE if error occured, * or * * with SADB_X_SPDUPDATE from KMD by PF_KEY. * policy(*) is without policy requests. * * 0 : succeed * others: error number */ int key_spdacquire(sp) struct secpolicy *sp; { struct mbuf *result = NULL, *m; struct secspacq *newspacq; IPSEC_ASSERT(sp != NULL, ("null secpolicy")); IPSEC_ASSERT(sp->req == NULL, ("policy exists")); IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC, ("policy not IPSEC %u", sp->policy)); /* Get an entry to check whether sent message or not. */ newspacq = key_getspacq(&sp->spidx); if (newspacq != NULL) { if (V_key_blockacq_count < newspacq->count) { /* reset counter and do send message. */ newspacq->count = 0; } else { /* increment counter and do nothing. */ newspacq->count++; return 0; } SPACQ_UNLOCK(); } else { /* make new entry for blocking to send SADB_ACQUIRE. */ newspacq = key_newspacq(&sp->spidx); if (newspacq == NULL) return ENOBUFS; } /* create new sadb_msg to reply. */ m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0); if (!m) return ENOBUFS; result = m; result->m_pkthdr.len = 0; for (m = result; m; m = m->m_next) result->m_pkthdr.len += m->m_len; mtod(result, struct sadb_msg *)->sadb_msg_len = PFKEY_UNIT64(result->m_pkthdr.len); return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); } /* * SADB_SPDFLUSH processing * receive * * from the user, and free all entries in secpctree. * and send, * * to the user. * NOTE: what to do is only marking SADB_SASTATE_DEAD. * * m will always be freed. */ static int key_spdflush(so, m, mhp) struct socket *so; struct mbuf *m; const struct sadb_msghdr *mhp; { struct sadb_msg *newmsg; struct secpolicy *sp; u_int dir; IPSEC_ASSERT(so != NULL, ("null socket")); IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg))) return key_senderror(so, m, EINVAL); for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { SPTREE_LOCK(); LIST_FOREACH(sp, &V_sptree[dir], chain) sp->state = IPSEC_SPSTATE_DEAD; SPTREE_UNLOCK(); } if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); return key_senderror(so, m, ENOBUFS); } if (m->m_next) m_freem(m->m_next); m->m_next = NULL; m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); newmsg = mtod(m, struct sadb_msg *); newmsg->sadb_msg_errno = 0; newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); } /* * SADB_SPDDUMP processing * receive * * from the user, and dump all SP leaves * and send, * ..... * to the ikmpd. * * m will always be freed. */ static int key_spddump(so, m, mhp) struct socket *so; struct mbuf *m; const struct sadb_msghdr *mhp; { struct secpolicy *sp; int cnt; u_int dir; struct mbuf *n; IPSEC_ASSERT(so != NULL, ("null socket")); IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); /* search SPD entry and get buffer size. */ cnt = 0; SPTREE_LOCK(); for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { LIST_FOREACH(sp, &V_sptree[dir], chain) { cnt++; } } if (cnt == 0) { SPTREE_UNLOCK(); return key_senderror(so, m, ENOENT); } for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { LIST_FOREACH(sp, &V_sptree[dir], chain) { --cnt; n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, mhp->msg->sadb_msg_pid); if (n) key_sendup_mbuf(so, n, KEY_SENDUP_ONE); } } SPTREE_UNLOCK(); m_freem(m); return 0; } static struct mbuf * key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, u_int32_t pid) { struct mbuf *result = NULL, *m; struct seclifetime lt; m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt); if (!m) goto fail; result = m; /* * Note: do not send SADB_X_EXT_NAT_T_* here: * we are sending traffic endpoints. */ m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sp->spidx.src.sa, sp->spidx.prefs, sp->spidx.ul_proto); if (!m) goto fail; m_cat(result, m); m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sp->spidx.dst.sa, sp->spidx.prefd, sp->spidx.ul_proto); if (!m) goto fail; m_cat(result, m); m = key_sp2msg(sp); if (!m) goto fail; m_cat(result, m); if(sp->lifetime){ lt.addtime=sp->created; lt.usetime= sp->lastused; m = key_setlifetime(<, SADB_EXT_LIFETIME_CURRENT); if (!m) goto fail; m_cat(result, m); lt.addtime=sp->lifetime; lt.usetime= sp->validtime; m = key_setlifetime(<, SADB_EXT_LIFETIME_HARD); if (!m) goto fail; m_cat(result, m); } if ((result->m_flags & M_PKTHDR) == 0) goto fail; if (result->m_len < sizeof(struct sadb_msg)) { result = m_pullup(result, sizeof(struct sadb_msg)); if (result == NULL) goto fail; } result->m_pkthdr.len = 0; for (m = result; m; m = m->m_next) result->m_pkthdr.len += m->m_len; mtod(result, struct sadb_msg *)->sadb_msg_len = PFKEY_UNIT64(result->m_pkthdr.len); return result; fail: m_freem(result); return NULL; } /* * get PFKEY message length for security policy and request. */ static u_int key_getspreqmsglen(sp) struct secpolicy *sp; { u_int tlen; tlen = sizeof(struct sadb_x_policy); /* if is the policy for ipsec ? */ if (sp->policy != IPSEC_POLICY_IPSEC) return tlen; /* get length of ipsec requests */ { struct ipsecrequest *isr; int len; for (isr = sp->req; isr != NULL; isr = isr->next) { len = sizeof(struct sadb_x_ipsecrequest) + isr->saidx.src.sa.sa_len + isr->saidx.dst.sa.sa_len; tlen += PFKEY_ALIGN8(len); } } return tlen; } /* * SADB_SPDEXPIRE processing * send * * to KMD by PF_KEY. * * OUT: 0 : succeed * others : error number */ static int key_spdexpire(sp) struct secpolicy *sp; { struct mbuf *result = NULL, *m; int len; int error = -1; struct sadb_lifetime *lt; /* XXX: Why do we lock ? */ IPSEC_ASSERT(sp != NULL, ("null secpolicy")); /* set msg header */ m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0); if (!m) { error = ENOBUFS; goto fail; } result = m; /* create lifetime extension (current and hard) */ len = PFKEY_ALIGN8(sizeof(*lt)) * 2; m = key_alloc_mbuf(len); if (!m || m->m_next) { /*XXX*/ if (m) m_freem(m); error = ENOBUFS; goto fail; } bzero(mtod(m, caddr_t), len); lt = mtod(m, struct sadb_lifetime *); lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; lt->sadb_lifetime_allocations = 0; lt->sadb_lifetime_bytes = 0; lt->sadb_lifetime_addtime = sp->created; lt->sadb_lifetime_usetime = sp->lastused; lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; lt->sadb_lifetime_allocations = 0; lt->sadb_lifetime_bytes = 0; lt->sadb_lifetime_addtime = sp->lifetime; lt->sadb_lifetime_usetime = sp->validtime; m_cat(result, m); /* * Note: do not send SADB_X_EXT_NAT_T_* here: * we are sending traffic endpoints. */ /* set sadb_address for source */ m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sp->spidx.src.sa, sp->spidx.prefs, sp->spidx.ul_proto); if (!m) { error = ENOBUFS; goto fail; } m_cat(result, m); /* set sadb_address for destination */ m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sp->spidx.dst.sa, sp->spidx.prefd, sp->spidx.ul_proto); if (!m) { error = ENOBUFS; goto fail; } m_cat(result, m); /* set secpolicy */ m = key_sp2msg(sp); if (!m) { error = ENOBUFS; goto fail; } m_cat(result, m); if ((result->m_flags & M_PKTHDR) == 0) { error = EINVAL; goto fail; } if (result->m_len < sizeof(struct sadb_msg)) { result = m_pullup(result, sizeof(struct sadb_msg)); if (result == NULL) { error = ENOBUFS; goto fail; } } result->m_pkthdr.len = 0; for (m = result; m; m = m->m_next) result->m_pkthdr.len += m->m_len; mtod(result, struct sadb_msg *)->sadb_msg_len = PFKEY_UNIT64(result->m_pkthdr.len); return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); fail: if (result) m_freem(result); return error; } /* %%% SAD management */ /* * allocating a memory for new SA head, and copy from the values of mhp. * OUT: NULL : failure due to the lack of memory. * others : pointer to new SA head. */ static struct secashead * key_newsah(saidx) struct secasindex *saidx; { struct secashead *newsah; IPSEC_ASSERT(saidx != NULL, ("null saidx")); newsah = malloc(sizeof(struct secashead), M_IPSEC_SAH, M_NOWAIT|M_ZERO); if (newsah != NULL) { int i; for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++) LIST_INIT(&newsah->savtree[i]); newsah->saidx = *saidx; /* add to saidxtree */ newsah->state = SADB_SASTATE_MATURE; SAHTREE_LOCK(); LIST_INSERT_HEAD(&V_sahtree, newsah, chain); SAHTREE_UNLOCK(); } return(newsah); } /* * delete SA index and all SA registerd. */ static void key_delsah(sah) struct secashead *sah; { struct secasvar *sav, *nextsav; u_int stateidx; int zombie = 0; IPSEC_ASSERT(sah != NULL, ("NULL sah")); SAHTREE_LOCK_ASSERT(); /* searching all SA registerd in the secindex. */ for (stateidx = 0; stateidx < _ARRAYLEN(saorder_state_any); stateidx++) { u_int state = saorder_state_any[stateidx]; LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) { if (sav->refcnt == 0) { /* sanity check */ KEY_CHKSASTATE(state, sav->state, __func__); /* * do NOT call KEY_FREESAV here: * it will only delete the sav if refcnt == 1, * where we already know that refcnt == 0 */ key_delsav(sav); } else { /* give up to delete this sa */ zombie++; } } } if (!zombie) { /* delete only if there are savs */ /* remove from tree of SA index */ if (__LIST_CHAINED(sah)) LIST_REMOVE(sah, chain); if (sah->route_cache.sa_route.ro_rt) { RTFREE(sah->route_cache.sa_route.ro_rt); sah->route_cache.sa_route.ro_rt = (struct rtentry *)NULL; } free(sah, M_IPSEC_SAH); } } /* * allocating a new SA with LARVAL state. key_add() and key_getspi() call, * and copy the values of mhp into new buffer. * When SAD message type is GETSPI: * to set sequence number from acq_seq++, * to set zero to SPI. * not to call key_setsava(). * OUT: NULL : fail * others : pointer to new secasvar. * * does not modify mbuf. does not free mbuf on error. */ static struct secasvar * key_newsav(m, mhp, sah, errp, where, tag) struct mbuf *m; const struct sadb_msghdr *mhp; struct secashead *sah; int *errp; const char* where; int tag; { struct secasvar *newsav; const struct sadb_sa *xsa; IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); IPSEC_ASSERT(sah != NULL, ("null secashead")); newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT|M_ZERO); if (newsav == NULL) { ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); *errp = ENOBUFS; goto done; } switch (mhp->msg->sadb_msg_type) { case SADB_GETSPI: newsav->spi = 0; #ifdef IPSEC_DOSEQCHECK /* sync sequence number */ if (mhp->msg->sadb_msg_seq == 0) newsav->seq = (V_acq_seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq)); else #endif newsav->seq = mhp->msg->sadb_msg_seq; break; case SADB_ADD: /* sanity check */ if (mhp->ext[SADB_EXT_SA] == NULL) { free(newsav, M_IPSEC_SA); newsav = NULL; ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); *errp = EINVAL; goto done; } xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; newsav->spi = xsa->sadb_sa_spi; newsav->seq = mhp->msg->sadb_msg_seq; break; default: free(newsav, M_IPSEC_SA); newsav = NULL; *errp = EINVAL; goto done; } /* copy sav values */ if (mhp->msg->sadb_msg_type != SADB_GETSPI) { *errp = key_setsaval(newsav, m, mhp); if (*errp) { free(newsav, M_IPSEC_SA); newsav = NULL; goto done; } } SECASVAR_LOCK_INIT(newsav); /* reset created */ newsav->created = time_second; newsav->pid = mhp->msg->sadb_msg_pid; /* add to satree */ newsav->sah = sah; sa_initref(newsav); newsav->state = SADB_SASTATE_LARVAL; SAHTREE_LOCK(); LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav, secasvar, chain); SAHTREE_UNLOCK(); done: KEYDEBUG(KEYDEBUG_IPSEC_STAMP, printf("DP %s from %s:%u return SP:%p\n", __func__, where, tag, newsav)); return newsav; } /* * free() SA variable entry. */ static void key_cleansav(struct secasvar *sav) { /* * Cleanup xform state. Note that zeroize'ing causes the * keys to be cleared; otherwise we must do it ourself. */ if (sav->tdb_xform != NULL) { sav->tdb_xform->xf_zeroize(sav); sav->tdb_xform = NULL; } else { KASSERT(sav->iv == NULL, ("iv but no xform")); if (sav->key_auth != NULL) bzero(sav->key_auth->key_data, _KEYLEN(sav->key_auth)); if (sav->key_enc != NULL) bzero(sav->key_enc->key_data, _KEYLEN(sav->key_enc)); } if (sav->key_auth != NULL) { if (sav->key_auth->key_data != NULL) free(sav->key_auth->key_data, M_IPSEC_MISC); free(sav->key_auth, M_IPSEC_MISC); sav->key_auth = NULL; } if (sav->key_enc != NULL) { if (sav->key_enc->key_data != NULL) free(sav->key_enc->key_data, M_IPSEC_MISC); free(sav->key_enc, M_IPSEC_MISC); sav->key_enc = NULL; } if (sav->sched) { bzero(sav->sched, sav->schedlen); free(sav->sched, M_IPSEC_MISC); sav->sched = NULL; } if (sav->replay != NULL) { free(sav->replay, M_IPSEC_MISC); sav->replay = NULL; } if (sav->lft_c != NULL) { free(sav->lft_c, M_IPSEC_MISC); sav->lft_c = NULL; } if (sav->lft_h != NULL) { free(sav->lft_h, M_IPSEC_MISC); sav->lft_h = NULL; } if (sav->lft_s != NULL) { free(sav->lft_s, M_IPSEC_MISC); sav->lft_s = NULL; } } /* * free() SA variable entry. */ static void key_delsav(sav) struct secasvar *sav; { IPSEC_ASSERT(sav != NULL, ("null sav")); IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", sav->refcnt)); /* remove from SA header */ if (__LIST_CHAINED(sav)) LIST_REMOVE(sav, chain); key_cleansav(sav); SECASVAR_LOCK_DESTROY(sav); free(sav, M_IPSEC_SA); } /* * search SAD. * OUT: * NULL : not found * others : found, pointer to a SA. */ static struct secashead * key_getsah(saidx) struct secasindex *saidx; { struct secashead *sah; SAHTREE_LOCK(); LIST_FOREACH(sah, &V_sahtree, chain) { if (sah->state == SADB_SASTATE_DEAD) continue; if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID)) break; } SAHTREE_UNLOCK(); return sah; } /* * check not to be duplicated SPI. * NOTE: this function is too slow due to searching all SAD. * OUT: * NULL : not found * others : found, pointer to a SA. */ static struct secasvar * key_checkspidup(saidx, spi) struct secasindex *saidx; u_int32_t spi; { struct secashead *sah; struct secasvar *sav; /* check address family */ if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) { ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", __func__)); return NULL; } sav = NULL; /* check all SAD */ SAHTREE_LOCK(); LIST_FOREACH(sah, &V_sahtree, chain) { if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst)) continue; sav = key_getsavbyspi(sah, spi); if (sav != NULL) break; } SAHTREE_UNLOCK(); return sav; } /* * search SAD litmited alive SA, protocol, SPI. * OUT: * NULL : not found * others : found, pointer to a SA. */ static struct secasvar * key_getsavbyspi(sah, spi) struct secashead *sah; u_int32_t spi; { struct secasvar *sav; u_int stateidx, state; sav = NULL; SAHTREE_LOCK_ASSERT(); /* search all status */ for (stateidx = 0; stateidx < _ARRAYLEN(saorder_state_alive); stateidx++) { state = saorder_state_alive[stateidx]; LIST_FOREACH(sav, &sah->savtree[state], chain) { /* sanity check */ if (sav->state != state) { ipseclog((LOG_DEBUG, "%s: " "invalid sav->state (queue: %d SA: %d)\n", __func__, state, sav->state)); continue; } if (sav->spi == spi) return sav; } } return NULL; } /* * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*. * You must update these if need. * OUT: 0: success. * !0: failure. * * does not modify mbuf. does not free mbuf on error. */ static int key_setsaval(sav, m, mhp) struct secasvar *sav; struct mbuf *m; const struct sadb_msghdr *mhp; { int error = 0; IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); /* initialization */ sav->replay = NULL; sav->key_auth = NULL; sav->key_enc = NULL; sav->sched = NULL; sav->schedlen = 0; sav->iv = NULL; sav->lft_c = NULL; sav->lft_h = NULL; sav->lft_s = NULL; sav->tdb_xform = NULL; /* transform */ sav->tdb_encalgxform = NULL; /* encoding algorithm */ sav->tdb_authalgxform = NULL; /* authentication algorithm */ sav->tdb_compalgxform = NULL; /* compression algorithm */ /* Initialize even if NAT-T not compiled in: */ sav->natt_type = 0; sav->natt_esp_frag_len = 0; /* SA */ if (mhp->ext[SADB_EXT_SA] != NULL) { const struct sadb_sa *sa0; sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) { error = EINVAL; goto fail; } sav->alg_auth = sa0->sadb_sa_auth; sav->alg_enc = sa0->sadb_sa_encrypt; sav->flags = sa0->sadb_sa_flags; /* replay window */ if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) { sav->replay = (struct secreplay *) malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_IPSEC_MISC, M_NOWAIT|M_ZERO); if (sav->replay == NULL) { ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); error = ENOBUFS; goto fail; } if (sa0->sadb_sa_replay != 0) sav->replay->bitmap = (caddr_t)(sav->replay+1); sav->replay->wsize = sa0->sadb_sa_replay; } } /* Authentication keys */ if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) { const struct sadb_key *key0; int len; key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH]; len = mhp->extlen[SADB_EXT_KEY_AUTH]; error = 0; if (len < sizeof(*key0)) { error = EINVAL; goto fail; } switch (mhp->msg->sadb_msg_satype) { case SADB_SATYPE_AH: case SADB_SATYPE_ESP: case SADB_X_SATYPE_TCPSIGNATURE: if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && sav->alg_auth != SADB_X_AALG_NULL) error = EINVAL; break; case SADB_X_SATYPE_IPCOMP: default: error = EINVAL; break; } if (error) { ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n", __func__)); goto fail; } sav->key_auth = (struct seckey *)key_dup_keymsg(key0, len, M_IPSEC_MISC); if (sav->key_auth == NULL ) { ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); error = ENOBUFS; goto fail; } } /* Encryption key */ if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) { const struct sadb_key *key0; int len; key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT]; len = mhp->extlen[SADB_EXT_KEY_ENCRYPT]; error = 0; if (len < sizeof(*key0)) { error = EINVAL; goto fail; } switch (mhp->msg->sadb_msg_satype) { case SADB_SATYPE_ESP: if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && sav->alg_enc != SADB_EALG_NULL) { error = EINVAL; break; } sav->key_enc = (struct seckey *)key_dup_keymsg(key0, len, M_IPSEC_MISC); if (sav->key_enc == NULL) { ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); error = ENOBUFS; goto fail; } break; case SADB_X_SATYPE_IPCOMP: if (len != PFKEY_ALIGN8(sizeof(struct sadb_key))) error = EINVAL; sav->key_enc = NULL; /*just in case*/ break; case SADB_SATYPE_AH: case SADB_X_SATYPE_TCPSIGNATURE: default: error = EINVAL; break; } if (error) { ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n", __func__)); goto fail; } } /* set iv */ sav->ivlen = 0; switch (mhp->msg->sadb_msg_satype) { case SADB_SATYPE_AH: error = xform_init(sav, XF_AH); break; case SADB_SATYPE_ESP: error = xform_init(sav, XF_ESP); break; case SADB_X_SATYPE_IPCOMP: error = xform_init(sav, XF_IPCOMP); break; case SADB_X_SATYPE_TCPSIGNATURE: error = xform_init(sav, XF_TCPSIGNATURE); break; } if (error) { ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n", __func__, mhp->msg->sadb_msg_satype)); goto fail; } /* reset created */ sav->created = time_second; /* make lifetime for CURRENT */ sav->lft_c = malloc(sizeof(struct seclifetime), M_IPSEC_MISC, M_NOWAIT); if (sav->lft_c == NULL) { ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); error = ENOBUFS; goto fail; } sav->lft_c->allocations = 0; sav->lft_c->bytes = 0; sav->lft_c->addtime = time_second; sav->lft_c->usetime = 0; /* lifetimes for HARD and SOFT */ { const struct sadb_lifetime *lft0; lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; if (lft0 != NULL) { if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) { error = EINVAL; goto fail; } sav->lft_h = key_dup_lifemsg(lft0, M_IPSEC_MISC); if (sav->lft_h == NULL) { ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); error = ENOBUFS; goto fail; } /* to be initialize ? */ } lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT]; if (lft0 != NULL) { if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) { error = EINVAL; goto fail; } sav->lft_s = key_dup_lifemsg(lft0, M_IPSEC_MISC); if (sav->lft_s == NULL) { ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); error = ENOBUFS; goto fail; } /* to be initialize ? */ } } return 0; fail: /* initialization */ key_cleansav(sav); return error; } /* * validation with a secasvar entry, and set SADB_SATYPE_MATURE. * OUT: 0: valid * other: errno */ static int key_mature(struct secasvar *sav) { int error; /* check SPI value */ switch (sav->sah->saidx.proto) { case IPPROTO_ESP: case IPPROTO_AH: /* * RFC 4302, 2.4. Security Parameters Index (SPI), SPI values * 1-255 reserved by IANA for future use, * 0 for implementation specific, local use. */ if (ntohl(sav->spi) <= 255) { ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n", __func__, (u_int32_t)ntohl(sav->spi))); return EINVAL; } break; } /* check satype */ switch (sav->sah->saidx.proto) { case IPPROTO_ESP: /* check flags */ if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) == (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) { ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " "given to old-esp.\n", __func__)); return EINVAL; } error = xform_init(sav, XF_ESP); break; case IPPROTO_AH: /* check flags */ if (sav->flags & SADB_X_EXT_DERIV) { ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " "given to AH SA.\n", __func__)); return EINVAL; } if (sav->alg_enc != SADB_EALG_NONE) { ipseclog((LOG_DEBUG, "%s: protocol and algorithm " "mismated.\n", __func__)); return(EINVAL); } error = xform_init(sav, XF_AH); break; case IPPROTO_IPCOMP: if (sav->alg_auth != SADB_AALG_NONE) { ipseclog((LOG_DEBUG, "%s: protocol and algorithm " "mismated.\n", __func__)); return(EINVAL); } if ((sav->flags & SADB_X_EXT_RAWCPI) == 0 && ntohl(sav->spi) >= 0x10000) { ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n", __func__)); return(EINVAL); } error = xform_init(sav, XF_IPCOMP); break; case IPPROTO_TCP: if (sav->alg_enc != SADB_EALG_NONE) { ipseclog((LOG_DEBUG, "%s: protocol and algorithm " "mismated.\n", __func__)); return(EINVAL); } error = xform_init(sav, XF_TCPSIGNATURE); break; default: ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__)); error = EPROTONOSUPPORT; break; } if (error == 0) { SAHTREE_LOCK(); key_sa_chgstate(sav, SADB_SASTATE_MATURE); SAHTREE_UNLOCK(); } return (error); } /* * subroutine for SADB_GET and SADB_DUMP. */ static struct mbuf * key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype, u_int32_t seq, u_int32_t pid) { struct mbuf *result = NULL, *tres = NULL, *m; int i; int dumporder[] = { SADB_EXT_SA, SADB_X_EXT_SA2, SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH, SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY, #ifdef IPSEC_NAT_T SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NAT_T_FRAG, #endif }; m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt); if (m == NULL) goto fail; result = m; for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) { m = NULL; switch (dumporder[i]) { case SADB_EXT_SA: m = key_setsadbsa(sav); if (!m) goto fail; break; case SADB_X_EXT_SA2: m = key_setsadbxsa2(sav->sah->saidx.mode, sav->replay ? sav->replay->count : 0, sav->sah->saidx.reqid); if (!m) goto fail; break; case SADB_EXT_ADDRESS_SRC: m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa, FULLMASK, IPSEC_ULPROTO_ANY); if (!m) goto fail; break; case SADB_EXT_ADDRESS_DST: m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.dst.sa, FULLMASK, IPSEC_ULPROTO_ANY); if (!m) goto fail; break; case SADB_EXT_KEY_AUTH: if (!sav->key_auth) continue; m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH); if (!m) goto fail; break; case SADB_EXT_KEY_ENCRYPT: if (!sav->key_enc) continue; m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT); if (!m) goto fail; break; case SADB_EXT_LIFETIME_CURRENT: if (!sav->lft_c) continue; m = key_setlifetime(sav->lft_c, SADB_EXT_LIFETIME_CURRENT); if (!m) goto fail; break; case SADB_EXT_LIFETIME_HARD: if (!sav->lft_h) continue; m = key_setlifetime(sav->lft_h, SADB_EXT_LIFETIME_HARD); if (!m) goto fail; break; case SADB_EXT_LIFETIME_SOFT: if (!sav->lft_s) continue; m = key_setlifetime(sav->lft_s, SADB_EXT_LIFETIME_SOFT); if (!m) goto fail; break; #ifdef IPSEC_NAT_T case SADB_X_EXT_NAT_T_TYPE: m = key_setsadbxtype(sav->natt_type); if (!m) goto fail; break; case SADB_X_EXT_NAT_T_DPORT: m = key_setsadbxport( KEY_PORTFROMSADDR(&sav->sah->saidx.dst), SADB_X_EXT_NAT_T_DPORT); if (!m) goto fail; break; case SADB_X_EXT_NAT_T_SPORT: m = key_setsadbxport( KEY_PORTFROMSADDR(&sav->sah->saidx.src), SADB_X_EXT_NAT_T_SPORT); if (!m) goto fail; break; case SADB_X_EXT_NAT_T_OAI: case SADB_X_EXT_NAT_T_OAR: case SADB_X_EXT_NAT_T_FRAG: /* We do not (yet) support those. */ continue; #endif case SADB_EXT_ADDRESS_PROXY: case SADB_EXT_IDENTITY_SRC: case SADB_EXT_IDENTITY_DST: /* XXX: should we brought from SPD ? */ case SADB_EXT_SENSITIVITY: default: continue; } if (!m) goto fail; if (tres) m_cat(m, tres); tres = m; } m_cat(result, tres); if (result->m_len < sizeof(struct sadb_msg)) { result = m_pullup(result, sizeof(struct sadb_msg)); if (result == NULL) goto fail; } result->m_pkthdr.len = 0; for (m = result; m; m = m->m_next) result->m_pkthdr.len += m->m_len; mtod(result, struct sadb_msg *)->sadb_msg_len = PFKEY_UNIT64(result->m_pkthdr.len); return result; fail: m_freem(result); m_freem(tres); return NULL; } /* * set data into sadb_msg. */ static struct mbuf * key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, u_int32_t seq, pid_t pid, u_int16_t reserved) { struct mbuf *m; struct sadb_msg *p; int len; len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); if (len > MCLBYTES) return NULL; MGETHDR(m, M_DONTWAIT, MT_DATA); if (m && len > MHLEN) { MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { m_freem(m); m = NULL; } } if (!m) return NULL; m->m_pkthdr.len = m->m_len = len; m->m_next = NULL; p = mtod(m, struct sadb_msg *); bzero(p, len); p->sadb_msg_version = PF_KEY_V2; p->sadb_msg_type = type; p->sadb_msg_errno = 0; p->sadb_msg_satype = satype; p->sadb_msg_len = PFKEY_UNIT64(tlen); p->sadb_msg_reserved = reserved; p->sadb_msg_seq = seq; p->sadb_msg_pid = (u_int32_t)pid; return m; } /* * copy secasvar data into sadb_address. */ static struct mbuf * key_setsadbsa(sav) struct secasvar *sav; { struct mbuf *m; struct sadb_sa *p; int len; len = PFKEY_ALIGN8(sizeof(struct sadb_sa)); m = key_alloc_mbuf(len); if (!m || m->m_next) { /*XXX*/ if (m) m_freem(m); return NULL; } p = mtod(m, struct sadb_sa *); bzero(p, len); p->sadb_sa_len = PFKEY_UNIT64(len); p->sadb_sa_exttype = SADB_EXT_SA; p->sadb_sa_spi = sav->spi; p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0); p->sadb_sa_state = sav->state; p->sadb_sa_auth = sav->alg_auth; p->sadb_sa_encrypt = sav->alg_enc; p->sadb_sa_flags = sav->flags; return m; } /* * set data into sadb_address. */ static struct mbuf * key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr, u_int8_t prefixlen, u_int16_t ul_proto) { struct mbuf *m; struct sadb_address *p; size_t len; len = PFKEY_ALIGN8(sizeof(struct sadb_address)) + PFKEY_ALIGN8(saddr->sa_len); m = key_alloc_mbuf(len); if (!m || m->m_next) { /*XXX*/ if (m) m_freem(m); return NULL; } p = mtod(m, struct sadb_address *); bzero(p, len); p->sadb_address_len = PFKEY_UNIT64(len); p->sadb_address_exttype = exttype; p->sadb_address_proto = ul_proto; if (prefixlen == FULLMASK) { switch (saddr->sa_family) { case AF_INET: prefixlen = sizeof(struct in_addr) << 3; break; case AF_INET6: prefixlen = sizeof(struct in6_addr) << 3; break; default: ; /*XXX*/ } } p->sadb_address_prefixlen = prefixlen; p->sadb_address_reserved = 0; bcopy(saddr, mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)), saddr->sa_len); return m; } /* * set data into sadb_x_sa2. */ static struct mbuf * key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int32_t reqid) { struct mbuf *m; struct sadb_x_sa2 *p; size_t len; len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2)); m = key_alloc_mbuf(len); if (!m || m->m_next) { /*XXX*/ if (m) m_freem(m); return NULL; } p = mtod(m, struct sadb_x_sa2 *); bzero(p, len); p->sadb_x_sa2_len = PFKEY_UNIT64(len); p->sadb_x_sa2_exttype = SADB_X_EXT_SA2; p->sadb_x_sa2_mode = mode; p->sadb_x_sa2_reserved1 = 0; p->sadb_x_sa2_reserved2 = 0; p->sadb_x_sa2_sequence = seq; p->sadb_x_sa2_reqid = reqid; return m; } #ifdef IPSEC_NAT_T /* * Set a type in sadb_x_nat_t_type. */ static struct mbuf * key_setsadbxtype(u_int16_t type) { struct mbuf *m; size_t len; struct sadb_x_nat_t_type *p; len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type)); m = key_alloc_mbuf(len); if (!m || m->m_next) { /*XXX*/ if (m) m_freem(m); return (NULL); } p = mtod(m, struct sadb_x_nat_t_type *); bzero(p, len); p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len); p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE; p->sadb_x_nat_t_type_type = type; return (m); } /* * Set a port in sadb_x_nat_t_port. * In contrast to default RFC 2367 behaviour, port is in network byte order. */ static struct mbuf * key_setsadbxport(u_int16_t port, u_int16_t type) { struct mbuf *m; size_t len; struct sadb_x_nat_t_port *p; len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port)); m = key_alloc_mbuf(len); if (!m || m->m_next) { /*XXX*/ if (m) m_freem(m); return (NULL); } p = mtod(m, struct sadb_x_nat_t_port *); bzero(p, len); p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len); p->sadb_x_nat_t_port_exttype = type; p->sadb_x_nat_t_port_port = port; return (m); } /* * Get port from sockaddr. Port is in network byte order. */ u_int16_t key_portfromsaddr(struct sockaddr *sa) { switch (sa->sa_family) { #ifdef INET case AF_INET: return ((struct sockaddr_in *)sa)->sin_port; #endif #ifdef INET6 case AF_INET6: return ((struct sockaddr_in6 *)sa)->sin6_port; #endif } KEYDEBUG(KEYDEBUG_IPSEC_STAMP, printf("DP %s unexpected address family %d\n", __func__, sa->sa_family)); return (0); } #endif /* IPSEC_NAT_T */ /* * Set port in struct sockaddr. Port is in network byte order. */ static void key_porttosaddr(struct sockaddr *sa, u_int16_t port) { switch (sa->sa_family) { #ifdef INET case AF_INET: ((struct sockaddr_in *)sa)->sin_port = port; break; #endif #ifdef INET6 case AF_INET6: ((struct sockaddr_in6 *)sa)->sin6_port = port; break; #endif default: ipseclog((LOG_DEBUG, "%s: unexpected address family %d.\n", __func__, sa->sa_family)); break; } } /* * set data into sadb_x_policy */ static struct mbuf * key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id) { struct mbuf *m; struct sadb_x_policy *p; size_t len; len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy)); m = key_alloc_mbuf(len); if (!m || m->m_next) { /*XXX*/ if (m) m_freem(m); return NULL; } p = mtod(m, struct sadb_x_policy *); bzero(p, len); p->sadb_x_policy_len = PFKEY_UNIT64(len); p->sadb_x_policy_exttype = SADB_X_EXT_POLICY; p->sadb_x_policy_type = type; p->sadb_x_policy_dir = dir; p->sadb_x_policy_id = id; return m; } /* %%% utilities */ /* Take a key message (sadb_key) from the socket and turn it into one * of the kernel's key structures (seckey). * * IN: pointer to the src * OUT: NULL no more memory */ struct seckey * key_dup_keymsg(const struct sadb_key *src, u_int len, struct malloc_type *type) { struct seckey *dst; dst = (struct seckey *)malloc(sizeof(struct seckey), type, M_NOWAIT); if (dst != NULL) { dst->bits = src->sadb_key_bits; dst->key_data = (char *)malloc(len, type, M_NOWAIT); if (dst->key_data != NULL) { bcopy((const char *)src + sizeof(struct sadb_key), dst->key_data, len); } else { ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); free(dst, type); dst = NULL; } } else { ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); } return dst; } /* Take a lifetime message (sadb_lifetime) passed in on a socket and * turn it into one of the kernel's lifetime structures (seclifetime). * * IN: pointer to the destination, source and malloc type * OUT: NULL, no more memory */ static struct seclifetime * key_dup_lifemsg(const struct sadb_lifetime *src, struct malloc_type *type) { struct seclifetime *dst = NULL; dst = (struct seclifetime *)malloc(sizeof(struct seclifetime), type, M_NOWAIT); if (dst == NULL) { /* XXX counter */ ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); } else { dst->allocations = src->sadb_lifetime_allocations; dst->bytes = src->sadb_lifetime_bytes; dst->addtime = src->sadb_lifetime_addtime; dst->usetime = src->sadb_lifetime_usetime; } return dst; } /* compare my own address * OUT: 1: true, i.e. my address. * 0: false */ int key_ismyaddr(sa) struct sockaddr *sa; { #ifdef INET struct sockaddr_in *sin; struct in_ifaddr *ia; #endif IPSEC_ASSERT(sa != NULL, ("null sockaddr")); switch (sa->sa_family) { #ifdef INET case AF_INET: sin = (struct sockaddr_in *)sa; IN_IFADDR_RLOCK(); TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { if (sin->sin_family == ia->ia_addr.sin_family && sin->sin_len == ia->ia_addr.sin_len && sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr) { IN_IFADDR_RUNLOCK(); return 1; } } IN_IFADDR_RUNLOCK(); break; #endif #ifdef INET6 case AF_INET6: return key_ismyaddr6((struct sockaddr_in6 *)sa); #endif } return 0; } #ifdef INET6 /* * compare my own address for IPv6. * 1: ours * 0: other * NOTE: derived ip6_input() in KAME. This is necessary to modify more. */ #include static int key_ismyaddr6(sin6) struct sockaddr_in6 *sin6; { struct in6_ifaddr *ia; #if 0 struct in6_multi *in6m; #endif IN6_IFADDR_RLOCK(); TAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) { if (key_sockaddrcmp((struct sockaddr *)&sin6, (struct sockaddr *)&ia->ia_addr, 0) == 0) { IN6_IFADDR_RUNLOCK(); return 1; } #if 0 /* * XXX Multicast * XXX why do we care about multlicast here while we don't care * about IPv4 multicast?? * XXX scope */ in6m = NULL; IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m); if (in6m) { IN6_IFADDR_RUNLOCK(); return 1; } #endif } IN6_IFADDR_RUNLOCK(); /* loopback, just for safety */ if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr)) return 1; return 0; } #endif /*INET6*/ /* * compare two secasindex structure. * flag can specify to compare 2 saidxes. * compare two secasindex structure without both mode and reqid. * don't compare port. * IN: * saidx0: source, it can be in SAD. * saidx1: object. * OUT: * 1 : equal * 0 : not equal */ static int key_cmpsaidx( const struct secasindex *saidx0, const struct secasindex *saidx1, int flag) { int chkport = 0; /* sanity */ if (saidx0 == NULL && saidx1 == NULL) return 1; if (saidx0 == NULL || saidx1 == NULL) return 0; if (saidx0->proto != saidx1->proto) return 0; if (flag == CMP_EXACTLY) { if (saidx0->mode != saidx1->mode) return 0; if (saidx0->reqid != saidx1->reqid) return 0; if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 || bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0) return 0; } else { /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */ if (flag == CMP_MODE_REQID ||flag == CMP_REQID) { /* * If reqid of SPD is non-zero, unique SA is required. * The result must be of same reqid in this case. */ if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid) return 0; } if (flag == CMP_MODE_REQID) { if (saidx0->mode != IPSEC_MODE_ANY && saidx0->mode != saidx1->mode) return 0; } #ifdef IPSEC_NAT_T /* * If NAT-T is enabled, check ports for tunnel mode. * Do not check ports if they are set to zero in the SPD. * Also do not do it for native transport mode, as there * is no port information available in the SP. */ if ((saidx1->mode == IPSEC_MODE_TUNNEL || (saidx1->mode == IPSEC_MODE_TRANSPORT && saidx1->proto == IPPROTO_ESP)) && saidx1->src.sa.sa_family == AF_INET && saidx1->dst.sa.sa_family == AF_INET && ((const struct sockaddr_in *)(&saidx1->src))->sin_port && ((const struct sockaddr_in *)(&saidx1->dst))->sin_port) chkport = 1; #endif /* IPSEC_NAT_T */ if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, chkport) != 0) { return 0; } if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, chkport) != 0) { return 0; } } return 1; } /* * compare two secindex structure exactly. * IN: * spidx0: source, it is often in SPD. * spidx1: object, it is often from PFKEY message. * OUT: * 1 : equal * 0 : not equal */ static int key_cmpspidx_exactly( struct secpolicyindex *spidx0, struct secpolicyindex *spidx1) { /* sanity */ if (spidx0 == NULL && spidx1 == NULL) return 1; if (spidx0 == NULL || spidx1 == NULL) return 0; if (spidx0->prefs != spidx1->prefs || spidx0->prefd != spidx1->prefd || spidx0->ul_proto != spidx1->ul_proto) return 0; return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 && key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0; } /* * compare two secindex structure with mask. * IN: * spidx0: source, it is often in SPD. * spidx1: object, it is often from IP header. * OUT: * 1 : equal * 0 : not equal */ static int key_cmpspidx_withmask( struct secpolicyindex *spidx0, struct secpolicyindex *spidx1) { /* sanity */ if (spidx0 == NULL && spidx1 == NULL) return 1; if (spidx0 == NULL || spidx1 == NULL) return 0; if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family || spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family || spidx0->src.sa.sa_len != spidx1->src.sa.sa_len || spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len) return 0; /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */ if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY && spidx0->ul_proto != spidx1->ul_proto) return 0; switch (spidx0->src.sa.sa_family) { case AF_INET: if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port) return 0; if (!key_bbcmp(&spidx0->src.sin.sin_addr, &spidx1->src.sin.sin_addr, spidx0->prefs)) return 0; break; case AF_INET6: if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port) return 0; /* * scope_id check. if sin6_scope_id is 0, we regard it * as a wildcard scope, which matches any scope zone ID. */ if (spidx0->src.sin6.sin6_scope_id && spidx1->src.sin6.sin6_scope_id && spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id) return 0; if (!key_bbcmp(&spidx0->src.sin6.sin6_addr, &spidx1->src.sin6.sin6_addr, spidx0->prefs)) return 0; break; default: /* XXX */ if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0) return 0; break; } switch (spidx0->dst.sa.sa_family) { case AF_INET: if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port) return 0; if (!key_bbcmp(&spidx0->dst.sin.sin_addr, &spidx1->dst.sin.sin_addr, spidx0->prefd)) return 0; break; case AF_INET6: if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port) return 0; /* * scope_id check. if sin6_scope_id is 0, we regard it * as a wildcard scope, which matches any scope zone ID. */ if (spidx0->dst.sin6.sin6_scope_id && spidx1->dst.sin6.sin6_scope_id && spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id) return 0; if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr, &spidx1->dst.sin6.sin6_addr, spidx0->prefd)) return 0; break; default: /* XXX */ if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0) return 0; break; } /* XXX Do we check other field ? e.g. flowinfo */ return 1; } /* returns 0 on match */ static int key_sockaddrcmp( const struct sockaddr *sa1, const struct sockaddr *sa2, int port) { #ifdef satosin #undef satosin #endif #define satosin(s) ((const struct sockaddr_in *)s) #ifdef satosin6 #undef satosin6 #endif #define satosin6(s) ((const struct sockaddr_in6 *)s) if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) return 1; switch (sa1->sa_family) { case AF_INET: if (sa1->sa_len != sizeof(struct sockaddr_in)) return 1; if (satosin(sa1)->sin_addr.s_addr != satosin(sa2)->sin_addr.s_addr) { return 1; } if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port) return 1; break; case AF_INET6: if (sa1->sa_len != sizeof(struct sockaddr_in6)) return 1; /*EINVAL*/ if (satosin6(sa1)->sin6_scope_id != satosin6(sa2)->sin6_scope_id) { return 1; } if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr, &satosin6(sa2)->sin6_addr)) { return 1; } if (port && satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) { return 1; } break; default: if (bcmp(sa1, sa2, sa1->sa_len) != 0) return 1; break; } return 0; #undef satosin #undef satosin6 } /* * compare two buffers with mask. * IN: * addr1: source * addr2: object * bits: Number of bits to compare * OUT: * 1 : equal * 0 : not equal */ static int key_bbcmp(const void *a1, const void *a2, u_int bits) { const unsigned char *p1 = a1; const unsigned char *p2 = a2; /* XXX: This could be considerably faster if we compare a word * at a time, but it is complicated on LSB Endian machines */ /* Handle null pointers */ if (p1 == NULL || p2 == NULL) return (p1 == p2); while (bits >= 8) { if (*p1++ != *p2++) return 0; bits -= 8; } if (bits > 0) { u_int8_t mask = ~((1<<(8-bits))-1); if ((*p1 & mask) != (*p2 & mask)) return 0; } return 1; /* Match! */ } static void key_flush_spd(time_t now) { static u_int16_t sptree_scangen = 0; u_int16_t gen = sptree_scangen++; struct secpolicy *sp; u_int dir; /* SPD */ for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { restart: SPTREE_LOCK(); LIST_FOREACH(sp, &V_sptree[dir], chain) { if (sp->scangen == gen) /* previously handled */ continue; sp->scangen = gen; if (sp->state == IPSEC_SPSTATE_DEAD && sp->refcnt == 1) { /* * Ensure that we only decrease refcnt once, * when we're the last consumer. * Directly call SP_DELREF/key_delsp instead * of KEY_FREESP to avoid unlocking/relocking * SPTREE_LOCK before key_delsp: may refcnt * be increased again during that time ? * NB: also clean entries created by * key_spdflush */ SP_DELREF(sp); key_delsp(sp); SPTREE_UNLOCK(); goto restart; } if (sp->lifetime == 0 && sp->validtime == 0) continue; if ((sp->lifetime && now - sp->created > sp->lifetime) || (sp->validtime && now - sp->lastused > sp->validtime)) { sp->state = IPSEC_SPSTATE_DEAD; SPTREE_UNLOCK(); key_spdexpire(sp); goto restart; } } SPTREE_UNLOCK(); } } static void key_flush_sad(time_t now) { struct secashead *sah, *nextsah; struct secasvar *sav, *nextsav; /* SAD */ SAHTREE_LOCK(); LIST_FOREACH_SAFE(sah, &V_sahtree, chain, nextsah) { /* if sah has been dead, then delete it and process next sah. */ if (sah->state == SADB_SASTATE_DEAD) { key_delsah(sah); continue; } /* if LARVAL entry doesn't become MATURE, delete it. */ LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL], chain, nextsav) { /* Need to also check refcnt for a larval SA ??? */ if (now - sav->created > V_key_larval_lifetime) KEY_FREESAV(&sav); } /* * check MATURE entry to start to send expire message * whether or not. */ LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE], chain, nextsav) { /* we don't need to check. */ if (sav->lft_s == NULL) continue; /* sanity check */ if (sav->lft_c == NULL) { ipseclog((LOG_DEBUG,"%s: there is no CURRENT " "time, why?\n", __func__)); continue; } /* check SOFT lifetime */ if (sav->lft_s->addtime != 0 && now - sav->created > sav->lft_s->addtime) { key_sa_chgstate(sav, SADB_SASTATE_DYING); /* * Actually, only send expire message if * SA has been used, as it was done before, * but should we always send such message, * and let IKE daemon decide if it should be * renegotiated or not ? * XXX expire message will actually NOT be * sent if SA is only used after soft * lifetime has been reached, see below * (DYING state) */ if (sav->lft_c->usetime != 0) key_expire(sav); } /* check SOFT lifetime by bytes */ /* * XXX I don't know the way to delete this SA * when new SA is installed. Caution when it's * installed too big lifetime by time. */ else if (sav->lft_s->bytes != 0 && sav->lft_s->bytes < sav->lft_c->bytes) { key_sa_chgstate(sav, SADB_SASTATE_DYING); /* * XXX If we keep to send expire * message in the status of * DYING. Do remove below code. */ key_expire(sav); } } /* check DYING entry to change status to DEAD. */ LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING], chain, nextsav) { /* we don't need to check. */ if (sav->lft_h == NULL) continue; /* sanity check */ if (sav->lft_c == NULL) { ipseclog((LOG_DEBUG, "%s: there is no CURRENT " "time, why?\n", __func__)); continue; } if (sav->lft_h->addtime != 0 && now - sav->created > sav->lft_h->addtime) { key_sa_chgstate(sav, SADB_SASTATE_DEAD); KEY_FREESAV(&sav); } #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */ else if (sav->lft_s != NULL && sav->lft_s->addtime != 0 && now - sav->created > sav->lft_s->addtime) { /* * XXX: should be checked to be * installed the valid SA. */ /* * If there is no SA then sending * expire message. */ key_expire(sav); } #endif /* check HARD lifetime by bytes */ else if (sav->lft_h->bytes != 0 && sav->lft_h->bytes < sav->lft_c->bytes) { key_sa_chgstate(sav, SADB_SASTATE_DEAD); KEY_FREESAV(&sav); } } /* delete entry in DEAD */ LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD], chain, nextsav) { /* sanity check */ if (sav->state != SADB_SASTATE_DEAD) { ipseclog((LOG_DEBUG, "%s: invalid sav->state " "(queue: %d SA: %d): kill it anyway\n", __func__, SADB_SASTATE_DEAD, sav->state)); } /* * do not call key_freesav() here. * sav should already be freed, and sav->refcnt * shows other references to sav * (such as from SPD). */ } } SAHTREE_UNLOCK(); } static void key_flush_acq(time_t now) { struct secacq *acq, *nextacq; /* ACQ tree */ ACQ_LOCK(); for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) { nextacq = LIST_NEXT(acq, chain); if (now - acq->created > V_key_blockacq_lifetime && __LIST_CHAINED(acq)) { LIST_REMOVE(acq, chain); free(acq, M_IPSEC_SAQ); } } ACQ_UNLOCK(); } static void key_flush_spacq(time_t now) { struct secspacq *acq, *nextacq; /* SP ACQ tree */ SPACQ_LOCK(); for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) { nextacq = LIST_NEXT(acq, chain); if (now - acq->created > V_key_blockacq_lifetime && __LIST_CHAINED(acq)) { LIST_REMOVE(acq, chain); free(acq, M_IPSEC_SAQ); } } SPACQ_UNLOCK(); } /* * time handler. * scanning SPD and SAD to check status for each entries, * and do to remove or to expire. * XXX: year 2038 problem may remain. */ void key_timehandler(void) { VNET_ITERATOR_DECL(vnet_iter); time_t now = time_second; VNET_LIST_RLOCK_NOSLEEP(); VNET_FOREACH(vnet_iter) { CURVNET_SET(vnet_iter); key_flush_spd(now); key_flush_sad(now); key_flush_acq(now); key_flush_spacq(now); CURVNET_RESTORE(); } VNET_LIST_RUNLOCK_NOSLEEP(); #ifndef IPSEC_DEBUG2 /* do exchange to tick time !! */ (void)timeout((void *)key_timehandler, (void *)0, hz); #endif /* IPSEC_DEBUG2 */ } u_long key_random() { u_long value; key_randomfill(&value, sizeof(value)); return value; } void key_randomfill(p, l) void *p; size_t l; { size_t n; u_long v; static int warn = 1; n = 0; n = (size_t)read_random(p, (u_int)l); /* last resort */ while (n < l) { v = random(); bcopy(&v, (u_int8_t *)p + n, l - n < sizeof(v) ? l - n : sizeof(v)); n += sizeof(v); if (warn) { printf("WARNING: pseudo-random number generator " "used for IPsec processing\n"); warn = 0; } } } /* * map SADB_SATYPE_* to IPPROTO_*. * if satype == SADB_SATYPE then satype is mapped to ~0. * OUT: * 0: invalid satype. */ static u_int16_t key_satype2proto(u_int8_t satype) { switch (satype) { case SADB_SATYPE_UNSPEC: return IPSEC_PROTO_ANY; case SADB_SATYPE_AH: return IPPROTO_AH; case SADB_SATYPE_ESP: return IPPROTO_ESP; case SADB_X_SATYPE_IPCOMP: return IPPROTO_IPCOMP; case SADB_X_SATYPE_TCPSIGNATURE: return IPPROTO_TCP; default: return 0; } /* NOTREACHED */ } /* * map IPPROTO_* to SADB_SATYPE_* * OUT: * 0: invalid protocol type. */ static u_int8_t key_proto2satype(u_int16_t proto) { switch (proto) { case IPPROTO_AH: return SADB_SATYPE_AH; case IPPROTO_ESP: return SADB_SATYPE_ESP; case IPPROTO_IPCOMP: return SADB_X_SATYPE_IPCOMP; case IPPROTO_TCP: return SADB_X_SATYPE_TCPSIGNATURE; default: return 0; } /* NOTREACHED */ } /* %%% PF_KEY */ /* * SADB_GETSPI processing is to receive * * from the IKMPd, to assign a unique spi value, to hang on the INBOUND * tree with the status of LARVAL, and send * * to the IKMPd. * * IN: mhp: pointer to the pointer to each header. * OUT: NULL if fail. * other if success, return pointer to the message to send. */ static int key_getspi(so, m, mhp) struct socket *so; struct mbuf *m; const struct sadb_msghdr *mhp; { struct sadb_address *src0, *dst0; struct secasindex saidx; struct secashead *newsah; struct secasvar *newsav; u_int8_t proto; u_int32_t spi; u_int8_t mode; u_int32_t reqid; int error; IPSEC_ASSERT(so != NULL, ("null socket")); IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } if (mhp->ext[SADB_X_EXT_SA2] != NULL) { mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; } else { mode = IPSEC_MODE_ANY; reqid = 0; } src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); /* map satype to proto */ if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } /* * Make sure the port numbers are zero. * In case of NAT-T we will update them later if needed. */ switch (((struct sockaddr *)(src0 + 1))->sa_family) { case AF_INET: if (((struct sockaddr *)(src0 + 1))->sa_len != sizeof(struct sockaddr_in)) return key_senderror(so, m, EINVAL); ((struct sockaddr_in *)(src0 + 1))->sin_port = 0; break; case AF_INET6: if (((struct sockaddr *)(src0 + 1))->sa_len != sizeof(struct sockaddr_in6)) return key_senderror(so, m, EINVAL); ((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0; break; default: ; /*???*/ } switch (((struct sockaddr *)(dst0 + 1))->sa_family) { case AF_INET: if (((struct sockaddr *)(dst0 + 1))->sa_len != sizeof(struct sockaddr_in)) return key_senderror(so, m, EINVAL); ((struct sockaddr_in *)(dst0 + 1))->sin_port = 0; break; case AF_INET6: if (((struct sockaddr *)(dst0 + 1))->sa_len != sizeof(struct sockaddr_in6)) return key_senderror(so, m, EINVAL); ((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0; break; default: ; /*???*/ } /* XXX boundary check against sa_len */ KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); #ifdef IPSEC_NAT_T /* * Handle NAT-T info if present. * We made sure the port numbers are zero above, so we do * not have to worry in case we do not update them. */ if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) ipseclog((LOG_DEBUG, "%s: NAT-T OAi present\n", __func__)); if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) ipseclog((LOG_DEBUG, "%s: NAT-T OAr present\n", __func__)); if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL && mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { struct sadb_x_nat_t_type *type; struct sadb_x_nat_t_port *sport, *dport; if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) || mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { ipseclog((LOG_DEBUG, "%s: invalid nat-t message " "passed.\n", __func__)); return key_senderror(so, m, EINVAL); } sport = (struct sadb_x_nat_t_port *) mhp->ext[SADB_X_EXT_NAT_T_SPORT]; dport = (struct sadb_x_nat_t_port *) mhp->ext[SADB_X_EXT_NAT_T_DPORT]; if (sport) KEY_PORTTOSADDR(&saidx.src, sport->sadb_x_nat_t_port_port); if (dport) KEY_PORTTOSADDR(&saidx.dst, dport->sadb_x_nat_t_port_port); } #endif /* SPI allocation */ spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE], &saidx); if (spi == 0) return key_senderror(so, m, EINVAL); /* get a SA index */ if ((newsah = key_getsah(&saidx)) == NULL) { /* create a new SA index */ if ((newsah = key_newsah(&saidx)) == NULL) { ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); return key_senderror(so, m, ENOBUFS); } } /* get a new SA */ /* XXX rewrite */ newsav = KEY_NEWSAV(m, mhp, newsah, &error); if (newsav == NULL) { /* XXX don't free new SA index allocated in above. */ return key_senderror(so, m, error); } /* set spi */ newsav->spi = htonl(spi); /* delete the entry in acqtree */ if (mhp->msg->sadb_msg_seq != 0) { struct secacq *acq; if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) { /* reset counter in order to deletion by timehandler. */ acq->created = time_second; acq->count = 0; } } { struct mbuf *n, *nn; struct sadb_sa *m_sa; struct sadb_msg *newmsg; int off, len; /* create new sadb_msg to reply. */ len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) + PFKEY_ALIGN8(sizeof(struct sadb_sa)); MGETHDR(n, M_DONTWAIT, MT_DATA); if (len > MHLEN) { MCLGET(n, M_DONTWAIT); if ((n->m_flags & M_EXT) == 0) { m_freem(n); n = NULL; } } if (!n) return key_senderror(so, m, ENOBUFS); n->m_len = len; n->m_next = NULL; off = 0; m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off); m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa)); m_sa->sadb_sa_exttype = SADB_EXT_SA; m_sa->sadb_sa_spi = htonl(spi); off += PFKEY_ALIGN8(sizeof(struct sadb_sa)); IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)", off, len)); n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); if (!n->m_next) { m_freem(n); return key_senderror(so, m, ENOBUFS); } if (n->m_len < sizeof(struct sadb_msg)) { n = m_pullup(n, sizeof(struct sadb_msg)); if (n == NULL) return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); } n->m_pkthdr.len = 0; for (nn = n; nn; nn = nn->m_next) n->m_pkthdr.len += nn->m_len; newmsg = mtod(n, struct sadb_msg *); newmsg->sadb_msg_seq = newsav->seq; newmsg->sadb_msg_errno = 0; newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); } } /* * allocating new SPI * called by key_getspi(). * OUT: * 0: failure. * others: success. */ static u_int32_t key_do_getnewspi(spirange, saidx) struct sadb_spirange *spirange; struct secasindex *saidx; { u_int32_t newspi; u_int32_t min, max; int count = V_key_spi_trycnt; /* set spi range to allocate */ if (spirange != NULL) { min = spirange->sadb_spirange_min; max = spirange->sadb_spirange_max; } else { min = V_key_spi_minval; max = V_key_spi_maxval; } /* IPCOMP needs 2-byte SPI */ if (saidx->proto == IPPROTO_IPCOMP) { u_int32_t t; if (min >= 0x10000) min = 0xffff; if (max >= 0x10000) max = 0xffff; if (min > max) { t = min; min = max; max = t; } } if (min == max) { if (key_checkspidup(saidx, min) != NULL) { ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n", __func__, min)); return 0; } count--; /* taking one cost. */ newspi = min; } else { /* init SPI */ newspi = 0; /* when requesting to allocate spi ranged */ while (count--) { /* generate pseudo-random SPI value ranged. */ newspi = min + (key_random() % (max - min + 1)); if (key_checkspidup(saidx, newspi) == NULL) break; } if (count == 0 || newspi == 0) { ipseclog((LOG_DEBUG, "%s: to allocate spi is failed.\n", __func__)); return 0; } } /* statistics */ keystat.getspi_count = (keystat.getspi_count + V_key_spi_trycnt - count) / 2; return newspi; } /* * SADB_UPDATE processing * receive * * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL. * and send * * to the ikmpd. * * m will always be freed. */ static int key_update(so, m, mhp) struct socket *so; struct mbuf *m; const struct sadb_msghdr *mhp; { struct sadb_sa *sa0; struct sadb_address *src0, *dst0; #ifdef IPSEC_NAT_T struct sadb_x_nat_t_type *type; struct sadb_x_nat_t_port *sport, *dport; struct sadb_address *iaddr, *raddr; struct sadb_x_nat_t_frag *frag; #endif struct secasindex saidx; struct secashead *sah; struct secasvar *sav; u_int16_t proto; u_int8_t mode; u_int32_t reqid; int error; IPSEC_ASSERT(so != NULL, ("null socket")); IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); /* map satype to proto */ if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } if (mhp->ext[SADB_EXT_SA] == NULL || mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } if (mhp->ext[SADB_X_EXT_SA2] != NULL) { mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; } else { mode = IPSEC_MODE_ANY; reqid = 0; } /* XXX boundary checking for other extensions */ sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); /* XXX boundary check against sa_len */ KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); /* * Make sure the port numbers are zero. * In case of NAT-T we will update them later if needed. */ KEY_PORTTOSADDR(&saidx.src, 0); KEY_PORTTOSADDR(&saidx.dst, 0); #ifdef IPSEC_NAT_T /* * Handle NAT-T info if present. */ if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL && mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) || mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { ipseclog((LOG_DEBUG, "%s: invalid message.\n", __func__)); return key_senderror(so, m, EINVAL); } type = (struct sadb_x_nat_t_type *) mhp->ext[SADB_X_EXT_NAT_T_TYPE]; sport = (struct sadb_x_nat_t_port *) mhp->ext[SADB_X_EXT_NAT_T_SPORT]; dport = (struct sadb_x_nat_t_port *) mhp->ext[SADB_X_EXT_NAT_T_DPORT]; } else { type = 0; sport = dport = 0; } if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL && mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) { if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) || mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) { ipseclog((LOG_DEBUG, "%s: invalid message\n", __func__)); return key_senderror(so, m, EINVAL); } iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI]; raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR]; ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__)); } else { iaddr = raddr = NULL; } if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) { if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) { ipseclog((LOG_DEBUG, "%s: invalid message\n", __func__)); return key_senderror(so, m, EINVAL); } frag = (struct sadb_x_nat_t_frag *) mhp->ext[SADB_X_EXT_NAT_T_FRAG]; } else { frag = 0; } #endif /* get a SA header */ if ((sah = key_getsah(&saidx)) == NULL) { ipseclog((LOG_DEBUG, "%s: no SA index found.\n", __func__)); return key_senderror(so, m, ENOENT); } /* set spidx if there */ /* XXX rewrite */ error = key_setident(sah, m, mhp); if (error) return key_senderror(so, m, error); /* find a SA with sequence number. */ #ifdef IPSEC_DOSEQCHECK if (mhp->msg->sadb_msg_seq != 0 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) { ipseclog((LOG_DEBUG, "%s: no larval SA with sequence %u " "exists.\n", __func__, mhp->msg->sadb_msg_seq)); return key_senderror(so, m, ENOENT); } #else SAHTREE_LOCK(); sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); SAHTREE_UNLOCK(); if (sav == NULL) { ipseclog((LOG_DEBUG, "%s: no such a SA found (spi:%u)\n", __func__, (u_int32_t)ntohl(sa0->sadb_sa_spi))); return key_senderror(so, m, EINVAL); } #endif /* validity check */ if (sav->sah->saidx.proto != proto) { ipseclog((LOG_DEBUG, "%s: protocol mismatched " "(DB=%u param=%u)\n", __func__, sav->sah->saidx.proto, proto)); return key_senderror(so, m, EINVAL); } #ifdef IPSEC_DOSEQCHECK if (sav->spi != sa0->sadb_sa_spi) { ipseclog((LOG_DEBUG, "%s: SPI mismatched (DB:%u param:%u)\n", __func__, (u_int32_t)ntohl(sav->spi), (u_int32_t)ntohl(sa0->sadb_sa_spi))); return key_senderror(so, m, EINVAL); } #endif if (sav->pid != mhp->msg->sadb_msg_pid) { ipseclog((LOG_DEBUG, "%s: pid mismatched (DB:%u param:%u)\n", __func__, sav->pid, mhp->msg->sadb_msg_pid)); return key_senderror(so, m, EINVAL); } /* copy sav values */ error = key_setsaval(sav, m, mhp); if (error) { KEY_FREESAV(&sav); return key_senderror(so, m, error); } #ifdef IPSEC_NAT_T /* * Handle more NAT-T info if present, * now that we have a sav to fill. */ if (type) sav->natt_type = type->sadb_x_nat_t_type_type; if (sport) KEY_PORTTOSADDR(&sav->sah->saidx.src, sport->sadb_x_nat_t_port_port); if (dport) KEY_PORTTOSADDR(&sav->sah->saidx.dst, dport->sadb_x_nat_t_port_port); #if 0 /* * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0. * We should actually check for a minimum MTU here, if we * want to support it in ip_output. */ if (frag) sav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen; #endif #endif /* check SA values to be mature. */ if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) { KEY_FREESAV(&sav); return key_senderror(so, m, 0); } { struct mbuf *n; /* set msg buf from mhp */ n = key_getmsgbuf_x1(m, mhp); if (n == NULL) { ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); return key_senderror(so, m, ENOBUFS); } m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); } } /* * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL. * only called by key_update(). * OUT: * NULL : not found * others : found, pointer to a SA. */ #ifdef IPSEC_DOSEQCHECK static struct secasvar * key_getsavbyseq(sah, seq) struct secashead *sah; u_int32_t seq; { struct secasvar *sav; u_int state; state = SADB_SASTATE_LARVAL; /* search SAD with sequence number ? */ LIST_FOREACH(sav, &sah->savtree[state], chain) { KEY_CHKSASTATE(state, sav->state, __func__); if (sav->seq == seq) { sa_addref(sav); KEYDEBUG(KEYDEBUG_IPSEC_STAMP, printf("DP %s cause refcnt++:%d SA:%p\n", __func__, sav->refcnt, sav)); return sav; } } return NULL; } #endif /* * SADB_ADD processing * add an entry to SA database, when received * * from the ikmpd, * and send * * to the ikmpd. * * IGNORE identity and sensitivity messages. * * m will always be freed. */ static int key_add(so, m, mhp) struct socket *so; struct mbuf *m; const struct sadb_msghdr *mhp; { struct sadb_sa *sa0; struct sadb_address *src0, *dst0; #ifdef IPSEC_NAT_T struct sadb_x_nat_t_type *type; struct sadb_address *iaddr, *raddr; struct sadb_x_nat_t_frag *frag; #endif struct secasindex saidx; struct secashead *newsah; struct secasvar *newsav; u_int16_t proto; u_int8_t mode; u_int32_t reqid; int error; IPSEC_ASSERT(so != NULL, ("null socket")); IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); /* map satype to proto */ if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } if (mhp->ext[SADB_EXT_SA] == NULL || mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { /* XXX need more */ ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } if (mhp->ext[SADB_X_EXT_SA2] != NULL) { mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; } else { mode = IPSEC_MODE_ANY; reqid = 0; } sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; /* XXX boundary check against sa_len */ KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); /* * Make sure the port numbers are zero. * In case of NAT-T we will update them later if needed. */ KEY_PORTTOSADDR(&saidx.src, 0); KEY_PORTTOSADDR(&saidx.dst, 0); #ifdef IPSEC_NAT_T /* * Handle NAT-T info if present. */ if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL && mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { struct sadb_x_nat_t_port *sport, *dport; if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) || mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { ipseclog((LOG_DEBUG, "%s: invalid message.\n", __func__)); return key_senderror(so, m, EINVAL); } type = (struct sadb_x_nat_t_type *) mhp->ext[SADB_X_EXT_NAT_T_TYPE]; sport = (struct sadb_x_nat_t_port *) mhp->ext[SADB_X_EXT_NAT_T_SPORT]; dport = (struct sadb_x_nat_t_port *) mhp->ext[SADB_X_EXT_NAT_T_DPORT]; if (sport) KEY_PORTTOSADDR(&saidx.src, sport->sadb_x_nat_t_port_port); if (dport) KEY_PORTTOSADDR(&saidx.dst, dport->sadb_x_nat_t_port_port); } else { type = 0; } if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL && mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) { if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) || mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) { ipseclog((LOG_DEBUG, "%s: invalid message\n", __func__)); return key_senderror(so, m, EINVAL); } iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI]; raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR]; ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__)); } else { iaddr = raddr = NULL; } if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) { if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) { ipseclog((LOG_DEBUG, "%s: invalid message\n", __func__)); return key_senderror(so, m, EINVAL); } frag = (struct sadb_x_nat_t_frag *) mhp->ext[SADB_X_EXT_NAT_T_FRAG]; } else { frag = 0; } #endif /* get a SA header */ if ((newsah = key_getsah(&saidx)) == NULL) { /* create a new SA header */ if ((newsah = key_newsah(&saidx)) == NULL) { ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); return key_senderror(so, m, ENOBUFS); } } /* set spidx if there */ /* XXX rewrite */ error = key_setident(newsah, m, mhp); if (error) { return key_senderror(so, m, error); } /* create new SA entry. */ /* We can create new SA only if SPI is differenct. */ SAHTREE_LOCK(); newsav = key_getsavbyspi(newsah, sa0->sadb_sa_spi); SAHTREE_UNLOCK(); if (newsav != NULL) { ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__)); return key_senderror(so, m, EEXIST); } newsav = KEY_NEWSAV(m, mhp, newsah, &error); if (newsav == NULL) { return key_senderror(so, m, error); } #ifdef IPSEC_NAT_T /* * Handle more NAT-T info if present, * now that we have a sav to fill. */ if (type) newsav->natt_type = type->sadb_x_nat_t_type_type; #if 0 /* * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0. * We should actually check for a minimum MTU here, if we * want to support it in ip_output. */ if (frag) newsav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen; #endif #endif /* check SA values to be mature. */ if ((error = key_mature(newsav)) != 0) { KEY_FREESAV(&newsav); return key_senderror(so, m, error); } /* * don't call key_freesav() here, as we would like to keep the SA * in the database on success. */ { struct mbuf *n; /* set msg buf from mhp */ n = key_getmsgbuf_x1(m, mhp); if (n == NULL) { ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); return key_senderror(so, m, ENOBUFS); } m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); } } /* m is retained */ static int key_setident(sah, m, mhp) struct secashead *sah; struct mbuf *m; const struct sadb_msghdr *mhp; { const struct sadb_ident *idsrc, *iddst; int idsrclen, iddstlen; IPSEC_ASSERT(sah != NULL, ("null secashead")); IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); /* don't make buffer if not there */ if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL && mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { sah->idents = NULL; sah->identd = NULL; return 0; } if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL || mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__)); return EINVAL; } idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC]; iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST]; idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC]; iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST]; /* validity check */ if (idsrc->sadb_ident_type != iddst->sadb_ident_type) { ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__)); return EINVAL; } switch (idsrc->sadb_ident_type) { case SADB_IDENTTYPE_PREFIX: case SADB_IDENTTYPE_FQDN: case SADB_IDENTTYPE_USERFQDN: default: /* XXX do nothing */ sah->idents = NULL; sah->identd = NULL; return 0; } /* make structure */ sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); if (sah->idents == NULL) { ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); return ENOBUFS; } sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); if (sah->identd == NULL) { free(sah->idents, M_IPSEC_MISC); sah->idents = NULL; ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); return ENOBUFS; } sah->idents->type = idsrc->sadb_ident_type; sah->idents->id = idsrc->sadb_ident_id; sah->identd->type = iddst->sadb_ident_type; sah->identd->id = iddst->sadb_ident_id; return 0; } /* * m will not be freed on return. * it is caller's responsibility to free the result. */ static struct mbuf * key_getmsgbuf_x1(m, mhp) struct mbuf *m; const struct sadb_msghdr *mhp; { struct mbuf *n; IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); /* create new sadb_msg to reply. */ n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED, SADB_EXT_SA, SADB_X_EXT_SA2, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST); if (!n) return NULL; if (n->m_len < sizeof(struct sadb_msg)) { n = m_pullup(n, sizeof(struct sadb_msg)); if (n == NULL) return NULL; } mtod(n, struct sadb_msg *)->sadb_msg_errno = 0; mtod(n, struct sadb_msg *)->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); return n; } static int key_delete_all __P((struct socket *, struct mbuf *, const struct sadb_msghdr *, u_int16_t)); /* * SADB_DELETE processing * receive * * from the ikmpd, and set SADB_SASTATE_DEAD, * and send, * * to the ikmpd. * * m will always be freed. */ static int key_delete(so, m, mhp) struct socket *so; struct mbuf *m; const struct sadb_msghdr *mhp; { struct sadb_sa *sa0; struct sadb_address *src0, *dst0; struct secasindex saidx; struct secashead *sah; struct secasvar *sav = NULL; u_int16_t proto; IPSEC_ASSERT(so != NULL, ("null socket")); IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); /* map satype to proto */ if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } if (mhp->ext[SADB_EXT_SA] == NULL) { /* * Caller wants us to delete all non-LARVAL SAs * that match the src/dst. This is used during * IKE INITIAL-CONTACT. */ ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__)); return key_delete_all(so, m, mhp, proto); } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) { ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); /* XXX boundary check against sa_len */ KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); /* * Make sure the port numbers are zero. * In case of NAT-T we will update them later if needed. */ KEY_PORTTOSADDR(&saidx.src, 0); KEY_PORTTOSADDR(&saidx.dst, 0); #ifdef IPSEC_NAT_T /* * Handle NAT-T info if present. */ if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { struct sadb_x_nat_t_port *sport, *dport; if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { ipseclog((LOG_DEBUG, "%s: invalid message.\n", __func__)); return key_senderror(so, m, EINVAL); } sport = (struct sadb_x_nat_t_port *) mhp->ext[SADB_X_EXT_NAT_T_SPORT]; dport = (struct sadb_x_nat_t_port *) mhp->ext[SADB_X_EXT_NAT_T_DPORT]; if (sport) KEY_PORTTOSADDR(&saidx.src, sport->sadb_x_nat_t_port_port); if (dport) KEY_PORTTOSADDR(&saidx.dst, dport->sadb_x_nat_t_port_port); } #endif /* get a SA header */ SAHTREE_LOCK(); LIST_FOREACH(sah, &V_sahtree, chain) { if (sah->state == SADB_SASTATE_DEAD) continue; if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) continue; /* get a SA with SPI. */ sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); if (sav) break; } if (sah == NULL) { SAHTREE_UNLOCK(); ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); return key_senderror(so, m, ENOENT); } key_sa_chgstate(sav, SADB_SASTATE_DEAD); KEY_FREESAV(&sav); SAHTREE_UNLOCK(); { struct mbuf *n; struct sadb_msg *newmsg; /* create new sadb_msg to reply. */ /* XXX-BZ NAT-T extensions? */ n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); if (!n) return key_senderror(so, m, ENOBUFS); if (n->m_len < sizeof(struct sadb_msg)) { n = m_pullup(n, sizeof(struct sadb_msg)); if (n == NULL) return key_senderror(so, m, ENOBUFS); } newmsg = mtod(n, struct sadb_msg *); newmsg->sadb_msg_errno = 0; newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); } } /* * delete all SAs for src/dst. Called from key_delete(). */ static int key_delete_all(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp, u_int16_t proto) { struct sadb_address *src0, *dst0; struct secasindex saidx; struct secashead *sah; struct secasvar *sav, *nextsav; u_int stateidx, state; src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); /* XXX boundary check against sa_len */ KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); /* * Make sure the port numbers are zero. * In case of NAT-T we will update them later if needed. */ KEY_PORTTOSADDR(&saidx.src, 0); KEY_PORTTOSADDR(&saidx.dst, 0); #ifdef IPSEC_NAT_T /* * Handle NAT-T info if present. */ if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { struct sadb_x_nat_t_port *sport, *dport; if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { ipseclog((LOG_DEBUG, "%s: invalid message.\n", __func__)); return key_senderror(so, m, EINVAL); } sport = (struct sadb_x_nat_t_port *) mhp->ext[SADB_X_EXT_NAT_T_SPORT]; dport = (struct sadb_x_nat_t_port *) mhp->ext[SADB_X_EXT_NAT_T_DPORT]; if (sport) KEY_PORTTOSADDR(&saidx.src, sport->sadb_x_nat_t_port_port); if (dport) KEY_PORTTOSADDR(&saidx.dst, dport->sadb_x_nat_t_port_port); } #endif SAHTREE_LOCK(); LIST_FOREACH(sah, &V_sahtree, chain) { if (sah->state == SADB_SASTATE_DEAD) continue; if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) continue; /* Delete all non-LARVAL SAs. */ for (stateidx = 0; stateidx < _ARRAYLEN(saorder_state_alive); stateidx++) { state = saorder_state_alive[stateidx]; if (state == SADB_SASTATE_LARVAL) continue; for (sav = LIST_FIRST(&sah->savtree[state]); sav != NULL; sav = nextsav) { nextsav = LIST_NEXT(sav, chain); /* sanity check */ if (sav->state != state) { ipseclog((LOG_DEBUG, "%s: invalid " "sav->state (queue %d SA %d)\n", __func__, state, sav->state)); continue; } key_sa_chgstate(sav, SADB_SASTATE_DEAD); KEY_FREESAV(&sav); } } } SAHTREE_UNLOCK(); { struct mbuf *n; struct sadb_msg *newmsg; /* create new sadb_msg to reply. */ /* XXX-BZ NAT-T extensions? */ n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); if (!n) return key_senderror(so, m, ENOBUFS); if (n->m_len < sizeof(struct sadb_msg)) { n = m_pullup(n, sizeof(struct sadb_msg)); if (n == NULL) return key_senderror(so, m, ENOBUFS); } newmsg = mtod(n, struct sadb_msg *); newmsg->sadb_msg_errno = 0; newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); } } /* * SADB_GET processing * receive * * from the ikmpd, and get a SP and a SA to respond, * and send, * * to the ikmpd. * * m will always be freed. */ static int key_get(so, m, mhp) struct socket *so; struct mbuf *m; const struct sadb_msghdr *mhp; { struct sadb_sa *sa0; struct sadb_address *src0, *dst0; struct secasindex saidx; struct secashead *sah; struct secasvar *sav = NULL; u_int16_t proto; IPSEC_ASSERT(so != NULL, ("null socket")); IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); /* map satype to proto */ if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } if (mhp->ext[SADB_EXT_SA] == NULL || mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; /* XXX boundary check against sa_len */ KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); /* * Make sure the port numbers are zero. * In case of NAT-T we will update them later if needed. */ KEY_PORTTOSADDR(&saidx.src, 0); KEY_PORTTOSADDR(&saidx.dst, 0); #ifdef IPSEC_NAT_T /* * Handle NAT-T info if present. */ if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { struct sadb_x_nat_t_port *sport, *dport; if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { ipseclog((LOG_DEBUG, "%s: invalid message.\n", __func__)); return key_senderror(so, m, EINVAL); } sport = (struct sadb_x_nat_t_port *) mhp->ext[SADB_X_EXT_NAT_T_SPORT]; dport = (struct sadb_x_nat_t_port *) mhp->ext[SADB_X_EXT_NAT_T_DPORT]; if (sport) KEY_PORTTOSADDR(&saidx.src, sport->sadb_x_nat_t_port_port); if (dport) KEY_PORTTOSADDR(&saidx.dst, dport->sadb_x_nat_t_port_port); } #endif /* get a SA header */ SAHTREE_LOCK(); LIST_FOREACH(sah, &V_sahtree, chain) { if (sah->state == SADB_SASTATE_DEAD) continue; if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) continue; /* get a SA with SPI. */ sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); if (sav) break; } SAHTREE_UNLOCK(); if (sah == NULL) { ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); return key_senderror(so, m, ENOENT); } { struct mbuf *n; u_int8_t satype; /* map proto to satype */ if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n", __func__)); return key_senderror(so, m, EINVAL); } /* create new sadb_msg to reply. */ n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq, mhp->msg->sadb_msg_pid); if (!n) return key_senderror(so, m, ENOBUFS); m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); } } /* XXX make it sysctl-configurable? */ static void key_getcomb_setlifetime(comb) struct sadb_comb *comb; { comb->sadb_comb_soft_allocations = 1; comb->sadb_comb_hard_allocations = 1; comb->sadb_comb_soft_bytes = 0; comb->sadb_comb_hard_bytes = 0; comb->sadb_comb_hard_addtime = 86400; /* 1 day */ comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100; comb->sadb_comb_soft_usetime = 28800; /* 8 hours */ comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100; } /* * XXX reorder combinations by preference * XXX no idea if the user wants ESP authentication or not */ static struct mbuf * key_getcomb_esp() { struct sadb_comb *comb; struct enc_xform *algo; struct mbuf *result = NULL, *m, *n; int encmin; int i, off, o; int totlen; const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); m = NULL; for (i = 1; i <= SADB_EALG_MAX; i++) { algo = esp_algorithm_lookup(i); if (algo == NULL) continue; /* discard algorithms with key size smaller than system min */ if (_BITS(algo->maxkey) < V_ipsec_esp_keymin) continue; if (_BITS(algo->minkey) < V_ipsec_esp_keymin) encmin = V_ipsec_esp_keymin; else encmin = _BITS(algo->minkey); if (V_ipsec_esp_auth) m = key_getcomb_ah(); else { IPSEC_ASSERT(l <= MLEN, ("l=%u > MLEN=%lu", l, (u_long) MLEN)); MGET(m, M_DONTWAIT, MT_DATA); if (m) { M_ALIGN(m, l); m->m_len = l; m->m_next = NULL; bzero(mtod(m, caddr_t), m->m_len); } } if (!m) goto fail; totlen = 0; for (n = m; n; n = n->m_next) totlen += n->m_len; IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l)); for (off = 0; off < totlen; off += l) { n = m_pulldown(m, off, l, &o); if (!n) { /* m is already freed */ goto fail; } comb = (struct sadb_comb *)(mtod(n, caddr_t) + o); bzero(comb, sizeof(*comb)); key_getcomb_setlifetime(comb); comb->sadb_comb_encrypt = i; comb->sadb_comb_encrypt_minbits = encmin; comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey); } if (!result) result = m; else m_cat(result, m); } return result; fail: if (result) m_freem(result); return NULL; } static void key_getsizes_ah( const struct auth_hash *ah, int alg, u_int16_t* min, u_int16_t* max) { *min = *max = ah->keysize; if (ah->keysize == 0) { /* * Transform takes arbitrary key size but algorithm * key size is restricted. Enforce this here. */ switch (alg) { case SADB_X_AALG_MD5: *min = *max = 16; break; case SADB_X_AALG_SHA: *min = *max = 20; break; case SADB_X_AALG_NULL: *min = 1; *max = 256; break; case SADB_X_AALG_SHA2_256: *min = *max = 32; break; case SADB_X_AALG_SHA2_384: *min = *max = 48; break; case SADB_X_AALG_SHA2_512: *min = *max = 64; break; default: DPRINTF(("%s: unknown AH algorithm %u\n", __func__, alg)); break; } } } /* * XXX reorder combinations by preference */ static struct mbuf * key_getcomb_ah() { struct sadb_comb *comb; struct auth_hash *algo; struct mbuf *m; u_int16_t minkeysize, maxkeysize; int i; const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); m = NULL; for (i = 1; i <= SADB_AALG_MAX; i++) { #if 1 /* we prefer HMAC algorithms, not old algorithms */ if (i != SADB_AALG_SHA1HMAC && i != SADB_AALG_MD5HMAC && i != SADB_X_AALG_SHA2_256 && i != SADB_X_AALG_SHA2_384 && i != SADB_X_AALG_SHA2_512) continue; #endif algo = ah_algorithm_lookup(i); if (!algo) continue; key_getsizes_ah(algo, i, &minkeysize, &maxkeysize); /* discard algorithms with key size smaller than system min */ if (_BITS(minkeysize) < V_ipsec_ah_keymin) continue; if (!m) { IPSEC_ASSERT(l <= MLEN, ("l=%u > MLEN=%lu", l, (u_long) MLEN)); MGET(m, M_DONTWAIT, MT_DATA); if (m) { M_ALIGN(m, l); m->m_len = l; m->m_next = NULL; } } else M_PREPEND(m, l, M_DONTWAIT); if (!m) return NULL; comb = mtod(m, struct sadb_comb *); bzero(comb, sizeof(*comb)); key_getcomb_setlifetime(comb); comb->sadb_comb_auth = i; comb->sadb_comb_auth_minbits = _BITS(minkeysize); comb->sadb_comb_auth_maxbits = _BITS(maxkeysize); } return m; } /* * not really an official behavior. discussed in pf_key@inner.net in Sep2000. * XXX reorder combinations by preference */ static struct mbuf * key_getcomb_ipcomp() { struct sadb_comb *comb; struct comp_algo *algo; struct mbuf *m; int i; const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); m = NULL; for (i = 1; i <= SADB_X_CALG_MAX; i++) { algo = ipcomp_algorithm_lookup(i); if (!algo) continue; if (!m) { IPSEC_ASSERT(l <= MLEN, ("l=%u > MLEN=%lu", l, (u_long) MLEN)); MGET(m, M_DONTWAIT, MT_DATA); if (m) { M_ALIGN(m, l); m->m_len = l; m->m_next = NULL; } } else M_PREPEND(m, l, M_DONTWAIT); if (!m) return NULL; comb = mtod(m, struct sadb_comb *); bzero(comb, sizeof(*comb)); key_getcomb_setlifetime(comb); comb->sadb_comb_encrypt = i; /* what should we set into sadb_comb_*_{min,max}bits? */ } return m; } /* * XXX no way to pass mode (transport/tunnel) to userland * XXX replay checking? * XXX sysctl interface to ipsec_{ah,esp}_keymin */ static struct mbuf * key_getprop(saidx) const struct secasindex *saidx; { struct sadb_prop *prop; struct mbuf *m, *n; const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop)); int totlen; switch (saidx->proto) { case IPPROTO_ESP: m = key_getcomb_esp(); break; case IPPROTO_AH: m = key_getcomb_ah(); break; case IPPROTO_IPCOMP: m = key_getcomb_ipcomp(); break; default: return NULL; } if (!m) return NULL; M_PREPEND(m, l, M_DONTWAIT); if (!m) return NULL; totlen = 0; for (n = m; n; n = n->m_next) totlen += n->m_len; prop = mtod(m, struct sadb_prop *); bzero(prop, sizeof(*prop)); prop->sadb_prop_len = PFKEY_UNIT64(totlen); prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; prop->sadb_prop_replay = 32; /* XXX */ return m; } /* * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2(). * send * * to KMD, and expect to receive * with SADB_ACQUIRE if error occured, * or * with SADB_GETSPI * from KMD by PF_KEY. * * XXX x_policy is outside of RFC2367 (KAME extension). * XXX sensitivity is not supported. * XXX for ipcomp, RFC2367 does not define how to fill in proposal. * see comment for key_getcomb_ipcomp(). * * OUT: * 0 : succeed * others: error number */ static int key_acquire(const struct secasindex *saidx, struct secpolicy *sp) { struct mbuf *result = NULL, *m; struct secacq *newacq; u_int8_t satype; int error = -1; u_int32_t seq; IPSEC_ASSERT(saidx != NULL, ("null saidx")); satype = key_proto2satype(saidx->proto); IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto)); /* * We never do anything about acquirng SA. There is anather * solution that kernel blocks to send SADB_ACQUIRE message until * getting something message from IKEd. In later case, to be * managed with ACQUIRING list. */ /* Get an entry to check whether sending message or not. */ if ((newacq = key_getacq(saidx)) != NULL) { if (V_key_blockacq_count < newacq->count) { /* reset counter and do send message. */ newacq->count = 0; } else { /* increment counter and do nothing. */ newacq->count++; return 0; } } else { /* make new entry for blocking to send SADB_ACQUIRE. */ if ((newacq = key_newacq(saidx)) == NULL) return ENOBUFS; } seq = newacq->seq; m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0); if (!m) { error = ENOBUFS; goto fail; } result = m; /* * No SADB_X_EXT_NAT_T_* here: we do not know * anything related to NAT-T at this time. */ /* set sadb_address for saidx's. */ m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY); if (!m) { error = ENOBUFS; goto fail; } m_cat(result, m); m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY); if (!m) { error = ENOBUFS; goto fail; } m_cat(result, m); /* XXX proxy address (optional) */ /* set sadb_x_policy */ if (sp) { m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id); if (!m) { error = ENOBUFS; goto fail; } m_cat(result, m); } /* XXX identity (optional) */ #if 0 if (idexttype && fqdn) { /* create identity extension (FQDN) */ struct sadb_ident *id; int fqdnlen; fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */ id = (struct sadb_ident *)p; bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); id->sadb_ident_exttype = idexttype; id->sadb_ident_type = SADB_IDENTTYPE_FQDN; bcopy(fqdn, id + 1, fqdnlen); p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen); } if (idexttype) { /* create identity extension (USERFQDN) */ struct sadb_ident *id; int userfqdnlen; if (userfqdn) { /* +1 for terminating-NUL */ userfqdnlen = strlen(userfqdn) + 1; } else userfqdnlen = 0; id = (struct sadb_ident *)p; bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); id->sadb_ident_exttype = idexttype; id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN; /* XXX is it correct? */ if (curproc && curproc->p_cred) id->sadb_ident_id = curproc->p_cred->p_ruid; if (userfqdn && userfqdnlen) bcopy(userfqdn, id + 1, userfqdnlen); p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen); } #endif /* XXX sensitivity (optional) */ /* create proposal/combination extension */ m = key_getprop(saidx); #if 0 /* * spec conformant: always attach proposal/combination extension, * the problem is that we have no way to attach it for ipcomp, * due to the way sadb_comb is declared in RFC2367. */ if (!m) { error = ENOBUFS; goto fail; } m_cat(result, m); #else /* * outside of spec; make proposal/combination extension optional. */ if (m) m_cat(result, m); #endif if ((result->m_flags & M_PKTHDR) == 0) { error = EINVAL; goto fail; } if (result->m_len < sizeof(struct sadb_msg)) { result = m_pullup(result, sizeof(struct sadb_msg)); if (result == NULL) { error = ENOBUFS; goto fail; } } result->m_pkthdr.len = 0; for (m = result; m; m = m->m_next) result->m_pkthdr.len += m->m_len; mtod(result, struct sadb_msg *)->sadb_msg_len = PFKEY_UNIT64(result->m_pkthdr.len); return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); fail: if (result) m_freem(result); return error; } static struct secacq * key_newacq(const struct secasindex *saidx) { struct secacq *newacq; /* get new entry */ newacq = malloc(sizeof(struct secacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); if (newacq == NULL) { ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); return NULL; } /* copy secindex */ bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx)); newacq->seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq); newacq->created = time_second; newacq->count = 0; /* add to acqtree */ ACQ_LOCK(); LIST_INSERT_HEAD(&V_acqtree, newacq, chain); ACQ_UNLOCK(); return newacq; } static struct secacq * key_getacq(const struct secasindex *saidx) { struct secacq *acq; ACQ_LOCK(); LIST_FOREACH(acq, &V_acqtree, chain) { if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY)) break; } ACQ_UNLOCK(); return acq; } static struct secacq * key_getacqbyseq(seq) u_int32_t seq; { struct secacq *acq; ACQ_LOCK(); LIST_FOREACH(acq, &V_acqtree, chain) { if (acq->seq == seq) break; } ACQ_UNLOCK(); return acq; } static struct secspacq * key_newspacq(spidx) struct secpolicyindex *spidx; { struct secspacq *acq; /* get new entry */ acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); if (acq == NULL) { ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); return NULL; } /* copy secindex */ bcopy(spidx, &acq->spidx, sizeof(acq->spidx)); acq->created = time_second; acq->count = 0; /* add to spacqtree */ SPACQ_LOCK(); LIST_INSERT_HEAD(&V_spacqtree, acq, chain); SPACQ_UNLOCK(); return acq; } static struct secspacq * key_getspacq(spidx) struct secpolicyindex *spidx; { struct secspacq *acq; SPACQ_LOCK(); LIST_FOREACH(acq, &V_spacqtree, chain) { if (key_cmpspidx_exactly(spidx, &acq->spidx)) { /* NB: return holding spacq_lock */ return acq; } } SPACQ_UNLOCK(); return NULL; } /* * SADB_ACQUIRE processing, * in first situation, is receiving * * from the ikmpd, and clear sequence of its secasvar entry. * * In second situation, is receiving * * from a user land process, and return * * to the socket. * * m will always be freed. */ static int key_acquire2(so, m, mhp) struct socket *so; struct mbuf *m; const struct sadb_msghdr *mhp; { const struct sadb_address *src0, *dst0; struct secasindex saidx; struct secashead *sah; u_int16_t proto; int error; IPSEC_ASSERT(so != NULL, ("null socket")); IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); /* * Error message from KMd. * We assume that if error was occured in IKEd, the length of PFKEY * message is equal to the size of sadb_msg structure. * We do not raise error even if error occured in this function. */ if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) { struct secacq *acq; /* check sequence number */ if (mhp->msg->sadb_msg_seq == 0) { ipseclog((LOG_DEBUG, "%s: must specify sequence " "number.\n", __func__)); m_freem(m); return 0; } if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) { /* * the specified larval SA is already gone, or we got * a bogus sequence number. we can silently ignore it. */ m_freem(m); return 0; } /* reset acq counter in order to deletion by timehander. */ acq->created = time_second; acq->count = 0; m_freem(m); return 0; } /* * This message is from user land. */ /* map satype to proto */ if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || mhp->ext[SADB_EXT_PROPOSAL] == NULL) { /* error */ ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) { /* error */ ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; /* XXX boundary check against sa_len */ KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); /* * Make sure the port numbers are zero. * In case of NAT-T we will update them later if needed. */ KEY_PORTTOSADDR(&saidx.src, 0); KEY_PORTTOSADDR(&saidx.dst, 0); #ifndef IPSEC_NAT_T /* * Handle NAT-T info if present. */ if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { struct sadb_x_nat_t_port *sport, *dport; if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { ipseclog((LOG_DEBUG, "%s: invalid message.\n", __func__)); return key_senderror(so, m, EINVAL); } sport = (struct sadb_x_nat_t_port *) mhp->ext[SADB_X_EXT_NAT_T_SPORT]; dport = (struct sadb_x_nat_t_port *) mhp->ext[SADB_X_EXT_NAT_T_DPORT]; if (sport) KEY_PORTTOSADDR(&saidx.src, sport->sadb_x_nat_t_port_port); if (dport) KEY_PORTTOSADDR(&saidx.dst, dport->sadb_x_nat_t_port_port); } #endif /* get a SA index */ SAHTREE_LOCK(); LIST_FOREACH(sah, &V_sahtree, chain) { if (sah->state == SADB_SASTATE_DEAD) continue; if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID)) break; } SAHTREE_UNLOCK(); if (sah != NULL) { ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__)); return key_senderror(so, m, EEXIST); } error = key_acquire(&saidx, NULL); if (error != 0) { ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n", __func__, mhp->msg->sadb_msg_errno)); return key_senderror(so, m, error); } return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED); } /* * SADB_REGISTER processing. * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported. * receive * * from the ikmpd, and register a socket to send PF_KEY messages, * and send * * to KMD by PF_KEY. * If socket is detached, must free from regnode. * * m will always be freed. */ static int key_register(so, m, mhp) struct socket *so; struct mbuf *m; const struct sadb_msghdr *mhp; { struct secreg *reg, *newreg = 0; IPSEC_ASSERT(so != NULL, ("null socket")); IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); /* check for invalid register message */ if (mhp->msg->sadb_msg_satype >= sizeof(V_regtree)/sizeof(V_regtree[0])) return key_senderror(so, m, EINVAL); /* When SATYPE_UNSPEC is specified, only return sabd_supported. */ if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC) goto setmsg; /* check whether existing or not */ REGTREE_LOCK(); LIST_FOREACH(reg, &V_regtree[mhp->msg->sadb_msg_satype], chain) { if (reg->so == so) { REGTREE_UNLOCK(); ipseclog((LOG_DEBUG, "%s: socket exists already.\n", __func__)); return key_senderror(so, m, EEXIST); } } /* create regnode */ newreg = malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO); if (newreg == NULL) { REGTREE_UNLOCK(); ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); return key_senderror(so, m, ENOBUFS); } newreg->so = so; ((struct keycb *)sotorawcb(so))->kp_registered++; /* add regnode to regtree. */ LIST_INSERT_HEAD(&V_regtree[mhp->msg->sadb_msg_satype], newreg, chain); REGTREE_UNLOCK(); setmsg: { struct mbuf *n; struct sadb_msg *newmsg; struct sadb_supported *sup; u_int len, alen, elen; int off; int i; struct sadb_alg *alg; /* create new sadb_msg to reply. */ alen = 0; for (i = 1; i <= SADB_AALG_MAX; i++) { if (ah_algorithm_lookup(i)) alen += sizeof(struct sadb_alg); } if (alen) alen += sizeof(struct sadb_supported); elen = 0; for (i = 1; i <= SADB_EALG_MAX; i++) { if (esp_algorithm_lookup(i)) elen += sizeof(struct sadb_alg); } if (elen) elen += sizeof(struct sadb_supported); len = sizeof(struct sadb_msg) + alen + elen; if (len > MCLBYTES) return key_senderror(so, m, ENOBUFS); MGETHDR(n, M_DONTWAIT, MT_DATA); if (len > MHLEN) { MCLGET(n, M_DONTWAIT); if ((n->m_flags & M_EXT) == 0) { m_freem(n); n = NULL; } } if (!n) return key_senderror(so, m, ENOBUFS); n->m_pkthdr.len = n->m_len = len; n->m_next = NULL; off = 0; m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); newmsg = mtod(n, struct sadb_msg *); newmsg->sadb_msg_errno = 0; newmsg->sadb_msg_len = PFKEY_UNIT64(len); off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); /* for authentication algorithm */ if (alen) { sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); sup->sadb_supported_len = PFKEY_UNIT64(alen); sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; off += PFKEY_ALIGN8(sizeof(*sup)); for (i = 1; i <= SADB_AALG_MAX; i++) { struct auth_hash *aalgo; u_int16_t minkeysize, maxkeysize; aalgo = ah_algorithm_lookup(i); if (!aalgo) continue; alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); alg->sadb_alg_id = i; alg->sadb_alg_ivlen = 0; key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize); alg->sadb_alg_minbits = _BITS(minkeysize); alg->sadb_alg_maxbits = _BITS(maxkeysize); off += PFKEY_ALIGN8(sizeof(*alg)); } } /* for encryption algorithm */ if (elen) { sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); sup->sadb_supported_len = PFKEY_UNIT64(elen); sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT; off += PFKEY_ALIGN8(sizeof(*sup)); for (i = 1; i <= SADB_EALG_MAX; i++) { struct enc_xform *ealgo; ealgo = esp_algorithm_lookup(i); if (!ealgo) continue; alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); alg->sadb_alg_id = i; alg->sadb_alg_ivlen = ealgo->blocksize; alg->sadb_alg_minbits = _BITS(ealgo->minkey); alg->sadb_alg_maxbits = _BITS(ealgo->maxkey); off += PFKEY_ALIGN8(sizeof(struct sadb_alg)); } } IPSEC_ASSERT(off == len, ("length assumption failed (off %u len %u)", off, len)); m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED); } } /* * free secreg entry registered. * XXX: I want to do free a socket marked done SADB_RESIGER to socket. */ void key_freereg(struct socket *so) { struct secreg *reg; int i; IPSEC_ASSERT(so != NULL, ("NULL so")); /* * check whether existing or not. * check all type of SA, because there is a potential that * one socket is registered to multiple type of SA. */ REGTREE_LOCK(); for (i = 0; i <= SADB_SATYPE_MAX; i++) { LIST_FOREACH(reg, &V_regtree[i], chain) { if (reg->so == so && __LIST_CHAINED(reg)) { LIST_REMOVE(reg, chain); free(reg, M_IPSEC_SAR); break; } } } REGTREE_UNLOCK(); } /* * SADB_EXPIRE processing * send * * to KMD by PF_KEY. * NOTE: We send only soft lifetime extension. * * OUT: 0 : succeed * others : error number */ static int key_expire(struct secasvar *sav) { int satype; struct mbuf *result = NULL, *m; int len; int error = -1; struct sadb_lifetime *lt; IPSEC_ASSERT (sav != NULL, ("null sav")); IPSEC_ASSERT (sav->sah != NULL, ("null sa header")); /* set msg header */ satype = key_proto2satype(sav->sah->saidx.proto); IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype)); m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt); if (!m) { error = ENOBUFS; goto fail; } result = m; /* create SA extension */ m = key_setsadbsa(sav); if (!m) { error = ENOBUFS; goto fail; } m_cat(result, m); /* create SA extension */ m = key_setsadbxsa2(sav->sah->saidx.mode, sav->replay ? sav->replay->count : 0, sav->sah->saidx.reqid); if (!m) { error = ENOBUFS; goto fail; } m_cat(result, m); /* create lifetime extension (current and soft) */ len = PFKEY_ALIGN8(sizeof(*lt)) * 2; m = key_alloc_mbuf(len); if (!m || m->m_next) { /*XXX*/ if (m) m_freem(m); error = ENOBUFS; goto fail; } bzero(mtod(m, caddr_t), len); lt = mtod(m, struct sadb_lifetime *); lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; lt->sadb_lifetime_allocations = sav->lft_c->allocations; lt->sadb_lifetime_bytes = sav->lft_c->bytes; lt->sadb_lifetime_addtime = sav->lft_c->addtime; lt->sadb_lifetime_usetime = sav->lft_c->usetime; lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT; lt->sadb_lifetime_allocations = sav->lft_s->allocations; lt->sadb_lifetime_bytes = sav->lft_s->bytes; lt->sadb_lifetime_addtime = sav->lft_s->addtime; lt->sadb_lifetime_usetime = sav->lft_s->usetime; m_cat(result, m); /* set sadb_address for source */ m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa, FULLMASK, IPSEC_ULPROTO_ANY); if (!m) { error = ENOBUFS; goto fail; } m_cat(result, m); /* set sadb_address for destination */ m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.dst.sa, FULLMASK, IPSEC_ULPROTO_ANY); if (!m) { error = ENOBUFS; goto fail; } m_cat(result, m); /* * XXX-BZ Handle NAT-T extensions here. */ if ((result->m_flags & M_PKTHDR) == 0) { error = EINVAL; goto fail; } if (result->m_len < sizeof(struct sadb_msg)) { result = m_pullup(result, sizeof(struct sadb_msg)); if (result == NULL) { error = ENOBUFS; goto fail; } } result->m_pkthdr.len = 0; for (m = result; m; m = m->m_next) result->m_pkthdr.len += m->m_len; mtod(result, struct sadb_msg *)->sadb_msg_len = PFKEY_UNIT64(result->m_pkthdr.len); return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); fail: if (result) m_freem(result); return error; } /* * SADB_FLUSH processing * receive * * from the ikmpd, and free all entries in secastree. * and send, * * to the ikmpd. * NOTE: to do is only marking SADB_SASTATE_DEAD. * * m will always be freed. */ static int key_flush(so, m, mhp) struct socket *so; struct mbuf *m; const struct sadb_msghdr *mhp; { struct sadb_msg *newmsg; struct secashead *sah, *nextsah; struct secasvar *sav, *nextsav; u_int16_t proto; u_int8_t state; u_int stateidx; IPSEC_ASSERT(so != NULL, ("null socket")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); /* map satype to proto */ if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } /* no SATYPE specified, i.e. flushing all SA. */ SAHTREE_LOCK(); for (sah = LIST_FIRST(&V_sahtree); sah != NULL; sah = nextsah) { nextsah = LIST_NEXT(sah, chain); if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC && proto != sah->saidx.proto) continue; for (stateidx = 0; stateidx < _ARRAYLEN(saorder_state_alive); stateidx++) { state = saorder_state_any[stateidx]; for (sav = LIST_FIRST(&sah->savtree[state]); sav != NULL; sav = nextsav) { nextsav = LIST_NEXT(sav, chain); key_sa_chgstate(sav, SADB_SASTATE_DEAD); KEY_FREESAV(&sav); } } sah->state = SADB_SASTATE_DEAD; } SAHTREE_UNLOCK(); if (m->m_len < sizeof(struct sadb_msg) || sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); return key_senderror(so, m, ENOBUFS); } if (m->m_next) m_freem(m->m_next); m->m_next = NULL; m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg); newmsg = mtod(m, struct sadb_msg *); newmsg->sadb_msg_errno = 0; newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); } /* * SADB_DUMP processing * dump all entries including status of DEAD in SAD. * receive * * from the ikmpd, and dump all secasvar leaves * and send, * ..... * to the ikmpd. * * m will always be freed. */ static int key_dump(so, m, mhp) struct socket *so; struct mbuf *m; const struct sadb_msghdr *mhp; { struct secashead *sah; struct secasvar *sav; u_int16_t proto; u_int stateidx; u_int8_t satype; u_int8_t state; int cnt; struct sadb_msg *newmsg; struct mbuf *n; IPSEC_ASSERT(so != NULL, ("null socket")); IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); /* map satype to proto */ if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } /* count sav entries to be sent to the userland. */ cnt = 0; SAHTREE_LOCK(); LIST_FOREACH(sah, &V_sahtree, chain) { if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC && proto != sah->saidx.proto) continue; for (stateidx = 0; stateidx < _ARRAYLEN(saorder_state_any); stateidx++) { state = saorder_state_any[stateidx]; LIST_FOREACH(sav, &sah->savtree[state], chain) { cnt++; } } } if (cnt == 0) { SAHTREE_UNLOCK(); return key_senderror(so, m, ENOENT); } /* send this to the userland, one at a time. */ newmsg = NULL; LIST_FOREACH(sah, &V_sahtree, chain) { if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC && proto != sah->saidx.proto) continue; /* map proto to satype */ if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { SAHTREE_UNLOCK(); ipseclog((LOG_DEBUG, "%s: there was invalid proto in " "SAD.\n", __func__)); return key_senderror(so, m, EINVAL); } for (stateidx = 0; stateidx < _ARRAYLEN(saorder_state_any); stateidx++) { state = saorder_state_any[stateidx]; LIST_FOREACH(sav, &sah->savtree[state], chain) { n = key_setdumpsa(sav, SADB_DUMP, satype, --cnt, mhp->msg->sadb_msg_pid); if (!n) { SAHTREE_UNLOCK(); return key_senderror(so, m, ENOBUFS); } key_sendup_mbuf(so, n, KEY_SENDUP_ONE); } } } SAHTREE_UNLOCK(); m_freem(m); return 0; } /* * SADB_X_PROMISC processing * * m will always be freed. */ static int key_promisc(so, m, mhp) struct socket *so; struct mbuf *m; const struct sadb_msghdr *mhp; { int olen; IPSEC_ASSERT(so != NULL, ("null socket")); IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); if (olen < sizeof(struct sadb_msg)) { #if 1 return key_senderror(so, m, EINVAL); #else m_freem(m); return 0; #endif } else if (olen == sizeof(struct sadb_msg)) { /* enable/disable promisc mode */ struct keycb *kp; if ((kp = (struct keycb *)sotorawcb(so)) == NULL) return key_senderror(so, m, EINVAL); mhp->msg->sadb_msg_errno = 0; switch (mhp->msg->sadb_msg_satype) { case 0: case 1: kp->kp_promisc = mhp->msg->sadb_msg_satype; break; default: return key_senderror(so, m, EINVAL); } /* send the original message back to everyone */ mhp->msg->sadb_msg_errno = 0; return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); } else { /* send packet as is */ m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg))); /* TODO: if sadb_msg_seq is specified, send to specific pid */ return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); } } static int (*key_typesw[]) __P((struct socket *, struct mbuf *, const struct sadb_msghdr *)) = { NULL, /* SADB_RESERVED */ key_getspi, /* SADB_GETSPI */ key_update, /* SADB_UPDATE */ key_add, /* SADB_ADD */ key_delete, /* SADB_DELETE */ key_get, /* SADB_GET */ key_acquire2, /* SADB_ACQUIRE */ key_register, /* SADB_REGISTER */ NULL, /* SADB_EXPIRE */ key_flush, /* SADB_FLUSH */ key_dump, /* SADB_DUMP */ key_promisc, /* SADB_X_PROMISC */ NULL, /* SADB_X_PCHANGE */ key_spdadd, /* SADB_X_SPDUPDATE */ key_spdadd, /* SADB_X_SPDADD */ key_spddelete, /* SADB_X_SPDDELETE */ key_spdget, /* SADB_X_SPDGET */ NULL, /* SADB_X_SPDACQUIRE */ key_spddump, /* SADB_X_SPDDUMP */ key_spdflush, /* SADB_X_SPDFLUSH */ key_spdadd, /* SADB_X_SPDSETIDX */ NULL, /* SADB_X_SPDEXPIRE */ key_spddelete2, /* SADB_X_SPDDELETE2 */ }; /* * parse sadb_msg buffer to process PFKEYv2, * and create a data to response if needed. * I think to be dealed with mbuf directly. * IN: * msgp : pointer to pointer to a received buffer pulluped. * This is rewrited to response. * so : pointer to socket. * OUT: * length for buffer to send to user process. */ int key_parse(m, so) struct mbuf *m; struct socket *so; { struct sadb_msg *msg; struct sadb_msghdr mh; u_int orglen; int error; int target; IPSEC_ASSERT(so != NULL, ("null socket")); IPSEC_ASSERT(m != NULL, ("null mbuf")); #if 0 /*kdebug_sadb assumes msg in linear buffer*/ KEYDEBUG(KEYDEBUG_KEY_DUMP, ipseclog((LOG_DEBUG, "%s: passed sadb_msg\n", __func__)); kdebug_sadb(msg)); #endif if (m->m_len < sizeof(struct sadb_msg)) { m = m_pullup(m, sizeof(struct sadb_msg)); if (!m) return ENOBUFS; } msg = mtod(m, struct sadb_msg *); orglen = PFKEY_UNUNIT64(msg->sadb_msg_len); target = KEY_SENDUP_ONE; if ((m->m_flags & M_PKTHDR) == 0 || m->m_pkthdr.len != m->m_pkthdr.len) { ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__)); V_pfkeystat.out_invlen++; error = EINVAL; goto senderror; } if (msg->sadb_msg_version != PF_KEY_V2) { ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n", __func__, msg->sadb_msg_version)); V_pfkeystat.out_invver++; error = EINVAL; goto senderror; } if (msg->sadb_msg_type > SADB_MAX) { ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", __func__, msg->sadb_msg_type)); V_pfkeystat.out_invmsgtype++; error = EINVAL; goto senderror; } /* for old-fashioned code - should be nuked */ if (m->m_pkthdr.len > MCLBYTES) { m_freem(m); return ENOBUFS; } if (m->m_next) { struct mbuf *n; MGETHDR(n, M_DONTWAIT, MT_DATA); if (n && m->m_pkthdr.len > MHLEN) { MCLGET(n, M_DONTWAIT); if ((n->m_flags & M_EXT) == 0) { m_free(n); n = NULL; } } if (!n) { m_freem(m); return ENOBUFS; } m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t)); n->m_pkthdr.len = n->m_len = m->m_pkthdr.len; n->m_next = NULL; m_freem(m); m = n; } /* align the mbuf chain so that extensions are in contiguous region. */ error = key_align(m, &mh); if (error) return error; msg = mh.msg; /* check SA type */ switch (msg->sadb_msg_satype) { case SADB_SATYPE_UNSPEC: switch (msg->sadb_msg_type) { case SADB_GETSPI: case SADB_UPDATE: case SADB_ADD: case SADB_DELETE: case SADB_GET: case SADB_ACQUIRE: case SADB_EXPIRE: ipseclog((LOG_DEBUG, "%s: must specify satype " "when msg type=%u.\n", __func__, msg->sadb_msg_type)); V_pfkeystat.out_invsatype++; error = EINVAL; goto senderror; } break; case SADB_SATYPE_AH: case SADB_SATYPE_ESP: case SADB_X_SATYPE_IPCOMP: case SADB_X_SATYPE_TCPSIGNATURE: switch (msg->sadb_msg_type) { case SADB_X_SPDADD: case SADB_X_SPDDELETE: case SADB_X_SPDGET: case SADB_X_SPDDUMP: case SADB_X_SPDFLUSH: case SADB_X_SPDSETIDX: case SADB_X_SPDUPDATE: case SADB_X_SPDDELETE2: ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n", __func__, msg->sadb_msg_type)); V_pfkeystat.out_invsatype++; error = EINVAL; goto senderror; } break; case SADB_SATYPE_RSVP: case SADB_SATYPE_OSPFV2: case SADB_SATYPE_RIPV2: case SADB_SATYPE_MIP: ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n", __func__, msg->sadb_msg_satype)); V_pfkeystat.out_invsatype++; error = EOPNOTSUPP; goto senderror; case 1: /* XXX: What does it do? */ if (msg->sadb_msg_type == SADB_X_PROMISC) break; /*FALLTHROUGH*/ default: ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", __func__, msg->sadb_msg_satype)); V_pfkeystat.out_invsatype++; error = EINVAL; goto senderror; } /* check field of upper layer protocol and address family */ if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) { struct sadb_address *src0, *dst0; u_int plen; src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]); dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]); /* check upper layer protocol */ if (src0->sadb_address_proto != dst0->sadb_address_proto) { ipseclog((LOG_DEBUG, "%s: upper layer protocol " "mismatched.\n", __func__)); V_pfkeystat.out_invaddr++; error = EINVAL; goto senderror; } /* check family */ if (PFKEY_ADDR_SADDR(src0)->sa_family != PFKEY_ADDR_SADDR(dst0)->sa_family) { ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", __func__)); V_pfkeystat.out_invaddr++; error = EINVAL; goto senderror; } if (PFKEY_ADDR_SADDR(src0)->sa_len != PFKEY_ADDR_SADDR(dst0)->sa_len) { ipseclog((LOG_DEBUG, "%s: address struct size " "mismatched.\n", __func__)); V_pfkeystat.out_invaddr++; error = EINVAL; goto senderror; } switch (PFKEY_ADDR_SADDR(src0)->sa_family) { case AF_INET: if (PFKEY_ADDR_SADDR(src0)->sa_len != sizeof(struct sockaddr_in)) { V_pfkeystat.out_invaddr++; error = EINVAL; goto senderror; } break; case AF_INET6: if (PFKEY_ADDR_SADDR(src0)->sa_len != sizeof(struct sockaddr_in6)) { V_pfkeystat.out_invaddr++; error = EINVAL; goto senderror; } break; default: ipseclog((LOG_DEBUG, "%s: unsupported address family\n", __func__)); V_pfkeystat.out_invaddr++; error = EAFNOSUPPORT; goto senderror; } switch (PFKEY_ADDR_SADDR(src0)->sa_family) { case AF_INET: plen = sizeof(struct in_addr) << 3; break; case AF_INET6: plen = sizeof(struct in6_addr) << 3; break; default: plen = 0; /*fool gcc*/ break; } /* check max prefix length */ if (src0->sadb_address_prefixlen > plen || dst0->sadb_address_prefixlen > plen) { ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n", __func__)); V_pfkeystat.out_invaddr++; error = EINVAL; goto senderror; } /* * prefixlen == 0 is valid because there can be a case when * all addresses are matched. */ } if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) || key_typesw[msg->sadb_msg_type] == NULL) { V_pfkeystat.out_invmsgtype++; error = EINVAL; goto senderror; } return (*key_typesw[msg->sadb_msg_type])(so, m, &mh); senderror: msg->sadb_msg_errno = error; return key_sendup_mbuf(so, m, target); } static int key_senderror(so, m, code) struct socket *so; struct mbuf *m; int code; { struct sadb_msg *msg; IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), ("mbuf too small, len %u", m->m_len)); msg = mtod(m, struct sadb_msg *); msg->sadb_msg_errno = code; return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); } /* * set the pointer to each header into message buffer. * m will be freed on error. * XXX larger-than-MCLBYTES extension? */ static int key_align(m, mhp) struct mbuf *m; struct sadb_msghdr *mhp; { struct mbuf *n; struct sadb_ext *ext; size_t off, end; int extlen; int toff; IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), ("mbuf too small, len %u", m->m_len)); /* initialize */ bzero(mhp, sizeof(*mhp)); mhp->msg = mtod(m, struct sadb_msg *); mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */ end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); extlen = end; /*just in case extlen is not updated*/ for (off = sizeof(struct sadb_msg); off < end; off += extlen) { n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff); if (!n) { /* m is already freed */ return ENOBUFS; } ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); /* set pointer */ switch (ext->sadb_ext_type) { case SADB_EXT_SA: case SADB_EXT_ADDRESS_SRC: case SADB_EXT_ADDRESS_DST: case SADB_EXT_ADDRESS_PROXY: case SADB_EXT_LIFETIME_CURRENT: case SADB_EXT_LIFETIME_HARD: case SADB_EXT_LIFETIME_SOFT: case SADB_EXT_KEY_AUTH: case SADB_EXT_KEY_ENCRYPT: case SADB_EXT_IDENTITY_SRC: case SADB_EXT_IDENTITY_DST: case SADB_EXT_SENSITIVITY: case SADB_EXT_PROPOSAL: case SADB_EXT_SUPPORTED_AUTH: case SADB_EXT_SUPPORTED_ENCRYPT: case SADB_EXT_SPIRANGE: case SADB_X_EXT_POLICY: case SADB_X_EXT_SA2: #ifdef IPSEC_NAT_T case SADB_X_EXT_NAT_T_TYPE: case SADB_X_EXT_NAT_T_SPORT: case SADB_X_EXT_NAT_T_DPORT: case SADB_X_EXT_NAT_T_OAI: case SADB_X_EXT_NAT_T_OAR: case SADB_X_EXT_NAT_T_FRAG: #endif /* duplicate check */ /* * XXX Are there duplication payloads of either * KEY_AUTH or KEY_ENCRYPT ? */ if (mhp->ext[ext->sadb_ext_type] != NULL) { ipseclog((LOG_DEBUG, "%s: duplicate ext_type " "%u\n", __func__, ext->sadb_ext_type)); m_freem(m); V_pfkeystat.out_dupext++; return EINVAL; } break; default: ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n", __func__, ext->sadb_ext_type)); m_freem(m); V_pfkeystat.out_invexttype++; return EINVAL; } extlen = PFKEY_UNUNIT64(ext->sadb_ext_len); if (key_validate_ext(ext, extlen)) { m_freem(m); V_pfkeystat.out_invlen++; return EINVAL; } n = m_pulldown(m, off, extlen, &toff); if (!n) { /* m is already freed */ return ENOBUFS; } ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); mhp->ext[ext->sadb_ext_type] = ext; mhp->extoff[ext->sadb_ext_type] = off; mhp->extlen[ext->sadb_ext_type] = extlen; } if (off != end) { m_freem(m); V_pfkeystat.out_invlen++; return EINVAL; } return 0; } static int key_validate_ext(ext, len) const struct sadb_ext *ext; int len; { const struct sockaddr *sa; enum { NONE, ADDR } checktype = NONE; int baselen = 0; const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len); if (len != PFKEY_UNUNIT64(ext->sadb_ext_len)) return EINVAL; /* if it does not match minimum/maximum length, bail */ if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) || ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0])) return EINVAL; if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type]) return EINVAL; if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type]) return EINVAL; /* more checks based on sadb_ext_type XXX need more */ switch (ext->sadb_ext_type) { case SADB_EXT_ADDRESS_SRC: case SADB_EXT_ADDRESS_DST: case SADB_EXT_ADDRESS_PROXY: baselen = PFKEY_ALIGN8(sizeof(struct sadb_address)); checktype = ADDR; break; case SADB_EXT_IDENTITY_SRC: case SADB_EXT_IDENTITY_DST: if (((const struct sadb_ident *)ext)->sadb_ident_type == SADB_X_IDENTTYPE_ADDR) { baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident)); checktype = ADDR; } else checktype = NONE; break; default: checktype = NONE; break; } switch (checktype) { case NONE: break; case ADDR: sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen); if (len < baselen + sal) return EINVAL; if (baselen + PFKEY_ALIGN8(sa->sa_len) != len) return EINVAL; break; } return 0; } void key_init(void) { int i; for (i = 0; i < IPSEC_DIR_MAX; i++) LIST_INIT(&V_sptree[i]); LIST_INIT(&V_sahtree); for (i = 0; i <= SADB_SATYPE_MAX; i++) LIST_INIT(&V_regtree[i]); LIST_INIT(&V_acqtree); LIST_INIT(&V_spacqtree); /* system default */ V_ip4_def_policy.policy = IPSEC_POLICY_NONE; V_ip4_def_policy.refcnt++; /*never reclaim this*/ if (!IS_DEFAULT_VNET(curvnet)) return; SPTREE_LOCK_INIT(); REGTREE_LOCK_INIT(); SAHTREE_LOCK_INIT(); ACQ_LOCK_INIT(); SPACQ_LOCK_INIT(); #ifndef IPSEC_DEBUG2 timeout((void *)key_timehandler, (void *)0, hz); #endif /*IPSEC_DEBUG2*/ /* initialize key statistics */ keystat.getspi_count = 1; printf("IPsec: Initialized Security Association Processing.\n"); } #ifdef VIMAGE void key_destroy(void) { struct secpolicy *sp, *nextsp; struct secacq *acq, *nextacq; struct secspacq *spacq, *nextspacq; struct secashead *sah, *nextsah; struct secreg *reg; int i; SPTREE_LOCK(); for (i = 0; i < IPSEC_DIR_MAX; i++) { for (sp = LIST_FIRST(&V_sptree[i]); sp != NULL; sp = nextsp) { nextsp = LIST_NEXT(sp, chain); if (__LIST_CHAINED(sp)) { LIST_REMOVE(sp, chain); free(sp, M_IPSEC_SP); } } } SPTREE_UNLOCK(); SAHTREE_LOCK(); for (sah = LIST_FIRST(&V_sahtree); sah != NULL; sah = nextsah) { nextsah = LIST_NEXT(sah, chain); if (__LIST_CHAINED(sah)) { LIST_REMOVE(sah, chain); free(sah, M_IPSEC_SAH); } } SAHTREE_UNLOCK(); REGTREE_LOCK(); for (i = 0; i <= SADB_SATYPE_MAX; i++) { LIST_FOREACH(reg, &V_regtree[i], chain) { if (__LIST_CHAINED(reg)) { LIST_REMOVE(reg, chain); free(reg, M_IPSEC_SAR); break; } } } REGTREE_UNLOCK(); ACQ_LOCK(); for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) { nextacq = LIST_NEXT(acq, chain); if (__LIST_CHAINED(acq)) { LIST_REMOVE(acq, chain); free(acq, M_IPSEC_SAQ); } } ACQ_UNLOCK(); SPACQ_LOCK(); for (spacq = LIST_FIRST(&V_spacqtree); spacq != NULL; spacq = nextspacq) { nextspacq = LIST_NEXT(spacq, chain); if (__LIST_CHAINED(spacq)) { LIST_REMOVE(spacq, chain); free(spacq, M_IPSEC_SAQ); } } SPACQ_UNLOCK(); } #endif /* * XXX: maybe This function is called after INBOUND IPsec processing. * * Special check for tunnel-mode packets. * We must make some checks for consistency between inner and outer IP header. * * xxx more checks to be provided */ int key_checktunnelsanity(sav, family, src, dst) struct secasvar *sav; u_int family; caddr_t src; caddr_t dst; { IPSEC_ASSERT(sav->sah != NULL, ("null SA header")); /* XXX: check inner IP header */ return 1; } /* record data transfer on SA, and update timestamps */ void key_sa_recordxfer(sav, m) struct secasvar *sav; struct mbuf *m; { IPSEC_ASSERT(sav != NULL, ("Null secasvar")); IPSEC_ASSERT(m != NULL, ("Null mbuf")); if (!sav->lft_c) return; /* * XXX Currently, there is a difference of bytes size * between inbound and outbound processing. */ sav->lft_c->bytes += m->m_pkthdr.len; /* to check bytes lifetime is done in key_timehandler(). */ /* * We use the number of packets as the unit of * allocations. We increment the variable * whenever {esp,ah}_{in,out}put is called. */ sav->lft_c->allocations++; /* XXX check for expires? */ /* * NOTE: We record CURRENT usetime by using wall clock, * in seconds. HARD and SOFT lifetime are measured by the time * difference (again in seconds) from usetime. * * usetime * v expire expire * -----+-----+--------+---> t * <--------------> HARD * <-----> SOFT */ sav->lft_c->usetime = time_second; /* XXX check for expires? */ return; } /* dumb version */ void key_sa_routechange(dst) struct sockaddr *dst; { struct secashead *sah; struct route *ro; SAHTREE_LOCK(); LIST_FOREACH(sah, &V_sahtree, chain) { ro = &sah->route_cache.sa_route; if (ro->ro_rt && dst->sa_len == ro->ro_dst.sa_len && bcmp(dst, &ro->ro_dst, dst->sa_len) == 0) { RTFREE(ro->ro_rt); ro->ro_rt = (struct rtentry *)NULL; } } SAHTREE_UNLOCK(); } static void key_sa_chgstate(struct secasvar *sav, u_int8_t state) { IPSEC_ASSERT(sav != NULL, ("NULL sav")); SAHTREE_LOCK_ASSERT(); if (sav->state != state) { if (__LIST_CHAINED(sav)) LIST_REMOVE(sav, chain); sav->state = state; LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain); } } void key_sa_stir_iv(sav) struct secasvar *sav; { IPSEC_ASSERT(sav->iv != NULL, ("null IV")); key_randomfill(sav->iv, sav->ivlen); } /* XXX too much? */ static struct mbuf * key_alloc_mbuf(l) int l; { struct mbuf *m = NULL, *n; int len, t; len = l; while (len > 0) { MGET(n, M_DONTWAIT, MT_DATA); if (n && len > MLEN) MCLGET(n, M_DONTWAIT); if (!n) { m_freem(m); return NULL; } n->m_next = NULL; n->m_len = 0; n->m_len = M_TRAILINGSPACE(n); /* use the bottom of mbuf, hoping we can prepend afterwards */ if (n->m_len > len) { t = (n->m_len - len) & ~(sizeof(long) - 1); n->m_data += t; n->m_len = len; } len -= n->m_len; if (m) m_cat(m, n); else m = n; } return m; } /* * Take one of the kernel's security keys and convert it into a PF_KEY * structure within an mbuf, suitable for sending up to a waiting * application in user land. * * IN: * src: A pointer to a kernel security key. * exttype: Which type of key this is. Refer to the PF_KEY data structures. * OUT: * a valid mbuf or NULL indicating an error * */ static struct mbuf * key_setkey(struct seckey *src, u_int16_t exttype) { struct mbuf *m; struct sadb_key *p; int len; if (src == NULL) return NULL; len = PFKEY_ALIGN8(sizeof(struct sadb_key) + _KEYLEN(src)); m = key_alloc_mbuf(len); if (m == NULL) return NULL; p = mtod(m, struct sadb_key *); bzero(p, len); p->sadb_key_len = PFKEY_UNIT64(len); p->sadb_key_exttype = exttype; p->sadb_key_bits = src->bits; bcopy(src->key_data, _KEYBUF(p), _KEYLEN(src)); return m; } /* * Take one of the kernel's lifetime data structures and convert it * into a PF_KEY structure within an mbuf, suitable for sending up to * a waiting application in user land. * * IN: * src: A pointer to a kernel lifetime structure. * exttype: Which type of lifetime this is. Refer to the PF_KEY * data structures for more information. * OUT: * a valid mbuf or NULL indicating an error * */ static struct mbuf * key_setlifetime(struct seclifetime *src, u_int16_t exttype) { struct mbuf *m = NULL; struct sadb_lifetime *p; int len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime)); if (src == NULL) return NULL; m = key_alloc_mbuf(len); if (m == NULL) return m; p = mtod(m, struct sadb_lifetime *); bzero(p, len); p->sadb_lifetime_len = PFKEY_UNIT64(len); p->sadb_lifetime_exttype = exttype; p->sadb_lifetime_allocations = src->allocations; p->sadb_lifetime_bytes = src->bytes; p->sadb_lifetime_addtime = src->addtime; p->sadb_lifetime_usetime = src->usetime; return m; }